
 

 

 

  

Abstract—A 
∞H -tracking based adaptive control scheme is 

proposed for a class of uncertain nonlinear systems. The proposed 

control system is comprised of a recurrent cerebellar model 

articulation controller (RCMAC) and a compensation controller. 

RCMAC is used to mimic an ideal controller, and the parameters 

of RCMAC are on-line tuned by the derived adaptive laws based 

on a Lyapunov function. The compensation controller is designed 

to suppress the influence of approximation error between the ideal 

controller and RCMAC, and to achieve a robust tracking 

performance with specified attenuation level. Finally, two 

uncertain nonlinear systems, a one-link rigid robotic manipulator 

and a mass-spring-damper mechanical system, are demonstrated 

to verify the effectiveness of the proposed control scheme. 

 
Index Terms—Adaptive control, recurrent cerebellar model 

articulation controller (RCMAC), nonlinear systems.  

 

I. INTRODUCTION 

During the past years, many authors have devoted a lot of 

effort to both theoretical and implementation techniques to 

handle nonlinear control problem. For multi-input-multi-output 

(MIMO) nonlinear systems, the control problem is very 

complicated due to the couplings among various inputs and 

outputs. By many researchers, different control efforts have 

been developed from a point of view of dynamic system theory 

and traditional feedback control. However, these control 

schemes can be only applied to nonlinear systems whose 

dynamic functions are exactly known. This is not sufficient for 

practical control applications, because it is difficult to establish 

an exactly mathematical model for a large amount of nonlinear 

systems. To tackle this problem, the adaptive control 

methodologies based on Lyapunov stability theorem that 

incorporate the intelligent systems (such as fuzzy system and 
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neural network) have been grown rapidly. A stable adaptive 

fuzzy control scheme has been developed for controlling the 

single-input-single-output (SISO) nonlinear systems [27]. By 

incorporating with sliding-mode control, several adaptive fuzzy 

sliding-mode control systems have been proposed [11], [16], 

[18]. Based on the same idea, Hung and Chung presented the 

self-tuning fuzzy sliding mode control and adaptive neural 

network-based sliding-mode control for nonlinear systems  [9], 

[10]. Moreover, a number of investigators have proposed the 

adaptive neural network control techniques for SISO nonlinear 

plants with unknown nonlinear functions [6], [8], [26]. However, 

most of these studies did not eliminate the influence of 

approximation error appropriately so that the favorable tracking 

performance can not be yielded. For this requirement, the robust 

bound controller with an estimation law is derived to estimate 

the approximation error bound so that the approximation error 

can be compensated [17], [19]. Nevertheless, the estimation law 

is always a positive value, this even will cause the estimated 

bound increase to infinity, thus results in the control input 

eventually being saturated and the system may be unstable. To 

improve this shortcoming, several adaptive intelligent 

controllers have been integrated with ∞H  control technique to 

achieve intelligent robust control [5], [20], [22], [24]. In these 

control schemes, the controllers are generally composed of two 

main components. One is an adaptive control system that is used 

to approximate an ideal control law. The other is a robust 

compensator that is designed to attenuate the effect of 

approximation error to a prescribed level so as to achieve 

the ∞H -tracking performance. Even so, most papers only 

focused on the single-input single-output control systems. A 

number of works can be found for nonlinear 

multiple-input-multiple-output (MIMO) systems based on 

adaptive control and ∞H  control techniques. For instance, 

Chang etc. proposed adaptive ∞H  control schemes to resolve 

the tracking control problem of MIMO nonlinear systems [3], 

[4]. However, these control approaches belong to model-based 

control schemes that required the partial system model of the 

control systems. Unfortunately, for a lot of uncertain nonlinear 

systems, it is difficult to acquire system models in practical 

control applications. In order to achieve the model-free 

controller design, some authors presented the adaptive fuzzy 

controllers that utilized two fuzzy systems to realize optimal 
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control law [2], [14], [23], [24]; thus the nominal part of control 

plants are not required. But, these control approaches suffer the 

computational complexity.  

