
 
 

 

  
Abstract— One of the key issues in providing end-to-end 

Quality of Service (QoS) guarantees in today’s networks is how to 
determine a feasible route that satisfies a set of constraints. In 
general, finding a path subject to multiple constraints is an 
NP-complete problem that cannot be exactly solved in polynomial 
time. Accordingly, several heuristics and approximation 
algorithms have been proposed for this problem. Many of these 
algorithms suffer from either excessive computational cost or low 
performance. In this paper, we propose a more efficient 
distributed algorithm namely Least-Cost Least-Delay (LCLD). 
The LCLD algorithm is a modified version of SF-DCLC 
algorithm. The proposed algorithm requires limited network state 
information at each node. The LCLD algorithm uses a weight 
function which is always able to find a least-cost least-delay path 
satisfying the delay bound, if such paths exist. The performance of 
proposed LCLD algorithm was evaluated using computer 
simulation. Simulation results show that LCLD outperforms 
several earlier algorithms in terms of overall network throughput, 
number of packet loss, number of received packets and end-to-end 
delay. The worst-case computational complexity of this algorithm, 
for a network graph with v nodes is equal with O(|v|2). 
 

Index Terms— QOS routing, constraint based routing, LCLD 
algorithm, SF-DCLC algorithm 

I. INTRODUCTION 
  Multimedia applications such as digital video and audio often 
have stringent Quality of Service (QoS) requirements. 
Selecting feasible paths that satisfy various QoS requirements 
of applications in a network is known as QoS routing. In 
general, two issues are related to QoS routing: state distribution 
and routing strategy [1]. State distribution addresses the issue 
of exchanging the state information throughout the network 
[2].Routing strategy is used to find a feasible path that meets 
the QoS requirements. In this paper, we focus on the routing 
strategy. The goal of routing solutions is two-fold: (1) 
satisfying the QoS requirements for every admitted connection 
and (2) achieving the global efficiency in resource utilization. It 
selects network routes with sufficient resources for the 
requested QoS parameters. The QoS requirement of a 
connection is given as a set of constraints, which can be link 
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constraints, path constraints, or tree constraints. 
A link constraint specifies the restriction on the use of links. 
For instance, a bandwidth constraint of a unicast connection 
requires that the links composing the path must have certain 
amount of free bandwidth available. A path constraint specifies  
the end-to-end QoS requirement on a single path. a tree 
constraint pacifies the QoS requirement for the entire multicast 
tree. For instance, a delay constraint of a multicast connection 
requires that the longest end-to-end delay from the sender to 
any receiver in the tree must not exceed an upper bound.  
A feasible path (tree) is one that has sufficient residual 
resources to satisfy the QoS constraints of a connection. The 
basic function of  QoS  routing is to find such a feasible path 
[1]. In addition, most QoS routing algorithms consider the 
optimization of resource utilization. In general, finding a path 
subject to multiple constraints is an NP-complete problem that 
cannot be exactly solved in polynomial time [3]. Accordingly, 
several heuristics and approximation algorithms have been 
proposed for this problem [4]. Path computation algorithms for 
a single metric, such as delay and hop-count, are well known 
and have been widely used in current networks. Thus, a natural 
question is whether a single metric can support user QoS 
requirements or not? One possible approach might be to define 
a function and generate a single metric from multiple 
parameters. The idea is to mix various pieces of information 
into a single measure and use it as the basis for routing 
decisions. For example, a mixed metric M may be produced 
with bandwidth B, delay D and loss probability L with a the 
following formula[5]: 

 
)().(

)()(
pLpD

pBpf =                                                                        (1) 

