

Abstract— One of the key issues in providing end-to-end

Quality of Service (QoS) guarantees in today’s networks is how to
determine a feasible route that satisfies a set of constraints. In
general, finding a path subject to multiple constraints is an
NP-complete problem that cannot be exactly solved in polynomial
time. Accordingly, several heuristics and approximation
algorithms have been proposed for this problem. Many of these
algorithms suffer from either excessive computational cost or low
performance. In this paper, we propose a more efficient
distributed algorithm namely Least-Cost Least-Delay (LCLD).
The LCLD algorithm is a modified version of SF-DCLC
algorithm. The proposed algorithm requires limited network state
information at each node. The LCLD algorithm uses a weight
function which is always able to find a least-cost least-delay path
satisfying the delay bound, if such paths exist. The performance of
proposed LCLD algorithm was evaluated using computer
simulation. Simulation results show that LCLD outperforms
several earlier algorithms in terms of overall network throughput,
number of packet loss, number of received packets and end-to-end
delay. The worst-case computational complexity of this algorithm,
for a network graph with v nodes is equal with O(|v|2).

Index Terms— QOS routing, constraint based routing, LCLD
algorithm, SF-DCLC algorithm

I. INTRODUCTION
 Multimedia applications such as digital video and audio often
have stringent Quality of Service (QoS) requirements.
Selecting feasible paths that satisfy various QoS requirements
of applications in a network is known as QoS routing. In
general, two issues are related to QoS routing: state distribution
and routing strategy [1]. State distribution addresses the issue
of exchanging the state information throughout the network
[2].Routing strategy is used to find a feasible path that meets
the QoS requirements. In this paper, we focus on the routing
strategy. The goal of routing solutions is two-fold: (1)
satisfying the QoS requirements for every admitted connection
and (2) achieving the global efficiency in resource utilization. It
selects network routes with sufficient resources for the
requested QoS parameters. The QoS requirement of a
connection is given as a set of constraints, which can be link

 Maryam Baradran is with the Computer Department of Azad Islamic

University of Mashad, IRAN. e-mail: mary_baradaran@yahoo.com.
Mohammad Hossien Yaghmaee is the associate professor at Computer

Department of Ferdowsi University of Mashad, IRAN, (e-mail:
hyaghmae@ferdowsi.um.ac.ir).

constraints, path constraints, or tree constraints.
A link constraint specifies the restriction on the use of links.
For instance, a bandwidth constraint of a unicast connection
requires that the links composing the path must have certain
amount of free bandwidth available. A path constraint specifies
the end-to-end QoS requirement on a single path. a tree
constraint pacifies the QoS requirement for the entire multicast
tree. For instance, a delay constraint of a multicast connection
requires that the longest end-to-end delay from the sender to
any receiver in the tree must not exceed an upper bound.
A feasible path (tree) is one that has sufficient residual
resources to satisfy the QoS constraints of a connection. The
basic function of QoS routing is to find such a feasible path
[1]. In addition, most QoS routing algorithms consider the
optimization of resource utilization. In general, finding a path
subject to multiple constraints is an NP-complete problem that
cannot be exactly solved in polynomial time [3]. Accordingly,
several heuristics and approximation algorithms have been
proposed for this problem [4]. Path computation algorithms for
a single metric, such as delay and hop-count, are well known
and have been widely used in current networks. Thus, a natural
question is whether a single metric can support user QoS
requirements or not? One possible approach might be to define
a function and generate a single metric from multiple
parameters. The idea is to mix various pieces of information
into a single measure and use it as the basis for routing
decisions. For example, a mixed metric M may be produced
with bandwidth B, delay D and loss probability L with a the
following formula[5]:

)().(

)()(
pLpD

pBpf = (1)

Multiple metrics can certainly model a network more
accurately. However, the problem is that finding a path subject
to multiple constraints is inherently hard and polynomial-time
algorithms for the problem may not exist. The problem in QoS
routing is much more complicated since the resource
requirements specified by the applications are often diverse and
application-dependent. The computation complexity is
primarily determined by the composition rules of the metrics.
There are the following three basic composition rules:
Definition: Let d (i , j) be a metric for link (i , j). For any path
p = (i , j , k ,..., l , m), the metric d is additive if:
d(p)= d (i ,j) + d (j , k) + . . . + d (l , m) (2)
The metric d is multiplicative if:
d(p) = d(i, j) × d (j , k) × . . . × d (l , m) (3)

A Constraint Based Routing Algorithm For
Multimedia Networking

Maryam Baradaran , Mohammad Hossein Yaghmaee

IAENG International Journal of Computer Science, 33:2, IJCS_33_2_2
__

(Advance online publication: 24 May 2007)

The metric d is concave if:
d(p)= min[d (i ,j), d (j ,k), ..., d (l ,m)] (4)
It is obvious that delay, delay jitter and cost follow the additive
composition rule, and bandwidth follows the concave
composition rule. The composition rule for loss probability is
more complicated and is given as below:
d(p)=1− ((1−d(i,j))× (1−d(j,k))× ...× (1−d(l,m))) (5)