Neural network control of nonlinear system has been 

extensively studied in the past decades. On the neural network 

structure aspect, cerebellar model articulation controller 

(CMAC) is classified as a non-fully connected perceptron-like 

associative memory network with overlapping receptive-fields 

[1]; and it intends to resolve the fast size-growing problem and 

the learning difficult in currently available types of neural 

networks. Comparing to neural networks, CMAC possesses 

good generalization capability, fast learning ability and simple 

computation [1], [13]. This network has already been shown 

that it can approximate a nonlinear function over a domain of 

interest to any desired accuracy [7], [12], [13]. For the reasons, 

CMAC have adopted widely for the closed-loop control of 

complex dynamical systems in recent literatures [15], [19], [21]. 

However, the major drawback of these CMAC control systems 

is that their application domain is limited to static problem due 

to their inherent network structure.  

This paper investigates an ∞H -tracking based adaptive 

control scheme for multiple-input-multiple-output (MIMO) 

uncertain nonlinear systems. The ∞H -tracking based adaptive 

control system is comprised of a recurrent cerebellar model 

articulation controller (RCMAC) and a compensation controller. 

Since the delayed recurrent feedback is used, RCMAC presents 

a dynamic network. Thus, it is more suitable for dynamic 

function approximation. RCMAC is utilized to approximate an 

ideal controller, and the parameters of RCMAC are on-line 

tuned by the derived adaptive laws based on a Lyapunov 

function. From ∞H  control technique, the compensation 

controller is designed to suppress the influence of 

approximation error between the ideal controller and RCMAC, 

so that the desired robust tracking performance can be obtained. 

Finally, two MIMO nonlinear systems, a one-link rigid robotic 

manipulator and a mass-spring-damper mechanical system, are 

demonstrated to verify the effectiveness of the proposed control 

scheme. 

The rest of this paper is organized as follows. Problem 

formulation is described in Section 2. The design procedures of 
∞H -tracking based adaptive control system is described in 

Section 3. In Section 4, simulation results are provided to 

validate the effectiveness of the proposed control system. 

Conclusions are drawn in Section 5. 

 

II. PROBLEM FORMULATION 

Consider a class of n-th order multi-input multi-output 

uncertain nonlinear systems described by the following 

equation: 

 )()())(())(()()( tttttn duxGxfx ++=    (1) 

where  ])( , ,)(,)([)(
21

mT

m
tututut ℜ∈= Lu and

 ])( , ,)(,)([)( 
21

mT

m
txtxtxt ℜ∈= Lx denote the control input 

and state vectors of the system, respectively; in which m is the 

number of system inputs and outputs; and 
mT

m
tdtdtdt ℜ∈= ])( ,  ,)(,)([)(

21
Ld  denotes the unknown but 

bounded external disturbance. Define 
mnTTnTT tttt ℜ∈= ])(, ,)(,)([)( 1)-(xxxx L&  as the system state 

vector, and it is assumed to be available for measurement. In 

addition,  ))(( mt ℜ∈xf and mmt ×ℜ∈))((xG  represent smooth 

nonlinear uncertain functions and they are assumed to be 

bounded. Meanwhile, assume that the nonlinear system of Eq. 

(1) is controllable and ))((1 txG −  exists for all )(tx . 

When neglecting the modeling uncertainties and external 

disturbance, the nominal system of Eq. (1) can be obtained as 

)( ))(())(()()( tttt
nn

n uxGxfx +=  (2)  

where  ))(( t
n

xf and  ))(( t
n

xG are the nominal parts of 

 ))(( txf and ,))(( txG  respectively. When the modeling 

uncertainties and external disturbance exist, the uncertain 

system of Eq. (1) can be formulated as 

)()( ]))(())(([))(())(()()( ttttttt
nn

n duxGxGxfxfx ++++= ∆∆∆∆∆∆∆∆

)),(()( ))(( ))((           ttttt
nn

xnuxGxf ++=  (3)  