Multiple metrics can certainly model a network more 
accurately. However, the problem is that finding a path subject 
to multiple constraints is inherently hard and polynomial-time 
algorithms for the problem may not exist. The problem in QoS 
routing is much more complicated since the resource 
requirements specified by the applications are often diverse and 
application-dependent. The computation complexity is 
primarily determined by the composition rules of the metrics. 
There are the following three basic composition rules: 
Definition: Let d (i , j ) be a metric for link (i , j ). For any path 
p = (i , j , k ,..., l , m), the metric d is additive if: 
d(p)= d (i ,j ) + d (j , k ) + . . . + d (l , m)                                            (2) 
The metric d is multiplicative if: 
d(p) = d(i, j ) × d (j , k ) × . . . × d (l , m)                                            (3) 
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The metric d is concave if: 
d(p)= min[d (i ,j ), d (j ,k ), ..., d (l ,m)]                                              (4) 
It is obvious that delay, delay jitter and cost follow the additive 
composition rule, and bandwidth follows the concave 
composition rule. The composition rule for loss probability is 
more complicated and is given as below: 
d(p)=1− ((1−d(i,j))× (1−d(j,k))× ...× (1−d(l,m)))                        (5) 

It is clear that any combination of two or more metrics: delay, 
delay jitter, cost and loss probability is NP-complete. We 
believe that for the majority of applications, delay is 
comparatively more important than the others. The delay has 
two basic components: queuing delay and propagation delay. 
Note that the queuing delay is determined by bottleneck 
bandwidth and traffic characteristics. Since queuing delay is 
already reflected in the bandwidth metric, we only need to 
consider propagation delay in the delay metrics [6]. 
In this paper, we propose an efficient distributed heuristic 
algorithm, namely, Least-Cost Least-Delay (LCLD). The 
proposed algorithm uses a weight function, which leads to 
heuristics for finding a suboptimal path closer to the optimal 
one. This algorithm can easily find a loop-free 
delay-constrained path and has very high probability of finding 
the optimal solution if such a path exists.  
The rest of the paper is organized as follows. A brief review of 
the related works on QoS routing is given in section 2. Section 
3 presents the proposed LCLD algorithm in details. We start 
with the formulation of SF-DCLC problem, and then describe 
the operations of LCLD, followed by complexity analysis. 
Simulations results are presented in section 4. Finally, we 
conclude the paper in section 5. 

II. RELATED WORKS 
In [7]-[8] two algorithms for unicast route computation 

based on distance-vectors (SMM-DV) and link-states 
(SMM-LS) were proposed. In [9], Widyono proposed a 
Constrained Bellman–Ford (CBF) algorithm that can be used to 
solve the Delay-Constrained Least-Cost (DCLC) problem 
optimally. The CBF performs a breadth-first search to discover 
the least cost path while monotonically increasing delay. CBF 
maintains a list of least-cost paths for each delay value from the 
source to each other node. Once the delay exceeds the 
constraint, CBF stops. CBF exactly solves the DCLC problem. 
Unfortunately, the worst case running time of CBF grows 
exponentially with the network size. To overcome the 
worst-case complexity of CBF, several ε-optimal 
approximation algorithms were proposed based on CBF 
[10]-[12]. Many ε-approximation algorithms (the solution has a 
cost within a factor of (1+ε) of the optimal one) subject to 
DCLC have been proposed in the literatures. In [10], Lorenz et 
al. presented several ε-approximation solutions for both the 
DCLC and the multicast tree. Among them, the algorithm 
subject to DCLC possesses the best-known computational 
complexity of O(nmlog n log(logn) + nm/ ε). In [11],  Hassin 
presented two ε-approximations algorithms for the Restricted 
Shortest Path problem (RSP) with complexities of O((nm/ε ) 

log log U) and O(mn 2 εlog(n/ε )), where U is the upper bound 
of the cost of the path computed. In [12], Raz and Shavitt  
proposed an efficient dynamic programming solution for the 
case in which the QoS parameters are integers, and a sub-linear 
algorithm for the case in which all link costs use the (same) 
function of their corresponding delays. Existing algorithms 
reviewed above may have the following drawback. 