It is clear that any combination of two or more metrics: delay,
delay jitter, cost and loss probability is NP-complete. We
believe that for the majority of applications, delay is
comparatively more important than the others. The delay has
two basic components: queuing delay and propagation delay.
Note that the queuing delay is determined by bottleneck
bandwidth and traffic characteristics. Since queuing delay is
already reflected in the bandwidth metric, we only need to
consider propagation delay in the delay metrics [6].
In this paper, we propose an efficient distributed heuristic
algorithm, namely, Least-Cost Least-Delay (LCLD). The
proposed algorithm uses a weight function, which leads to
heuristics for finding a suboptimal path closer to the optimal
one. This algorithm can easily find a loop-free
delay-constrained path and has very high probability of finding
the optimal solution if such a path exists.
The rest of the paper is organized as follows. A brief review of
the related works on QoS routing is given in section 2. Section
3 presents the proposed LCLD algorithm in details. We start
with the formulation of SF-DCLC problem, and then describe
the operations of LCLD, followed by complexity analysis.
Simulations results are presented in section 4. Finally, we
conclude the paper in section 5.

II. RELATED WORKS
In [7]-[8] two algorithms for unicast route computation

based on distance-vectors (SMM-DV) and link-states
(SMM-LS) were proposed. In [9], Widyono proposed a
Constrained Bellman–Ford (CBF) algorithm that can be used to
solve the Delay-Constrained Least-Cost (DCLC) problem
optimally. The CBF performs a breadth-first search to discover
the least cost path while monotonically increasing delay. CBF
maintains a list of least-cost paths for each delay value from the
source to each other node. Once the delay exceeds the
constraint, CBF stops. CBF exactly solves the DCLC problem.
Unfortunately, the worst case running time of CBF grows
exponentially with the network size. To overcome the
worst-case complexity of CBF, several ε-optimal
approximation algorithms were proposed based on CBF
[10]-[12]. Many ε-approximation algorithms (the solution has a
cost within a factor of (1+ε) of the optimal one) subject to
DCLC have been proposed in the literatures. In [10], Lorenz et
al. presented several ε-approximation solutions for both the
DCLC and the multicast tree. Among them, the algorithm
subject to DCLC possesses the best-known computational
complexity of O(nmlog n log(logn) + nm/ ε). In [11], Hassin
presented two ε-approximations algorithms for the Restricted
Shortest Path problem (RSP) with complexities of O((nm/ε)

log log U) and O(mn 2 εlog(n/ε)), where U is the upper bound
of the cost of the path computed. In [12], Raz and Shavitt
proposed an efficient dynamic programming solution for the
case in which the QoS parameters are integers, and a sub-linear
algorithm for the case in which all link costs use the (same)
function of their corresponding delays. Existing algorithms
reviewed above may have the following drawback.

Although the algorithms such as the ε-approximation
approaches [10]-[11] can achieve 100% or near 100% success
ratio, their worst-case computational complexities are too high
to be practical (assume ε is very small in ε-approximation
algorithms so that their success ratios are close to 1). In [13],
Iwata et al. proposed a polynomial time algorithm to solve the
Multi Constraint Path (MCP) problem. The algorithm first
finds one (or more) shortest path(s) based on one aggregated
cost and then checks if all the constraints are met. If it fails, it
will be repeated with another aggregated cost until an
appropriate path satisfying all the constraints is found. Neve et
al. in TAMCRA algorithm [14] and Mieghem et al. in
SAMCRA algorithm [15] used the k -shortest path algorithm
[16] with a non-linear cost function to solve the MCP problem
with more than two constraints. The performance of these two
algorithms depends on the value of k .If k is large, the algorithm
has good performance but with excessive computational cost.
Yuan [17] presented two heuristics for the MCP problem. The
first one, namely, limited granularity heuristic, is a
generalization of the algorithm in [1]. The second heuristic,
called limited path heuristic, requires each node to maintain k
non-dominated paths (not necessarily the k shortest-paths). In
[18], Liu and Ramakrishnan proposed a so-called A*Prune to
find not only one but multiple (K) shortest paths satisfying the
constraints.

Another attempt to solve the DCLC problem is to map the
DCLC problem into the possibly easier MCP problem. In [19],
Guo et al. introduced a cost bound based on the network state
and then employed the k-shortest path algorithm [20] with a
non-linear function of path delays and path costs to search a
path that meets the delay constraint and cost constraint. The
authors gave a few algorithms based on the Lagrange relaxation
technique. The basic idea is first to construct an aggregated
weight with a linear or non-linear function using Lagrange
relaxation technique, then to use the Dijkstra algorithm
repeatedly to find a feasible path. A LAgrange Relaxation
based Aggregated Cost (LARAC) was proposed in [21] for the
Delay Constrained Least Cost path problem (DCLC). This
algorithm is based on a linear cost function c λ = c+λd, where c
denotes the cost, d the delay, and λ is an adjustable parameter. It
was shown that the computational complexity of this algorithm
is O(m 2 log 4 m). Korkmaz et al. proposed the Binary Search
for Lagrange Relaxation (BSLR) algorithm that uses a refined
Lagrange relaxation technique to define the weights of the
metrics composition rule [22]. Feng et al. make an evaluation
of algorithms that use Lagrange relaxation to solve the Delay
Constrained Least Cost problem using both linear and
non-linear cost functions [23]. The problem of this kind of