where  ))(( txf∆∆∆∆ and  ))(( txG∆∆∆∆ denote the unknown 

uncertainties of ))(( txf  and ))(( txG , 

respectively; ),)(( ttxn referred to as the lumped uncertainty is 

defined as ).()())(( ))(( ),)(( tttttt duxGxfxn ++= ∆∆∆∆∆∆∆∆  

The control objective is to design an ∞H -tracking based 

adaptive control system such that the system output )(tx  can 

track a desired trajectory ).(t
d

x   

Define the tracking error as 
m

d
ℜ∈− xxε∆  (4)  

then the system tracking error vector is defined as 

 ],,,[∆
)1( mnTTnTT

εεε ℜ∈−L&ε
 (5)  

If the nominal functions ,))(( t
n

xf ))(( t
n

xG and the lumped 

uncertainty ),)(( ttxn  can be exactly known, then an ideal 

controller can be designed as  

]),()([ ))((  )(1 εLxnxfxxGu
T

n

n

dnid
tt +−−= −  (6)  

where mmnT

n

×ℜ∈= ],,,[ 
12

LLLL L  is the feedback gain 

matrix which contains real numbers. 

Substituting the ideal controller Eq. (6) into Eq. (3), gives the 

error dynamic equation  

0=+ εLε
Tn)(  (7)   

In Eq. (7), if L  is chosen to correspond to the coefficients of a 

Hurwitz polynomials, it implies 0 =
∞→
ε

t
lim . However, the 

lumped uncertainty ),)(( ttxn  is generally unknown for 

practical applications, so that 
id

u in Eq. (6) is unavailable. Thus, 

an ∞H -tracking based adaptive control system is proposed to 

achieve trajectory tracking control. In this control system, an 

RCMAC is used to approximate the ideal controller. 
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III. ∞H -TRACKING BASED ADAPTIVE CONTROL SYSTEM 

DESIGN 

The block diagram of ∞H -tracking based adaptive control 

scheme is shown in Fig. 1, where the control system comprises 

of a recurrent cerebellar model articulation controller (RCMAC) 

and a  compensation controller, i.e. 

HRCMACHBAC
uuu += ˆ  (8)  

where 
RCMAC

û  is an RCMAC utilized to approximate the ideal 

controller .
id

u   In this study, the inputs of RCMAC are the 

tracking error vector shown in Eq. (5) and the outputs of 

RCMAC are the control efforts so that the input and output 

numbers of RCMAC are given as mnn
a

=  and mn
o

= . 
H

u  is 

the compensation controller that is designed to suppress the 

influence of residual approximation error between the ideal 

controller and RCMAC.  

∑

rσm &&&&
ˆ,ˆ,ˆ,θ̂θθθ

ΓΓΓΓ

RCMACu

HTACu x −

4321 ,,, αααα

ε
Hu

dx

ε
∑

dt

d

ε

 

Fig. 1     The block diagram of 
∞H -tracking based adaptive control system. 

A.  RCMAC controller  design  

In this section, a multi-input multi-output RCMAC is 

proposed and shown in Fig. 2, in which   T denotes a time delay. 

∑MM M M yM

Tikr

1p

np
kγ kpθ

kµ1

nkµ

 
Fig. 2     RCMAC network architecture. 

 This RCMAC is composed of input space, association 

memory space with recurrent weights, receptive-field space, 

weight memory space and output space. The signal propagation 

and the basic function in each space are described as follows. 

  (1) Input space Is: For a given a

a

nT

n
ppp ℜ∈= ],,,[ 

21
Lp , 

where
a

n  is the number of input state variables of RCMAC, 

each input state variable   
i

p must be quantized into discrete 

regions (called elements) according to given control space. The 

number of elements,
e

n , is termed as a resolution.        