Although the algorithms such as the ε-approximation 
approaches [10]-[11] can achieve 100% or near 100% success 
ratio, their worst-case computational complexities are too high 
to be practical (assume ε is very small in ε-approximation 
algorithms so that their success ratios are close to 1). In [13], 
Iwata et al. proposed a polynomial time algorithm to solve the 
Multi Constraint Path (MCP) problem. The algorithm first 
finds one (or more) shortest path(s) based on one aggregated 
cost and then checks if all the constraints are met. If it fails, it 
will be repeated with another aggregated cost until an 
appropriate path satisfying all the constraints is found. Neve et 
al. in TAMCRA algorithm [14] and Mieghem et al. in 
SAMCRA algorithm [15] used the k -shortest path algorithm 
[16] with a non-linear cost function to solve the MCP problem 
with more than two constraints. The performance of these two 
algorithms depends on the value of k .If k is large, the algorithm 
has good performance but with excessive computational cost. 
Yuan [17] presented two heuristics for the MCP problem. The 
first one, namely, limited granularity heuristic, is a 
generalization of the algorithm in [1]. The second heuristic, 
called limited path heuristic, requires each node to maintain k 
non-dominated paths (not necessarily the k shortest-paths). In 
[18], Liu and Ramakrishnan proposed a so-called A*Prune to 
find not only one but multiple (K) shortest paths satisfying the 
constraints. 

Another attempt to solve the DCLC problem is to map the 
DCLC problem into the possibly easier MCP problem. In [19], 
Guo et al. introduced a cost bound based on the network state 
and then employed the k-shortest path algorithm [20] with a 
non-linear function of path delays and path costs to search a 
path that meets the delay constraint and cost constraint. The 
authors gave a few algorithms based on the Lagrange relaxation 
technique. The basic idea is first to construct an aggregated 
weight with a linear or non-linear function using Lagrange 
relaxation technique, then to use the Dijkstra algorithm 
repeatedly to find a feasible path. A LAgrange Relaxation 
based Aggregated Cost (LARAC) was proposed in [21] for the 
Delay Constrained Least Cost path problem (DCLC). This 
algorithm is based on a linear cost function c λ  = c+λd, where c 
denotes the cost, d the delay, and λ is an adjustable parameter. It 
was shown that the computational complexity of this algorithm 
is O(m 2 log 4 m). Korkmaz et al. proposed the Binary Search 
for Lagrange Relaxation (BSLR) algorithm that uses a refined 
Lagrange relaxation technique to define the weights of the 
metrics composition rule [22]. Feng et al. make an evaluation 
of algorithms that use Lagrange relaxation to solve the Delay 
Constrained Least Cost problem using both linear and 
non-linear cost functions [23]. The problem of this kind of 



 
 

 

algorithms is how to choose appropriate multipliers for the 
Lagrange relaxation. Several researchers proposed distributed 
algorithms in order to alleviate the centralized computational 
overheads. Reeves and Salama [24] proposed a distributed 
algorithm called DCUR for the DCLC problem. The DCUR 
explores the network by choosing the node along the 
least-delay path or the least-cost path as the next node to be 
explored.  In [25], Sun and Langendorfer improved the DCUR 
such that no loop would be formed during the exploration of the 
network. In [26]-[27], Ishida et al. and Sriram et al. proposed 
two distributed algorithms similar to DCUR. Two interesting 
distributed algorithms, ticket-based routing [28] and enhanced 
ticket-based routing [29], use probes (routing messages) 
carrying colored tickets to explore the possible feasible paths. 
In ticket-based approaches, yellow tickets prefer paths with 
smaller delay, while green tickets prefer paths with smaller 
cost. And by properly choosing the number of green (yellow) 
tickets, ticket-based routing can find a feasible path with 
modest message overhead. 