algorithms is how to choose appropriate multipliers for the
Lagrange relaxation. Several researchers proposed distributed
algorithms in order to alleviate the centralized computational
overheads. Reeves and Salama [24] proposed a distributed
algorithm called DCUR for the DCLC problem. The DCUR
explores the network by choosing the node along the
least-delay path or the least-cost path as the next node to be
explored. In [25], Sun and Langendorfer improved the DCUR
such that no loop would be formed during the exploration of the
network. In [26]-[27], Ishida et al. and Sriram et al. proposed
two distributed algorithms similar to DCUR. Two interesting
distributed algorithms, ticket-based routing [28] and enhanced
ticket-based routing [29], use probes (routing messages)
carrying colored tickets to explore the possible feasible paths.
In ticket-based approaches, yellow tickets prefer paths with
smaller delay, while green tickets prefer paths with smaller
cost. And by properly choosing the number of green (yellow)
tickets, ticket-based routing can find a feasible path with
modest message overhead.

In [30], Wei Liu , Wenjing Lou and Yuguang Fang proposed
a more efficient distributed algorithm, namely,
Selection-Function-based (SF-DCLC), based on a novel
selection function for the DCLC problem. The SF-DCLC
algorithm requires limited network state information at each
node and is always able to find a loop-free path satisfying the
delay bound if such paths exist. One of the most important
problems of SF-DCLC algorithm is that it can only chooses the
paths with the less cost which their delay is not more than the
authorized limit. But, no recovery in the detraction of path’s
delay with the less cost might be found. So, in some conditions,
some paths may won’t be chosen with a little more cost and
extremely less delay in compression with the chosen paths.

In this paper, we modify the SF-DCLC algorithm and
proposed a new weight function so that in addition to cost
metric, it also considers the delay metric. The proposed
algorithm which is called Least-Cost Least-Delay (LCLD), is
able to choose the path with the least cost and also least delay.

III. THE PROPOSED LCLD ALGORITHM

In this section, we present the proposed LCLD algorithm in

details. At first, we describe the SF-DCLC algorithm and its
problem to facilitate our discussion, then we explain the
proposed LCLD algorithm.

A. Operation of SF-DCLC Algorithm
As a usual practice in the literature, a network is modeled as

a connected, directed graph G = (V,E), where V is the set of the
network nodes and E is the set of edges representing physical or

logical connectivity’s between nodes. Let R
+

 denote the set of
non-negative real numbers. Two non-negative functions are
defined associated with each link e (e∈ E): the delay function
delay(e) : E → R + and the cost function cost(e) : E → R + .

Each link may be asymmetric, that is, the costs and the delays
of the link e = (vi, vj) and the link e’ = (vj, vi) may have different

values. We also define the non-negative delay and cost
functions for any path p as below:

∑
∈

=
pe

edelaypDelay)()((6)

∑
∈

=
pe

etpCost)(cos)((7)

Given a source node s ∈V, a destination node d∈ V and a
positive delay constraint Δ delay , the DCLC routing problem is
to find a path p from s to d such that min{cost(p),p ∈Pd} is
achieved, where Pd is the set of all feasible paths from s to d that
satisfy the delay constraint Δ delay , i.e., delay(p) ≤ Δ delay . It
has been proven that the DCLC problem is NP-complete even
for undirected networks.

The traditional distance vector routing algorithms require
each router to maintain a table (i.e., a vector), which gives the
best known distance to each destination and which outgoing
link to use to reach there. While in the SF-DCLC routing
algorithm, each node maintains two vectors, the least-delay
vector and the least-cost vector, which provide the best known
values based on two different metrics, delay and cost,
respectively. Each vector is indexed by and contains one entry
for each node in the network. One entry in the least-delay
vector at one node (e.g., node vi) contains the following
information:
• vj: the destination node identity;
• delay (Pld (vi, vj)): the delay of the least-delay path Pld (vi, vj);
• cost (Pld (vi, vj)): the cost of the least-delay path Pld (vi, vj);
• nid (Pld(vi, vj)): the next hop on the least-delay path Pld (vi, vj);
The least-delay path Pld (s,d) is the path from s to d, which
satisfies:
Delay (Pld (s,d)) = min{delay(p),p∈P(s,d)} (8),
where P(s,d) is the set of all possible paths from s to d.
Similarly, the entry in the least-cost vector contains the
following information:
• vj: the destination node identity;
• delay(Plc (vi, vj)): the delay of the least-cost path Plc (vi, vj);
• cost (Plc (vi, vj)): the cost of the least-cost path Plc (vi, vj);
• nid (Plc (vi, vj)): the next hop on the least-cost path Plc (vi, vj);
The least-cost path Plc(s,d) is the path from s to d, which
satisfies:
cost (Plc (s,d)) = min{cost(p), p∈P(s,d)} (9),

where P(s,d) is the set of all possible paths from s to d. The
least-delay vector and the least-cost vector are similar to the
vectors used in the existing distance vector routing protocols.
We assume that each node knows the delay and cost to all its
neighboring nodes. Then, the same procedure used to update
and maintain the vectors in the existing distance vector routing
protocols can be used to update and maintain these two vectors.
We further assume that the contents of the vectors are
up-to-date and the contents of the two vectors do not change
during the route setup period.