(2) Association memory space As: Several elements can be 

accumulated as a block, the number of blocks, 
b

n , is usually 

greater than or equal to two. As denotes an association memory 

space with 
c

n  (
bac

nnn ×= ) components. In this space, each 

block performs a receptive-field basis function, the Gaussian 

function is adopted here as the receptive-field basis function, 

which can be represented as 








 −−
=

2

2
)(

ik

ikrik

ik
σ

mp
expµ ,  for 

b
nk L,2,1=  (9)  

where   
ik
µ represents the output of the k-th block receptive-field 

basis function for the i-th input   
i

p with the mean   
ik

m and 

variance  . 
ik
σ In addition, the input of this block can be 

represented as 

)()()( Ttrtptp
ikikirik

−+= µµµµ  (10)  

where 
ik

r  is the recurrent weight and )( Ttµ
ik

− denotes the 

value of   
ik
µ through delay time T . It is clear that the input of 

this block contains the memory term )( Ttµ
ik

− , which stores 

the past information of the network and presents a dynamic 

mapping. Thus, the proposed RCMAC is more suitable for the 

dynamic function approximation. Figure 3 depicts the schematic 

diagram of a two-dimensional RCMAC with 9=
e

n  and 4=τ  

( τ  is the number of elements in a complete block); in which 
1

p  

is divided into blocks 
1a

B , 
1b

B  and 
1c

B , and 
2

p  is divided into 

blocks 
2a

B , 
2b

B  and 
2c

B . By shifting each variable an element, 

different blocks can be obtained. For instance, blocks 
1d

B , 

1e
B and 

1f
B  for 

1
p , and blocks 

2d
B , 

2e
B  and 

2f
B  for 

2
p  are 

possible shifted elements. Each block in this space has three 

adjustable parameters 
ik

m , 
ik
σ  and 

ik
r . 

(3) Receptive-field space Rs: Areas formed by blocks, 

referred to as 
21 aa

BB  , 
21 bb

BB and 
21 cc

BB  are called 

receptive-fields. The number of receptive-fields, , 
d

n is equal to 

b
n  in this study. The k-th multi-dimensional receptive-field 

function is defined as 








 −−
== ∑∏

==

aa n

i ik

ikrik

n

i

ikkkkk
σ

mp
expµγ

1

2

2

1

)(
),,,( rσmp   

for 
d

nk L,2,1=  (11)  

where a

a

nT

knkkk
mmm ℜ∈= ],,,[

21
Lm , 

a

a

nT

knkkk
σσσ ℜ∈= ],,,[

21
Lσ and 

a

a

nT

knkkk
rrr ℜ∈= ],,,[

21
Lr . The multi-dimensional 

receptive-field functions can be expressed in a vector form as 
T

nk d

γγγ ],,,,[),,,(
1

LL=rmpΓ σσσσ  (12)  

Where da

d

nnTT

n

T

k

T ℜ∈= ],,,,[
1

mmmm LL , 
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da

d

nnTT

n

T

k

T ℜ∈= ],,,,[
1

σσσσ LL and 

da

d

nnTT

n

T

k

T ℜ∈= ],,,,[
1

rrrr LL .  

(4) Weight memory space Ms: Each location of Rs to a 

particular adjustable value in the weight memory space can be 

expressed as 

od

oddd

o

o

o

nn

nnpnn

knkpk

np

np

θθθ

θθθ

θθθ

×ℜ∈























==

LL

MOMMM

LL

MMMOM

LL

LL

 1

1

1111

1
],,,,[ θθθΘ  

 (13)  

where d

d

nT

pnkppp
θθθ ℜ∈= ],,[

1
LLθ , and 

kp
θ  denotes the 

connecting weight value of the p-th output associated with the 

k-th receptive-field.  

5) Output space Os: The output of RCMAC is the algebraic 

sum of the activated weights in the weight memory, and is 

expressed as 

∑
=

==
dn

k

kkp

T

pp
γθo

1

Γθ ,  for 
o

np L,2,1=  (14)  

The outputs of  RCMAC can be expressed in a vector 

notation as 

ΓΘo
TT

np O

ooo == ],,[
1

LL  (15)  

In the two-dimensional case shown in Fig. 2, the output of 

RCMAC is the sum of the value in receptive-fields 
21 cc

BB , 

21 ff
BB , 

21 hh
BB  and ,

21 kk
BB when the input state is (7,7). The 

architecture of RCMAC used in this paper is designed to have 

the advantages of simple structure with dynamic characteristics. 