In [30], Wei Liu , Wenjing Lou and Yuguang Fang proposed 
a more efficient distributed algorithm, namely, 
Selection-Function-based (SF-DCLC), based on a novel 
selection function for the DCLC problem. The SF-DCLC 
algorithm requires limited network state information at each 
node and is always able to find a loop-free path satisfying the 
delay bound if such paths exist. One of the most important 
problems of SF-DCLC algorithm is that it can only chooses the 
paths with the less cost which their delay is not more than the 
authorized limit. But, no recovery in the detraction of path’s 
delay with the less cost might be found. So, in some conditions, 
some paths may won’t be chosen with a little more cost and 
extremely less delay in compression with the chosen paths.  

In this paper, we modify the SF-DCLC algorithm and 
proposed a new weight function so that in addition to cost 
metric, it also considers the delay metric. The proposed 
algorithm which is called Least-Cost Least-Delay (LCLD), is 
able to choose the path with the least cost and also least delay. 

III. THE   PROPOSED LCLD ALGORITHM 
 
In this section, we present the proposed LCLD algorithm in 

details. At first, we describe the SF-DCLC algorithm and its 
problem to facilitate our discussion, then we explain the 
proposed LCLD algorithm. 

A. Operation of  SF-DCLC Algorithm 
As a usual practice in the literature, a network is modeled as 

a connected, directed graph G = (V,E), where V is the set of the 
network nodes and E is the set of edges representing physical or 

logical connectivity’s between nodes. Let R
+

 denote the set of 
non-negative real numbers. Two non-negative functions are 
defined associated with each link e (e∈  E): the delay function 
delay(e) : E →  R + and the cost function cost(e) : E →  R + . 

Each link may be asymmetric, that is, the costs and the delays 
of the link e = (vi, vj) and the link e’ = (vj, vi) may have different 

values. We also define the non-negative delay and cost 
functions for any path p as below: 
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Given a source node s ∈V, a destination node d∈  V and a 
positive delay constraint Δ delay , the DCLC routing problem is 
to find a path p from s to d such that min{cost(p),p ∈Pd} is 
achieved, where Pd is the set of all feasible paths from s to d that 
satisfy the delay constraint Δ delay , i.e., delay(p) ≤  Δ delay . It 
has been proven that the DCLC problem is NP-complete even 
for undirected networks.  

The traditional distance vector routing algorithms require 
each router to maintain a table (i.e., a vector), which gives the 
best known distance to each destination and which outgoing 
link to use to reach there. While in the SF-DCLC routing 
algorithm, each node maintains two vectors, the least-delay 
vector and the least-cost vector, which provide the best known 
values based on two different metrics, delay and cost, 
respectively. Each vector is indexed by and contains one entry 
for each node in the network. One entry in the least-delay 
vector at one node (e.g., node vi) contains the following 
information: 
• vj: the destination node identity; 
• delay (Pld (vi, vj)): the delay of the least-delay path Pld (vi, vj); 
• cost (Pld (vi, vj)): the cost of the least-delay path Pld (vi, vj); 
• nid (Pld(vi, vj)): the next hop on the least-delay path Pld (vi, vj); 
The least-delay path Pld (s,d) is the path from s to d, which 
satisfies: 
Delay (Pld (s,d)) = min{delay(p),p∈P(s,d)}                                (8),  
where P(s,d) is the set of all possible paths from s to d. 
Similarly, the entry in the least-cost vector contains the 
following information: 
• vj: the destination node identity; 
• delay(Plc (vi, vj)): the delay of the least-cost path Plc (vi, vj); 
• cost (Plc (vi, vj)): the cost of the least-cost path Plc (vi, vj); 
• nid (Plc (vi, vj)): the next hop on the least-cost path Plc (vi, vj); 
The least-cost path Plc(s,d) is the path from s to d, which 
satisfies: 
cost (Plc (s,d)) = min{cost(p), p∈P(s,d)}                                      (9),  

where P(s,d) is the set of all possible paths from s to d. The 
least-delay vector and the least-cost vector are similar to the 
vectors used in the existing distance vector routing protocols. 
We assume that each node knows the delay and cost to all its 
neighboring nodes. Then, the same procedure used to update 
and maintain the vectors in the existing distance vector routing 
protocols can be used to update and maintain these two vectors. 
We further assume that the contents of the vectors are 
up-to-date and the contents of the two vectors do not change 
during the route setup period.  