The SF-DCLC algorithm constructs the DCLC path node by
node from the source node s to the destination node d .Each
node chooses its subsequent node by evaluating a selection

function weight() on all its neighbors. A special
PATH_CONSTRUCTION message is sent by the node to the
selected subsequent node that requests the continuing
construction of the path till the destination. The
PATH_CONSTRUCTION message contains the following
information {d , delayΔ , delaySoFar ,Psf (s ,v)},where d is the

destination node identity, delayΔ is the delay bound,

delaySoFar is the accumulated delay till the current node, and
Psf (s,v) is the set of nodes indicating the partial found DCLC
path till the current node v .

Assume that the current node is vi , for each neighboring
node vj , the selection function weight() is defined as follows:

⎪
⎪
⎩

⎪
⎪
⎨

⎧

∞

Δ≤++

+

=

else

))((),(

),,('cos),(cos

),(, delayjldji

jji

ji

dvpdelayvvdelaydelaysofarif

dvtvvt

vvweight
 (10)

⎪
⎩

⎪
⎨

⎧

Δ≤++=

else)),((cos

))((),(

)),,((cos

),('cos ,

dvpt

dvpdelayvvdelaydelaysofarif

dvpt

dvt

jld

delayjlcji

jlc

j

The function extract() is to choose the node, say w ,whose

value of the selection function weight (vi,w) is the minimum
one among all the neighboring nodes. The problem of this
selection function is that it can only chooses the paths with the
less cost which their delay is not more than the

delayΔ , but no

recovery in the detraction of path’s delay with the less cost
might be found. A possible improvement to SF-DCLC is to
modify the selection function to take the delay into
consideration. This improvement is done by the proposed
LCLD algorithm.

B. Operation of LCLD Algorithm
We need to define a weight function which combines all

features of the link metrics. A simple way to mix the metrics is
to use a linear function, for example, w(e) = αc(e)+βd(e), as the
new weight for each link[21]. This approach has the advantage
that it is easy to implement. By using this function, the path
delay and cost become a single path weight constraint Δ = αΔc
+ βΔd. However, this linear weight function may not reflect the
actual quality of a path, i.e., an optimal path according to the
new weight function may in fact violate the constraints while a
suboptimal path satisfies them.

Using a non-linear function may help us to overcome this
problem. De Neve and Van Mieghem propose to use the
concave path weight function max(C(P)/Δc,D(P)/Δd) in their
TAMCRA algorithm [14]. It is shown that with this function,
the algorithm can find the shortest path (path whose both cost
and delay are far from the bounds) with a relatively high
success rate. The problem with defining a non-linear weight
function for a link is that now the weight of a path is no longer
the sum of the weight of all links on this path, i.e.,

W(P) ∑
∈

≠
pe

ew)(.

But since it is easy to record the cumulative delay and
cumulative cost of a path, we can easily solve this problem by
computing the path weight as a function F() of the delay and
cost of the path i.e., W(P) = F(C(P),D(P)). A more serious
problem is that a non-linear function dose not has the
optimal-substructure property, i.e. subsections of shortest
(least-weight) paths are not necessarily shortest paths
themselves.

Consider the following example shown in Fig. 1, assuming a
concave (max) weight function is used.:

W(P1)=max(10/12,1/12)=10/12,
W(p2)=max(5/12,5/12)=5/12.

Fig.1. An example to show the problem of a non-linear function

For intermediate node u, path P2 will be chosen since it has a

smaller weight, thus the actual feasible path to the destination
through P1, with feasible delay and cost of 11, will be missed.
The non-linear (max) weight function in TAMCRA works well
so as to find a path that is far from all the bounds. It is not a goal
of TAMCRA to optimize any of the metrics. However, since
our objective is to find a path with optimal cost and delay, this
function is not suitable.

We should use a weight function that gives priority to
low-cost and low-delay paths. The weight function used in
proposed algorithm is defined as:

⎪
⎪
⎩

⎪
⎪
⎨

⎧

∞

Δ≤++

+Δ−

=

else

))((),(

,'))/),(1/(),((cos

),(, delayjldji

delayjiji

ji

dvpdelayvvdelaydelaysofarif

Wvvdelayvvt

vvw
 (11)

⎪
⎩

⎪
⎨

⎧

Δ−

Δ≤++

Δ−

=

else)d))/ ,((1/()),((cos

))((),(

),/)),((1/()),((cos

'

delay

,

jldjld

delayjlcji

delayjlcjlc

vpdelaydvpt

dvpdelayvvdelaydelaysofarif

dvpdelaydvpt

w

Our proposed algorithm restricts the search space by only
examining paths that satisfy the requested delay bound as well
as a optimal cost. If there is no path with lower cost than that of
the least-delay path, then the least-delay path itself is the
optimal path, and this is the path returned by LCLD. Since we
set the weight of all infeasible paths to be infinity, it is easy to
see that the number of possible feasible solutions decreases,
and thus the opportunity that proposed algorithm finds the
optimal (least cost-delay) solution increases.
Fig. 2 shows an example of the path constructed by the LCLD

algorithm from source s =A to destination d =G with delayΔ

=10. The path found by LCLD in this example is
A → B → E → G with cost=8 and delay=5, while the path
found by SF-DCLC is A → D → F → G with cost=6 and
delay=10. Our algorithm leads to a better choice: a path with
optimal cost and delay while still meeting the delay constraint.
Thus the proposed LCLD has high probability to find the
optimal solution while keeping the striking a very good balance
between cost and delay.