The role of the recurrent loops is to consider the past value of 

the receptive-field basis function in the association memory 

space. Thus, this RCMAC has dynamic characteristics. 
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Fig. 3     Two-dimensional RCMAC with 9=

e
n  and .4=τ  

B.  Adaptive laws and stability analysis  

From Eqs. (3), (6) and (8), the system tracking error equation 

is obtained as follows: 

]ˆ [ 
HRCMACid

uuuΨεΞε −−+=&  (16) 

where 
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By the universal approximation theory [27], theoretically 

there exists an optimal RCMAC *

RCMAC
u  such that 

ϖϖϖϖϖϖϖϖ +≡+= ),,(),,,,(  ********** rσmΓΘrσmΘpuu
T

RCMACid
(19)  

where ϖϖϖϖ  denotes the approximation error vector; *
Θ and 

*
Γ are the optimal parameter matrix and vector of Θ and ,Γ  

respectively; and
***

   and    , rσm are the optimal parameter 

vectors of ,   and    , rσm  respectively. Since the optimal 

RCMAC can not be obtained, an RCMAC estimator is used to 

estimate the optimal RCMAC; this RCMAC estimator is 

defined as 

)ˆ ,ˆ ,ˆ(ˆˆ)ˆ ,ˆ ,ˆ,ˆ,(ˆ rσmΓΘrσmΘpu T

RCMAC
=  (20)  

where Θ̂ and Γ̂  are the estimated matrix and vector of *
Θ and 

,
*
Γ  respectively; and rσm ˆ   and  ˆ ,ˆ  are the estimated vectors 

of ,   and    ,
***

rσm  respectively. 

Subtracting Eqs. (19) and (20) into Eq. (16), yields  
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Moreover, in order to achieve favorable estimation of 

dynamic function, the Taylor linearization technique is 

employed to transform the multi-dimensional receptive-field 

basis functions into a partially linear form. The expansion of Γ
~

 

in Taylor series gets 

)ˆ(|)ˆ(|

~

~

~

~ *

ˆ

2

1

*

ˆ

2

1

2

1

σσ

σ

σ

σ

mm

m

m

m

Γ
σσ

−






































∂

∂










∂

∂










∂

∂

+−






































∂

∂










∂

∂










∂

∂

=





















=
==

T

n

T

T

mm

T

n

T

T

n
dd

d γ

γ

γ

γ

γ

γ

γ

γ

γ

MM
M

 

IAENG International Journal of Computer Science, 34:1, IJCS_34_1_11
______________________________________________________________________________________

(Advance online publication: 15 August 2007)



 

 

 

Ωrr

r

r

r

+−






































∂

∂










∂

∂










∂

∂

+
=

)ˆ(|
*

ˆ

2

1

rr

T

n

T

T

d

γ

γ

γ

M

 (23)  

ΩrCσBmAΓ
σ

+++≡ ~~~~
rm

 (24)  

where ;|,,, ˆ

21 dadd nnn

T

n

m

γγγ ×

=
ℜ∈









∂

∂

∂

∂

∂

∂
=

mm
mmm

A L

;|,,, ˆ

21 dadd nnn

T

n

σ

γγγ ×

=
ℜ∈









∂

∂

∂

∂

∂

∂
= σσσσσσσσσσσσσσσσσσσσ

LB

dadd nnn

T

n

r

γγγ ×

=
ℜ∈









∂

∂

∂

∂

∂

∂
=

rr
rrr

C ˆ

21 |,,, L , mmm ˆ~ * −= ; 

σσσσσσσσσσσσ ˆ~ * −= ; rrr ˆ~ * −=  and dnℜ∈Ω  is a vector of 
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After substituting Eq. (24) into Eq. (22), the error equation 

can be rewritten as 
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where the uncertain term .
~~ˆ ϖϖϖϖ++≡ ΓΘΩΘω

TT  

Then the following theorem can be stated and proved. 