The SF-DCLC algorithm constructs the DCLC path node by 
node from the source node s to the destination node d .Each 
node chooses its subsequent node by evaluating a selection 



 
 

 

function weight() on all its neighbors. A special 
PATH_CONSTRUCTION message is sent by the node to the 
selected subsequent node that requests the continuing 
construction of the path till the destination. The 
PATH_CONSTRUCTION message contains the following 
information {d , delayΔ , delaySoFar ,Psf (s ,v )},where d is the 

destination node identity, delayΔ  is the delay bound, 

delaySoFar is the accumulated delay till the current node, and 
Psf (s,v) is the set of nodes indicating the partial found DCLC 
path till the current node v . 

Assume that the current node is vi , for each neighboring  
node vj , the selection function weight() is defined as follows: 
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The function extract() is to choose the node, say w ,whose 

value of the selection function weight (vi,w) is the minimum 
one among all the neighboring nodes. The problem of this 
selection function is that it can only chooses the paths with the 
less cost which their delay is not more than the

delayΔ , but no 

recovery in the detraction of path’s delay with the less cost 
might be found. A possible improvement to SF-DCLC is to 
modify the selection function to take the delay into 
consideration. This improvement is done by the proposed 
LCLD algorithm. 

B. Operation of  LCLD Algorithm 
We need to define a weight function which combines all 

features of the link metrics. A simple way to mix the metrics is 
to use a linear function, for example, w(e) = αc(e)+βd(e), as the 
new weight for each link[21]. This approach has the advantage 
that it is easy to implement. By using this function, the path 
delay and cost become a single path weight constraint Δ = αΔc 
+ βΔd. However, this linear weight function may not reflect the 
actual quality of a path, i.e., an optimal path according to the 
new weight function may in fact violate the constraints while a 
suboptimal path satisfies them. 

Using a non-linear function may help us to overcome this 
problem. De Neve and Van Mieghem propose to use the 
concave path weight function max(C(P)/Δc,D(P)/Δd) in their 
TAMCRA algorithm [14]. It is shown that with this function, 
the algorithm can find the shortest path (path whose both cost 
and delay are far from the bounds) with a relatively high 
success rate. The problem with defining a non-linear weight 
function for a link is that now the weight of a path is no longer 
the sum of the weight of all links on this path, i.e., 
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But since it is easy to record the cumulative delay and 
cumulative cost of a path, we can easily solve this problem by 
computing the path weight as a function F() of the delay and 
cost of the path  i.e., W(P) = F(C(P),D(P)). A more serious 
problem is that a non-linear function dose not has the 
optimal-substructure property, i.e. subsections of shortest 
(least-weight) paths are not necessarily shortest paths 
themselves. 

Consider the following example shown in Fig. 1, assuming a 
concave (max) weight function is used.: 

W(P1)=max(10/12,1/12)=10/12, 
W(p2)=max(5/12,5/12)=5/12.  

 
Fig.1. An example to show the problem of a non-linear function 

 
For intermediate node u, path P2 will be chosen since it has a 

smaller weight, thus the actual feasible path to the destination 
through P1, with feasible delay and cost of 11, will be missed. 
The non-linear (max) weight function in TAMCRA works well 
so as to find a path that is far from all the bounds. It is not a goal 
of TAMCRA to optimize any of the metrics. However, since 
our objective is to find a path with optimal cost and delay, this 
function is not suitable. 