Fig.2. An example of the construction the path from node A to node G

Based on the operation of SF-DCLC and LCLD algorithms, the
routing vectors of nodes A to G is obtained as below:

A’s vectors

C 3 12 B 8 5G
 C 2 7 D 5 5 F
 C 4 11 B 5 4 E

D 4 2 D 4 2 D
C 1 6 C 1 6 C

 B 1 2 B 1 2 B
Null 0 0 Null 0 0 A

NH_LC C_LC D_LC H_LD C_LD D_LD Dest

B’s vectors

E 7 3 E 7 3 G
 E 8 8 E 8 8 F

E 4 2 E 4 2 E
A 5 4 A 5 4 D
A 2 8 E 7 7 C

 Null 0 0 Null 0 0 B
A 1 2 A 1 2 A

NH_LC C_LC D_LC H_LD C_LD D_LD Dest

C’s vectors

F 2 6 F 2 6 G
 F 1 1 F 1 1 F

E 3 5 E 3 5 E
F 2 4 F 2 4 D

Null 0 0 Null 0 0 C
A 2 8 E 7 7 B
A 1 6 A 1 6 A

NH_LC C_LC D_LC H_LD C_LD D_LD Dest

D’s vectors

F 2 8 F 2 8 G
F 1 3 F 1 3 F
 F 5 9 F 5 9 E

Null 0 0 Null 0 0 D
 F 2 4 F 2 4 C

A 5 4 A 5 4 B
D 4 2 D 4 2 A

NH_LC C_LC D_LC H_LD C_LD D_LD Dest

E’s vectors

G 3 1 G 3 1 G
G 4 6 G 4 6 F

Null 0 0 Null 0 0 E
F 5 9 F 5 9 D
 E 3 5 E 3 5 C
 E 4 2 E 4 2 B

C 4 11 B 5 4 A
NH_LC C_LC D_LC H_LD C_LD D_LD Dest

F’s vectors

G 1 5 G 1 5 G
Null 0 0 Null 0 0 F
G 4 6 G 4 6 E
F 1 3 F 1 3 D
F 1 1 F 1 1 C
E 8 8 E 8 8 B
C 2 7 D 5 5 A

NH_LC C_LC D_LC H_LD C_LD D_LD Dest

If S=A, d=G, delayΔ =10, then the weight function W in

each node is calculated as follow:
at node A :
W(A,B)=11.25
W(A,C)= ∞
W(A,D)=15
at node B :
W(B,E)=5
at node E:
W(E,C)= ∞
W(E,G)=3.33
at node G :
LCLD is terminated

C. The Complexity of LCLD
As discussed before, in LCLD each path is constructed in an
‘‘on demand’’ manner. For each path finding, a node should
evaluate the link weight function w() at most |V| times, and
should compare at most |V| values to find out the minimum w(
), thus, in the worst case the extra computational complexity for
a node to select the next hop is O(|V|). Since the worst case
path length would be |V|, the computational complexity for
finding a LCLD path in the worst case is O(|V| 2). Each node
caches the most up-to-date least-delay vector and least-cost

vector received from its neighbors. Since a node at most has |V|
neighbors and a vector from one neighbor contains |V| entries,
the worst case memory complexity at each node is O(|V| 2).

IV. SIMULATION RESULTS
In this section, we present the performance of proposed

LCLD algorithm and compare it with that of SF-DCLC
algorithm.

We have preformed extensive simulations to test the
performance of the proposed algorithm using NS2 (Network
Simulator) [31]. This simulator is capable of modeling different
routing algorithms for different input graphs and different flow
request distributions.

To compare the performance of both SF-DCLC and LCLD
algorithms, we define the following four performance metrics:
Number of received packets: This metric is used to calculate the
number of received packets in the destination node.

Number of lost packet: This metric is used to calculate the
number of lost packet in the destination node.

Throughput: One of the most important performance metrics
is the throughput. This metric shows number of received bytes
in a certain time unit.

end to end delay: This metric is used to calculate the end to
end delay. For most applications, particularly real-time ones,
the end-to-end delay is one of the most important QoS
parameters.

Fig. 3, shows the network topology used in the simulation.
This figure is plotted in the nam (network animator) of the ns2
simulator. As it can be seen in this figure, we generated 30
nodes. Random requests are entered to the network. Each
request has a random cost between 1 to 20 units and a random
delay between 1 to 20 ms. CBR random traffic connections are
setup between nodes with packet size equal to 1000 bytes. The
packet interval is equal to 0.005 second.

Fig. 3. Network topology in the nam environment

We have done four simulation trials. In the first trial, the

number of flow and delayΔ , were set to 20 and 15, respectively.

For performance comparison, it is necessary for both two
algorithms to route the same requests and the same subset of
requests in the same order.

In Fig. 4(a), for both SF-DCLC and LCLD algorithms, the
number of lost packets is plotted. It is clear that the proposed
LCLD algorithm has less packet loss than the SF-DCLC
algorithm. Fig. 4(b) shows the total number of received packets
versus simulation time. According to the results shown in this
figure, the number of received packets in LCLD is larger than
SF-DCLC algorithm. Furthermore, in Fig. 4(c) and Fig. 4(d),
the throughput and the end to end delay of both algorithms are
plotted versus simulation time. It is clear that the proposed
LCLD can outperform the SF-DCLC algorithm.