Theorem 1: Consider the MIMO uncertain nonlinear system 

represented by Eq. (1). The ∞H -tracking based adaptive hybrid 

control law is designed as Eq. (8); where  ˆ 
RCMAC

u is given from 

RCMAC output in Eq. (20) and the on-line parameter adaptive 

laws of RCMAC are designed as Eqs. (29)-(32) 
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where 
p
θ
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 is the p-th column of matrix ,Θ̂
&

 
p

ψψψψ  is the p-th 

column of matrix ,Ψ  and 
4321

  and     ,   , αααα  are the 

learning-rates with positive constants. The  compensation 

controller is designed as  

εPΨRu
T
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1−=  (33) 

where there exist a symmetric positive definite matrix P  and a 

positive definite matrix Ζ  satisfying the following Riccati-like 

equation  
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in which IR 21 2 ρ≥−  is a designed diagonal matrix and ρ  is an 

attenuation level for the uncertainty. Then the overall control 

system guarantees the following ∞H -tracking performance  
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where )( Zminλλλλ  denotes the minimum eigenvalue of Z . 

Proof:  Consider the following Lyapunov function  
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Taking the derivative of time for the Lyapunov function, yields 
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Substituting Eq. (28) into Eq. (37) and from Eq. (34), yields  

  ~~1

ˆ~~~1ˆ~

~~1ˆ~)
~~

(
1

~ˆ
2

1

][ 
2

1
                        

~~1~~1

~~1
)

~~
( 

1
)

~~
( 

1

]
~ˆˆ ~

ˆ ~ˆ ~[ ][
2

1
)~,~,~,

~
,(

4

3

21

2

1

43

211

εPΨωrr

εPΨΘCrσσεPΨΘBσ

mmεPΨΘAmΘΘ

εPΨΘΓεPPΨΨε

uεPΨRPΨεεZε

rrσσ

mmΘΘΘΘ

εPΨuωΘΓΘCr

ΘBσΘAmεPΞPΞεrmΘε

TTT

TT

r

TTTT

σ

T

TTT

m

TT

TTTT

H

TTT

TT

TTT

TT

H

TTT

r

T

T

σ

TT

m

TTT

α

α

α
tr

α

αα

α
tr

α
tr

α

V

++

+++

+++

+−

−+−=

++

+++

−+++

+++=

−

&

&

&&

&&

&&&

&

ρρρρ

σσσσ

 (38) 

Noting in Eq. (38), that   
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From the definition of  
H

u  in Eq. (33), it is obtained that 
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where 
p
θ
&~

 is the p-th column of matrix Θ
&~

. Using the adaptive 

laws in Eqs. (29)-(32), Eq. (41) can be rewritten as  
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Now integrating the above inequality, it is obtained that 
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Since 0)( ≥tV , the following ∞H  criterion can be obtained 
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Because Z  is a positive definite matrix and from the fact that 
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Thus the inequality (35) is proved. 

 

IV. SIMULATION STUDIES 

To verify the effectiveness of the proposed approach, the 

developed ∞H -tracking based adaptive control scheme is 

applied to control two MIMO uncertain nonlinear systems, a 

one-link rigid robotic manipulator and a mass-spring-damper 

mechanical system. 