We should use a weight function that gives priority to 
low-cost and low-delay paths. The weight function used in 
proposed algorithm is defined as: 
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Our proposed algorithm restricts the search space by only 
examining paths that satisfy the requested delay bound as well 
as a optimal cost. If there is no path with lower cost than that of 
the least-delay path, then the least-delay path itself is the 
optimal path, and this is the path returned by LCLD. Since we 
set the weight of all infeasible paths to be infinity, it is easy to 
see that the number of possible feasible solutions decreases, 
and thus the opportunity that proposed algorithm finds the 
optimal (least cost-delay) solution increases.  
Fig. 2 shows an example of the path constructed by the LCLD 



 
 

 

algorithm from source s =A to destination d =G with delayΔ  

=10. The path found by LCLD in this example is 
A → B → E → G with cost=8 and delay=5, while the path 
found by SF-DCLC is A → D → F → G with cost=6 and 
delay=10. Our algorithm leads to a better choice: a path with 
optimal cost and delay while still meeting the delay constraint. 
Thus the proposed LCLD has high probability to find the 
optimal solution while keeping the striking a very good balance 
between cost and delay. 

 
 
Fig.2. An example of the construction the path from node A to node G 

 
Based on the operation of SF-DCLC and LCLD algorithms, the 
routing vectors of nodes A to G is obtained as below: 
 

A’s   vectors 
 

C               3             12            B             8             5G         
 C               2             7            D             5             5          F
 C               4             11            B             5            4          E

D               4             2            D             4            2          D
C               1             6             C             1             6           C

    B               1             2             B             1             2           B
Null            0             0          Null            0            0 A         

NH_LC      C_LC      D_LC      H_LD      C_LD      D_LD   Dest

 

B’s vectors 
 

E               7             3              E                7              3   G         
 E                8             8             E                8              8             F

E                4             2             E                4              2            E
A                5             4   A                         5              4           D
A                 2           8              E                7              7            C

 Null             0              0           Null             0              0            B
A                 1              2    A                        1               2  A         

NH_LC      C_LC      D_LC      H_LD      C_LD      D_LD   Dest
 

 
C’s  vectors 

 

F                 2             6                F               2            6    G         
    F                 1              1                F               1             1              F

E                 3              5               E              3             5             E
F                 2             4               F               2             4            D

Null              0              0            Null            0              0            C
A                2              8              E              7              7            B
A                 1               6     A                       1               6  A         

NH_LC      C_LC      D_LC      H_LD      C_LD      D_LD   Dest
 

 
 
 

D’s vectors 

F                  2             8              F               2            8  G         
F                  1              3              F               1              3           F
  F                 5              9              F               5             9           E

Null               0              0           Null             0             0           D
  F                  2              4              F               2             4           C

A                 5              4     A                       5              4           B
D                 4              2              D              4              2 A         

NH_LC      C_LC      D_LC      H_LD      C_LD      D_LD   Dest

 

E’s  vectors 

G                3               1     G                       3              1   G         
G               4              6       G                       4              6            F

Null             0              0             Null           0              0            E
F                5              9               F              5              9            D
 E                3              5               E              3              5            C
 E                4             2               E              4              2            B

C                4            11              B              5               4  A         
NH_LC      C_LC      D_LC      H_LD      C_LD      D_LD   Dest

 

F’s vectors 

G            1               5      G                        1               5  G         
Null         0                0           Null            0               0            F
G            4               6     G                       4              6            E
F              1              3               F              1               3            D
F              1               1               F              1               1             C
E              8              8              E              8               8            B
C              2              7              D              5               5  A         

NH_LC      C_LC      D_LC      H_LD      C_LD      D_LD   Dest

 

If  S=A, d=G, delayΔ =10, then the weight function W in 

each node is calculated as follow: 
at  node A : 
W(A,B)=11.25 
W(A,C)= ∞  
W(A,D)=15 
at  node B : 
W(B,E)=5 
at  node E: 
W(E,C)= ∞  
W(E,G)=3.33 
at  node G : 
LCLD is terminated 