80

90

100

110

120

130

140

0 20 40 60

simulation time
nu

m
be

r o
f p

ac
ke

t l
os

s

SF-DCLC

LCLD

(a)

20000
25000
30000
35000
40000
45000
50000
55000
60000

0 20 40 60

simulation time

nu
m

be
r o

f p
ac

ke
t r

ec
ei

ve
d

SF-DCLC

LCLD

(b)

6000

7000

8000

9000

10000

11000

12000

0 5 10 15
simulation time

th
ro

ug
hp

ut
(n

o.
 o

f p
ac

ke
t/T

IL
) LCLD

SF-DCLC

(c)

0
0.005
0.01

0.015
0.02

0.025
0.03

0.035
0.04

0 5 10 15 20
simulation time

En
d2

En
d

de
la

y(
se

c)

LCLD

SF-DCLC

(d)

Fig.4: Simulation results: a) number of lost packets b) number of
received packets c) throughput d)end to end delay

In the second trial, we evaluate the performance of both
algorithms at different level of delay constraint. In this
case, delayΔ is randomly selected. The number of flow was set

to 20. We observed that, when delay bound is very stringent,
both of compared algorithms are very close. These results can
be explained as follows. When delay constraint is stringent, the
number of feasible paths is very limited. Both algorithms are
likely to choose the same path, so their performance is similar
to each other. However, when the delay constraint becomes
loose, the number of feasible paths increases. Therefore their
performance starts to diverge. We also observe that LCLD has
better capability to find the optimal path than SF-DCLC.

In Fig. 5(a), for both SF-DCLC and LCLD algorithms, the
number of lost packets is plotted versus different delay level. It
is clear that the proposed LCLD algorithm has less packet loss
than the SF-DCLC algorithm. Fig. 5(b) shows the number of
received packets versus different delay level. According to the
results shown in this figure, the number of received packets in
LCLD is larger than SF-DCLC algorithm.

150
160
170
180
190
200
210
220
230
240

5 10 15 20

delay level

nu
m

be
r o

f p
ac

ke
t l

os
s

LCLD
SF-DCLC

(a)

0

10000

20000

30000

40000

50000

0 5 10 15 20

delay level

nu
m

be
r o

f r
ec

ei
ve

d
pa

ck
et

s

SF-DCLC
LCLD

(b)

0

2000
4000

6000

8000

10000
12000

14000

5 10 15 20

delay level

th
ro

ug
hp

ut
(n

o.
 o

f p
ac

ke
ts

/T
IL

)

SF-DCLC

LCLD

(c)

0.01
0.011
0.012
0.013
0.014
0.015
0.016
0.017
0.018

5 10 15 20

delay level

en
d

to
 e

nd
 d

el
ay

(s
ec

)

LCLD

SF-DCLC

(d)

Fig. 5: Simulation results for different delay level: a) number of lost
packets b) number of received packets c) throughput d) end to end

delay

In Fig. 5(c) and Fig. 5(d), the throughput and the end to end
delay of both algorithms are shown. It can be seen that by
increasing the delay level, limitation on the constraint of delay
is decreased and some paths with extremely less cost and more
delay may be chosen, so end to end delay is also increased.

In the third trial, we evaluate the performance of both

algorithms at different number of flow. In this case the delay
level is constant. By increasing the number of flows, the
number of received packets at destination is also increased. Due
to the lack of enough bandwidth, the total number of received
packets will not be increased from a certain number. This is
also true for throughput and number of lost packets.

In Fig. 6(a), for both SF-DCLC and LCLD algorithms, the
number of lost packets is plotted versus different number of
flow. It is clear that the proposed LCLD algorithm has less
packet loss than the SF-DCLC algorithm. Fig. 6(b), for both
SF-DCLC and LCLD algorithms, shows the number of
received packets versus different number of flow. According to
the results shown in this figure, the number of received packets
in LCLD is larger than SF-DCLC algorithm. In Fig. 6(c) the
throughput of both algorithms is plotted versus number of flow.
Furthermore, in Fig. 6(d), the end to end delay of both
algorithms is plotted versus number of flow. By increasing the
number of flows, as the chosen path has a fixed link delay, the
end to end delay will not be changed a lot.