 

Example 1.  One-link rigid robotic manipulator 

The dynamic equation of one-link rigid robotic manipulator 

is given by 
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v

=++ )cos(2 &&&  (46)  

where the link is of length l  and mass m  , and q  is the angular 

position with initial values 1.0)0( =q  and 0)0( =q& . The above 

dynamical equation can be written as the following state 

equation: 
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, qx &=
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parameters in (47) are chosen as 1====
v

gblm , and d  is a 

square wave external disturbance with amplitude 1.0±  and 

period π2 . The reference model is given as 
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where [ ] [ ]0,0)0(),0(
21

=
T

dd
xx  and )(tu

d
is a periodic 

rectangular signal. For the ∞H -tracking based adaptive control 

scheme, the feedback gain is designed as [ ]T
6,9=L . For a 

choice of 







=

29

990
Z  and solving the Riccati-like equation 

that shown in Eq. (34) with ,2 2 IR ρ=   it can be obtained that   
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The designed RCMAC is characterized as:  

� number of elements for each state variable: 9=
e

n  

(elements) 

� generalization: 4=τ  (elements/ block)  

� number of blocks for each state variable: 

3=
b

n (blocks/layer) 4× (layer) 12= (blocks) 

� number of receptive-fields: 

3=
d

n (receptive-fields/layer) 4× (layer) 12= (receptive-fiel

ds) 

� receptive-field basis functions: ]/)([ 22
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σmpexpµ −−=  

for  2 1,=i  and 12,,2,1 L=k   

The initial means of the Gaussian functions are divided 

equally and are set as 
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m and the initial variances are 

set as 2.0=
ik
σ  for 2 1,=i  and 12,,2,1 L=k . These 

parameters are chosen to cover the input signal space and 

through the basic principle presented in (Wang, 1994). The 

learning-rates of RCMAC are chosen as 

,25.6
1

=α  .01.0  and  75.0  ,75.0
432

=== ααα To investigate 

the effectiveness of compensation controller, different ρ ’s are 

used for simulations. Firstly, the simulation results for one-link 

rigid robotic manipulator with 1=ρ  are shown in Fig. 4. 

Figures. 4(a) and 4(b) represent the trajectory of position and 

velocity, respectively. The associated control effort )( tu  is 
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depicted in Fig. 4(c), and the tracking error is shown in Fig. 4(d). 

The simulation results show that the tracking response in 

transient state is not good enough due to large attenuation level 

ρ . The simulation results with 1.0=ρ  are shown in Fig. 5, 

which shows the favorable control performance with small 

tracking error. Thus, the proposed ∞H -tracking based adaptive 

control system can achieve better performance as the 

attenuation level ρ  is specified smaller. 
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Fig. 4     Time responses for one-link rigid robotic manipulator with 1=ρ . 
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Fig. 5     Time responses for one-link rigid robotic manipulator with 1.0=ρ  

 

Example 2. Mass-spring-damper mechanical system 

A mass-spring-damper mechanical system is shown in Fig. 6. 
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Fig. 6     Mass-spring-damper system.  

 The dynamic equations of this mechanical system are 

expressed as [4] 
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M  and 
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Consequently, the dynamic equation of the 

mass-spring-damper mechanical system can be rewritten as 
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disturbance. The desired trajectories come from the reference 

model outputs, the reference model is chosen as 
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For the proposed ∞H -tracking based adaptive control 

scheme, the feedback gain matrix is designed as 

,],[
12

TLLL = in which 20) (20,
1

diag=L  and 

100). (100,
2

diag=L  For a choice of 

10) 10, 100, (100,diag=Z  and to solve the Riccati-like 

equation shown in Eq. (34) with ,2 2 IR ρ=  it can be obtained 

that 
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The designed RCMAC is characterized as:  

� number of elements for each state variable: 9=
e

n (elements) 

� generalization: 4=τ  (elements/ block)  

� number of blocks for each state variable: 

3=
b

n (blocks/layer) 4× (layer) 12= (blocks) 

� number of receptive-fields: 
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n (receptive-fields/layer) 4× (layer) 
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� receptive-field basis functions: ]/)([ 22
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RCMAC are chosen as ,6
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and  0.04.  
4

=α  To investigate the effectiveness of 

compensation controller, different ρ ’s are used for simulations. 