C. The Complexity of LCLD  
As discussed before, in LCLD each path is constructed in an 
‘‘on demand’’ manner. For each path finding, a node should 
evaluate the link weight function w( ) at most |V| times, and 
should compare at most |V| values to find out the minimum w( 
), thus, in the worst case the extra computational complexity for 
a node to select the next hop is O(|V|).  Since the worst case 
path length would be |V|, the computational complexity for 
finding a LCLD path in the worst case is O(|V| 2 ). Each node 
caches the most up-to-date least-delay vector and least-cost 



 
 

 

vector received from its neighbors. Since a node at most has |V| 
neighbors and a vector from one neighbor contains |V| entries, 
the worst case memory complexity at each node is O(|V| 2 ). 

IV. SIMULATION RESULTS 
In this section, we present the performance of proposed 

LCLD algorithm and compare it with that of SF-DCLC 
algorithm. 

We have preformed extensive simulations to test the 
performance of the proposed algorithm using NS2 (Network 
Simulator) [31]. This simulator is capable of modeling different 
routing algorithms for different input graphs and different flow 
request distributions.  

To compare the performance of both SF-DCLC and LCLD 
algorithms, we define the following four performance metrics: 
Number of received packets: This metric is used to calculate the 
number of received packets in the destination node. 

Number of lost packet: This metric is used to calculate the 
number of lost packet in the destination node. 

Throughput: One of the most important performance metrics 
is the throughput. This metric shows number of received bytes 
in a certain time unit.  

end to end  delay: This metric is used to calculate the end to 
end delay. For most applications, particularly real-time ones, 
the end-to-end delay is one of the most important QoS 
parameters. 

Fig. 3, shows the network topology used in the simulation. 
This figure is plotted in the nam (network animator) of the ns2 
simulator. As it can be seen in this figure, we generated 30 
nodes. Random requests are entered to the network. Each 
request has a random cost between 1 to 20 units and a random 
delay between 1 to 20 ms.  CBR random traffic connections are 
setup between nodes with packet size equal to 1000 bytes. The 
packet interval is equal to 0.005 second.  

 

 
 

Fig. 3. Network topology in the nam environment 
 
We have done four simulation trials. In the first trial, the 

number of flow and delayΔ , were set to 20 and 15, respectively. 

For performance comparison, it is necessary for both two 
algorithms to route the same requests and the same subset of 
requests in the same order.  

In Fig. 4(a), for both SF-DCLC and LCLD algorithms, the 
number of lost packets is plotted. It is clear that the proposed 
LCLD algorithm has less packet loss than the SF-DCLC 
algorithm. Fig. 4(b) shows the total number of received packets 
versus simulation time.  According to the results shown in this 
figure, the number of received packets in LCLD is larger than 
SF-DCLC algorithm. Furthermore, in Fig. 4(c) and Fig. 4(d), 
the throughput and the end to end delay of both algorithms are 
plotted versus simulation time. It is clear that the proposed 
LCLD can outperform the SF-DCLC algorithm.  
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Fig.4: Simulation results: a) number of lost packets b) number of 
received packets  c) throughput  d)end to end delay 

 

In the second trial, we evaluate the performance of both 
algorithms at different level of delay constraint. In this 
case, delayΔ   is randomly selected. The number of flow was set 

to 20. We observed that, when delay bound is very stringent, 
both of compared algorithms are very close. These results can 
be explained as follows. When delay constraint is stringent, the 
number of feasible paths is very limited. Both algorithms are 
likely to choose the same path, so their performance is similar 
to each other. However, when the delay constraint becomes 
loose, the number of feasible paths increases. Therefore their 
performance starts to diverge. We also observe that LCLD has 
better capability to find the optimal path than SF-DCLC. 