150

170

190

210

230

250

3 8 13 18

number of f low

nu
m

be
r o

f p
ac

ke
t l

os
s

LCLD
SF-DCLC

(a)

30000
35000
40000
45000
50000
55000
60000
65000
70000

3 8 13 18

number of f low

nu
m

be
r o

f r
ec

ei
ve

d
 p

ac
ke

ts

SF-DCLC
LCLD

(b)

4000
5000
6000
7000
8000
9000

10000
11000

3 8 13 18

number of f low

th
ro

ug
hp

ut
(n

o.
 o

f p
ac

ke
ts

/T
IL

)

SF-DCLC
LCLD

(c)

0.015

0.017

0.019

0.021

0.023

0.025

3 8 13 18

number of f low

en
d

to
 e

nd
 d

el
ay

(s
ec

)

SF-DCLC
LCLD

(d)

Fig. 6: Simulation results for different number of flows: a) number of
lost packets b) number of received packets c) throughput d)end to end

delay

In the last trial, we evaluate the performance of both
algorithms at different number of (source,destination) pairs in
the network. In this case, like to trial1, the number of flow and

delayΔ , were set to 20 and 15, respectively. the Increasing the

number of (source, destination) pairs will cause the increment
of the chosen paths and traffic in the network. So, the total
number of received packets in all destination’s nodes will be
increased. In Fig. 7(a) , for both SF-DCLC and LCLD
algorithms, the number of lost packets is plotted versus number
of (source,destination) pairs. It is clear that the proposed LCLD
algorithm has less packet loss than the SF-DCLC algorithm.
Fig. 7(b) shows the total number of received packets.
According to the results shown in this figure, for different
number of (source,destination) pairs, the number of received
packets in LCLD is larger than SF-DCLC algorithm. Fig.7(c)
shows the throughput of both algorithms.
Fig. 7(d) shows end to end delay. Based on results shown in
these figures, It is clear that at different number of
(source,destination) pairs, the proposed LCLD has better
performance than SF-DCLC algorithm.

120
130
140
150
160
170
180
190
200

1 3 5 7

number of source-destination

nu
m

be
r o

f p
ac

ke
t l

os
s LCLD

SF-DCLC

(a)

44000
64000

84000
104000
124000

144000
164000

184000
204000

1 3 5 7

number of source-destination

nu
m

be
r o

f r
ec

ei
ve

d
pa

ck
et

s

LCLD

SF-DCLC

(b)

10000
12000
14000
16000
18000
20000
22000
24000
26000
28000

1 3 5 7

number of source-destination

th
ro

ug
hp

ut
(n

o.
 o

f p
ac

ke
t/T

IL
)

SF-DCLC

LCLD

(c)

0.02

0.04

0.06

0.08

0.1

1 3 5 7

number of source-destination

En
d

to
 E

nd
 D

el
ay

(s
ec

) SF-DCLC

LCLD

(d)

Fig. 7: Simulation results with various (source,destination) pairs: a)
number of lost packets b) number of received packets c) throughput

d) end to end delay

V. CONCLUSION

In this paper, we studied the SF-DCLC problem, which is
crucial for the emerging delay-cost sensitive applications. We
proposed a distributed unicast routing algorithm, namely,
LCLD, based on a special heuristic weight function. We also
evaluated our algorithm by comparing it with SF-DCLC in
terms of optimality. Our simulation results show that LCLD has
much better performance than SF-DCLC. Thus, the most
attractive feature of the LCLD algorithm is its high efficiency
in the sense that it has very high probability of finding the
optimal path with very low complexity. The worst-case
computational complexity of this algorithm, for a network
graph with v nodes, is equal with O(|v|2).

VI. REFERENCES
[1] S. Chen and K. Nahsted, “An overview of quality of service routing for

next-generation high-speed network: problems and solutions,” IEEE
Networks, 1998, 12, (6), pp. 64-79.

[2] A. Shaikh, J. Rexford, and K. G. Shin, “Evaluating the impact of stale
link state on quality-of-service routing,” IEEE/ACM Transactions on
Networking, 2001, 9, (2), pp. 162-176.

[3] E.Aboelela, and C. Douligeris, “Fuzzy reasoning approach for QoS
routing in B-ISDN,” Journal of Intelligent and Fuzzy Systems,
Application in Engineering and Technology, Vol. 9, pp. 11-27,November
2000.

[4] Gang Cheng and Nirwan Ansari , “Achieving 100% Success Ratio In
Finding The Delay Constrained Least Cost Path, ”IEEE Journal 2004.

[5] Luis Henrique M.K. Costa Serge Fdida,” Developing Scalable for
Three-Metric QOS-Routing ,” Elsevier 2002.

[6] Z. Wang, and J. Crowcroft, “Quality of service routing for supporting
multimedia applications,” IEEE Journal of Selected Areas in
Communications, vol. 14, issue 7, pp. 1288-1234, September 1996.

[7] L. H. M. K. Costa, S. Fdida, and O. C. M. B. Duarte, “ Distance-Vector
QOS based routing with three metrics,” in IFIP High Performance
Networking – Networking 2000, Lecture Notes in Computer Science
1815, pp.847-856, May 2000.

[8] L. H. M. K. Costa, S. Fdida, and O. C. M. B. Duarte, “ A scalable
algorithm for link-state Qos-based routing with three metrics,” in IEEE
International Conference on Communications, june 2001.

[9] R. Widyono, “The design and evaluation of routing algorithms for
real-time channels,” Technical Report ICSI TR-94-024, International
Computer Science Institute, UC, Berkeley, June 1994.

[10] D. H. Lorenz and A. Orda, ”Efficient QoS partition and routing of unicast
and multicast,” Proceedings of 8th International Workshop on Quality of
Service, pp. 75-83, 2001.

[11] R. Hassin, ”Approximation schemes for the restricted shortest path
problem,” Mathematics of Operations Research, 1992, 2, (2), pp. 36-42.