Firstly, the simulation results for mass-spring-damper 

mechanical system with 1=ρ  is shown in Fig. 7. Figures. 7(a) 

and 7(b) represent the trajectories of positions )(
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tx  and ),( 
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respectively; the trajectories of velocities )(
1

tx&  and )( 
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tx& are 

plotted in Figs. 7(c) and 7(d), respectively. The associated 

control efforts )(  and  )(
21

tutu  are depicted in Figs. 7(e) and 

7(f), respectively. The simulation results show that the tracking 

responses in transient state are not good enough. This is because 

the attenuation level ρ  is chosen too large so that the residual 

approximation error can not be eliminated appropriately, thus 

the robust tracking performance can not be yielded. Secondly, 

the simulation results with 1.0=ρ  are shown in Fig. 8. From 

the simulation results, it can be seen that favorable tracking 

performance can be obtained without precisely knowledge of 

system dynamic function; moreover, it can achieve better 

tracking performance as the attenuation level ρ  is specified 

smaller. 

0 2 4 6 8 10 12 14 16 18 20
-1.5

-1

-0.5

0

0.5

1

1.5

0 2 4 6 8 10 12 14 16 18 20
-1.5

-1

-0.5

0

0.5

1

1.5

(a) (b)Time (sec) Time (sec)

Position )(1 tx Position )(2 tx

1x

1dx

2x

2dx

0 2 4 6 8 10 12 14 16 18 20
-1.5

-1

-0.5

0

0.5

1

1.5

0 2 4 6 8 10 12 14 16 18 20
-1.5

-1

-0.5

0

0.5

1

1.5

(a) (b)Time (sec) Time (sec)

Position )(1 txPosition )(1 tx Position )(2 txPosition )(2 tx

1x

1dx

2x

2dx

 
 

0 2 4 6 8 10 12 14 16 18 20
-1.5

-1

-0.5

0

0.5

1

1.5

0 2 4 6 8 10 12 14 16 18 20
-1.5

-1

-0.5

0

0.5

1

1.5

Velocity )(1 tx&

(c) (d)Time (sec) Time (sec)

Velocity )(2 tx&

1x&

1dx& 2dx&

2x&

0 2 4 6 8 10 12 14 16 18 20
-1.5

-1

-0.5

0

0.5

1

1.5

0 2 4 6 8 10 12 14 16 18 20
-1.5

-1

-0.5

0

0.5

1

1.5

Velocity )(1 tx&Velocity )(1 tx&

(c) (d)Time (sec) Time (sec)

Velocity )(2 tx&Velocity )(2 tx&

1x&

1dx& 2dx&

2x&

 

0 2 4 6 8 10 12 14 16 18 20
-4

-2

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14 16 18 20
-8

-6

-4

-2

0

2

4

6

8

Time (sec)(e)

Control input  )(1 tu

Time (sec)(f)

Control input  )(2 tu

0 2 4 6 8 10 12 14 16 18 20
-4

-2

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14 16 18 20
-8

-6

-4

-2

0

2

4

6

8

Time (sec)(e)

Control input  )(1 tuControl input  )(1 tu

Time (sec)(f)

Control input  )(2 tuControl input  )(2 tu

 
Fig. 7     Time responses for mass-spring-damper system with 1=ρ  
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Fig. 8     Time responses for mass-spring-damper system with 1.0=ρ  

 

V. CONCLUSIONS 

A ∞H -tracking based adaptive control scheme has been 

proposed for uncertain nonlinear systems. The proposed control 

scheme is comprised of a recurrent cerebellar model articulation 

controller (RCMAC) and a compensation controller. RCMAC 

is utilized to approximate an ideal controller and the 

compensation controller is utilized to attenuate the residual 

approximation error with a specified ∞H -tracking performance. 
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The effectiveness of the proposed control system is verified by 

controlling two nonlinear systems, a one-link rigid robotic 

manipulator and a mass-spring-damper mechanical system. The 

simulation results confirm that the proposed ∞H -tracking 

based adaptive control scheme can guarantee a favorable 

tracking performance by specifying a desired robust attenuation 

level. 
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