In Fig. 5(a), for both SF-DCLC and LCLD algorithms, the 
number of lost packets is plotted versus different delay level. It 
is clear that the proposed LCLD algorithm has less packet loss 
than the SF-DCLC algorithm. Fig. 5(b) shows the number of 
received packets versus different delay level. According to the 
results shown in this figure, the number of received packets in 
LCLD is larger than SF-DCLC algorithm.  
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Fig. 5: Simulation results for different delay level: a) number of lost 
packets b) number of received packets  c) throughput d) end to end 

delay 
 

In Fig. 5(c) and Fig. 5(d), the throughput and the end to end 
delay of both algorithms are shown. It can be seen that by 
increasing the delay level, limitation on the constraint of delay 
is decreased and some paths with extremely less cost and more 
delay may be chosen, so end to end delay is also increased. 

 
In the third trial, we evaluate the performance of both 

algorithms at different number of flow. In this case the delay 
level is constant. By increasing the number of flows, the 
number of received packets at destination is also increased. Due 
to the lack of enough bandwidth, the total number of received 
packets will not be increased from a certain number. This is 
also true for throughput and number of lost packets.   

In Fig. 6(a), for both SF-DCLC and LCLD algorithms, the 
number of lost packets is plotted versus different number of 
flow. It is clear that the proposed LCLD algorithm has less 
packet loss than the SF-DCLC algorithm. Fig. 6(b), for both 
SF-DCLC and LCLD algorithms, shows the number of 
received packets versus different number of flow. According to 
the results shown in this figure, the number of received packets 
in LCLD is larger than SF-DCLC algorithm. In Fig. 6(c) the 
throughput of both algorithms is plotted versus number of flow. 
Furthermore, in Fig. 6(d), the end to end delay of both 
algorithms is plotted versus number of flow. By increasing the 
number of flows, as the chosen path has a fixed link delay, the 
end to end delay will not be changed a lot. 
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Fig. 6: Simulation results for different number of  flows: a) number of 
lost packets b) number of received packets c) throughput   d)end to end 

delay 
 

In the last trial, we evaluate the performance of both 
algorithms at different number of (source,destination) pairs in 
the network. In this case, like to trial1, the number of flow and 

delayΔ , were set to 20 and 15, respectively. the  Increasing the 

number of (source, destination) pairs will cause the increment 
of the chosen paths and traffic in the network. So, the total 
number of received packets in all destination’s nodes will be 
increased. In Fig. 7(a) , for both SF-DCLC and LCLD 
algorithms, the number of lost packets is plotted versus number 
of (source,destination) pairs. It is clear that the proposed LCLD 
algorithm has less packet loss than the SF-DCLC algorithm. 
Fig. 7(b) shows the total number of received packets. 
According to the results shown in this figure, for different 
number of (source,destination) pairs, the number of received 
packets in LCLD is larger than SF-DCLC algorithm. Fig.7(c) 
shows the throughput of both algorithms.  
Fig. 7(d)  shows end to end delay. Based on results shown in 
these figures, It is clear that at different number of 
(source,destination) pairs, the proposed  LCLD has better 
performance than SF-DCLC algorithm. 
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Fig. 7: Simulation results  with various (source,destination)  pairs: a) 
number of lost packets b) number of received packets c) throughput     

d) end to end delay 
 

V. CONCLUSION 
 



 
 

 

In this paper, we studied the SF-DCLC problem, which is 
crucial for the emerging delay-cost sensitive applications. We 
proposed a distributed unicast routing algorithm, namely, 
LCLD, based on a special heuristic weight function. We also 
evaluated our algorithm by comparing it with SF-DCLC in 
terms of optimality. Our simulation results show that LCLD has 
much better performance than SF-DCLC. Thus, the most 
attractive feature of the LCLD algorithm is its high efficiency 
in the sense that it has very high probability of finding the 
optimal path with very low complexity. The worst-case 
computational complexity of this algorithm, for a network 
graph with v nodes, is equal with O(|v|2).  
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