[12] D. Raz, and Y. Shavitt, “Optimal partition of QoS requirements with
discrete cost functions,” IEEE Journal on Selected Areas in
Communications, 2000, vol. 12, (18), pp. 2593-2602.

[13] A. Iwata, R. Izmailov, D.-S. Lee, B. Sengupta, G.Ramamurthy, H. Suzuki,
“ATM routing algorithm with multiple QoS requirements for multimedia
internetworking,” IEICE Transactions and Communications E70-B (8)
(1998) 999–1006.

[14] H. De Neve, P. Van Mieghem, “A multiple quality of service routing
algorithm for PNNI,” in: Proceedings of the IEEE ATM Workshop,
May 1998, pp. 324–328.

[15] P. Van Mieghem, H. De Neve, F.A. Kuipers, “Hop-by-Hop quality of
service routing, “Computer Networks 37 (2001) 407–423.

[16] E.I. Chong, S. Maddila, S. Morley, “On finding single source
single-destination k shortest paths,” in: Proceedings of International
Conference on Computing and Information (ICCI)_95, July 1995, pp.
40–47.

[17] X. Yuan, “Heuristic algorithm for multi-constrained quality-of-service
routing, ”IEEE/ACM Transactions on Networking 10 (2) (2002)
244–256.

[18] G. Liu, K.G. Ramakrishnan, “A*Prune: an algorithm for finding K
shortest paths subject to multiple constraints,” in: Proceedings of IEEE
INFOCOM 2001.

[19] L. Guo, I. Matta, “ Search space reduction in QoS routing,” Computer
Networks 41 (1) (2003) 73–88.

[20] E.I. Chong, S. Maddila, S. Morley, “On finding single source
single-destination k shortest paths,” in: Proceedings of International
Conference on Computing and Information (ICCI)_95, July 1995, pp.
40–47.

[21] A. Juttner, B. Szviatovszki, I. Mecs, Z. Rajko, “Lagrange relaxation based
method for the QoS routing problem,” in: Proceedings of the IEEE
INFOCOM_2001, vol. 2 ,pp. 859-868.

[22] T. Korkmaz, M. Krunz, S. Tragoudas, “An efficient algorithm for finding
a path subject to two additive constraints”, Joint International Conference
on Measurement and Modeling of Computer Systems, Proceedings of the
2000 ACM SIGMETRICS, Santa Clara, California, United States, 2000.

[23] G. Feng, C. Douligeris, K. Makki, N. Pissinou, “Performance Evaluation
of the Delay-Constrained Least-Cost Routing Algorithms Based on
Linear and Nonlinear Lagrange Relaxation”, Proceedings of Fiftieth IEEE
International Conference on Communication (ICC 2002), pp 2273-2278,
April 2002.

[24] D.S. Reeves, H.F. Salama, “A distributed algorithm for delay-constrained
unicast routing,” IEEE/ACM Transactions on Networking 8 (2) (2000)
230–250.

[25] Q. Sun, H. Langendorfer,” A new distributed routing algorithm for
delay-sensitive application,” Computer Communications 21 (6) (1998)
572–578.

[26] K. Ishida, E. Amana, N. Kannari, “A delay-constrained least cost path
routing protocol and the synthesis method,” in: Proceedings of the Fifth
IEEE International Conference on Real-Time Computer System and
Applications, October 1998, pp. 58–65.

[27] R. Sriram, G. Manimaran, C.S. Murthy,” Preferred link based
delay-constrained least-cost routing in wide area networks,” Computer
Communications 21 (1998) 1655–1669.

[28] S. Chen, K. Nahrstedt, “Distributed quality-of-service routing in ad-hoc
networks,” IEEE Journal on Selected Areas in Communications 17 (8)
(1999) 1488–1505.

[29] L. Xiao, J. Wang, K. Nahrstedt,” The enhanced ticket based routing
algorithm,” in: Proceedings of the of ICC_02, New York, April 2002.

[30] Wei Liu a,*, Wenjing Lou b, Yuguang Fang,” An efficient quality of
service routing algorithm for delay-sensitive applications,” of Elsevier
Computer Networks 47(2005) 87-104.

[31] NS-2 Network Simulator , http://www.isi.edu/nsnam/ns/

Maryam Baradran was born in Mashad, Iran. She received her B.S. degree
in Computer Engineering from Azad University of Mashad and her M.S.
degree from Azad University of Mashad in 2007. Currently she is a faculty
staff of Azad University of Mashad.

Mohammad Hossein Yaghmaee was born on July 1971 in Mashad, Iran. He
received his B.S. degree in Communication Engineering from Sharif
University of Technology, Tehran, Iran in 1993, and M.S. degree in
communication engineering from Tehran Polytechnic (Amirkabir) University
of Technology in 1995. He received his PhD degree in communication
engineering from Tehran Polytechnic (Amirkabir) University of Technology
in 2000. He has been a computer network engineer with several networking
projects in Iran Telecommunication Research Center (ITRC) since 1992.
November 1998 to july1999, he was with Network Technology Group (NTG),
C&C Media research labs., NEC Corporation, Tokyo, Japan, as visiting
research scholar. He is author of two books. Furthermore, he has published
more than 55 technical papers. His research interests are in traffic and
congestion control, high speed networks including ATM and MPLS, Quality
of Services (QoS) and fuzzy logic control.

