
Optimizing Search Space Pruning in Frequent Itemset Mining With
Hybrid Traversal Strategies-A Comparative Performance on Different

Data Organizations
B.Kalpana, Dr.R.Nadarajan

Abstract

The task of finding frequent itemsets in a dataset
forms the computationally intensive task in association rule
mining. The last decade has witnessed a number of
state-of-art strategies directed at the Frequent Itemset
Mining (FIM) problem. Some of these are hybrid which
combine the desirable characteristics of several algorithms.
The proposed hybrid strategies employ intelligent heuristics to
optimally switch between a bottom up and top down phase to
reduce the search space by almost fifty percent.In this paper the
performance of the strategies are compared on two dataset
organizations.
Index Terms — Association rules, data mining, frequent
itemsets, hybrid search.

I.INTRODUCTION

Association rule mining was originally applied in Market Basket
Analysis which aims at understanding the behaviour and shopping
preferences of retail customers. The knowledge is used in product
placement, marketing campaigns and sales promotions.Besides
the retail sector, the market basket analysis framework is also
being extended to the health and other service sectors. The
application of Association rule mining now extend far beyond
Market Basket Analysis and includedetection of network
intrusion, attacks from the logs of web server and prediciting user
traversal patterns on the web.
 FIM algorithms could be broadly classified as candidate
generation algorithms or pattern growth algorithms. Within
these categories further classification can be done based on
the traversal strategy and data structures used.Apart from
these several hybrid algorithms which combine desirable
features of different algorithms have been proposed.
Apriori Hybrid, VIPER,Max Eclat, KDCI are some of
them. Our work has been motivated by the Eclat and
Maxeclat[20] ,which is a hybrid strategy . We propose two
hybrid strategies which make an intelligent combination of
a bottom up and top down search to rapidly prune the
search space.The intelligence gained from each phase is
powered to optimally exploit the upward and downward
closure properties .The strategies are found to outperform
the Eclat and Maxeclat as indicated in section VII. In this
paper we give a comparitive performance of the strategies
on Tidset and the Diffset organizations. Diffsets[21] have

proved to occupy a smaller footprint in the memory and
hence are reported to be advantageous.

B.Kalpana is with the Department of Computer
Science,Avinashilingam University for Women,Coimbatore,India.
Email:kalpanabsekar@yahoo.com
Dr.R.Nadarajan is with the Department of Mathematics and
Computer Applications,PSGCollegeof Technology,Coimbatore,,India
Email:nadarajan_psg@yahoo.co.in

II.PROBLEM STATEMENT

The association mining task, introduced in [1] can be
stated as follows :

Given a set of transactions, where each transaction is a
set of items, an association rule is an expression X⇒ Y where X
and Y are sets of items. The meaning of such a rule is that
transactions in the database which contain the items in X also tend
to contain the items in Y. Two measures which determine the
interestingness of such a rule are support and confidence. For a
given rule expressed as
Bread ⇒ Cheese [support = 5%, Confidence = 90%].

The measure “support = 5%” indicates that 5% of all
transactions under consideration show that bread and cheese are
purchased together. “Confidence = 90%” indicates that 90% of the
customers who purchased bread also purchased cheese. The
association rule mining task is a two step process.

1. Find all frequent itemsets. This is both computation and
I/O intensive. Given m items there can be potentially 2m
frequent itemsets. It constitutes an area where
significant research findings have been reported.

2. Generating confident rules – Rules of the form X/Y ⇒
Y where Y ⊂ X are generated for all frequent itemsets
obtained in step I provided they satisfy the minimum
confidence.
Our focus is on the generation of frequent itemsets.

Table I(a) shows a sample database with six transactions. The
frequent itemsets generated at minimum support 50% is shown in
Table I(b).
Table I(a) : Sample Database

Transactions Items
1.
2.
3.
4.
5.
6.

A, B, C, D
A, B
A, B, C, D, E
A, B, C, D
A, C, E
A, B, C

Table I(b) : Frequent Itemsets

Frequent Itemsets Support
(Min. Supp = 50%)

A 100 % (6)
B, C, AC, AB 83 % (5)
ABC, BC 67 % (4)
BCD, D, ACD, ABCD
AD, ABD 50 % (3)

The number in brackets indicates the number of

transactions in which the itemset occurs. We call an itemset as
frequent if it satisfies the minimum support. A frequent itemset is
termed maximal frequent if it is not a subset of any other frequent

IAENG International Journal of Computer Science, 34:1, IJCS_34_1_13
__

(Advance online publication: 15 August 2007)

set for a given minimum support. In our example {A, B, C, D} is a
maximal frequent itemset at minimum support set to 50%. The
proposed hybrid strategies aim at finding out the maximal
frequent sets and generating its subsets.

III. CONNECTING LATTICES AND HYBRID
SEARCH STRATEGIES

We review some of the definitions from lattice and

representation theory [5]. We propose lemma I and II which form
the basis of our itemset pruning strategy.
Definition I :

Let P be a set. A partial order on P is a binary relation ≤,
such that for all X, Y, Z ∈ P, the relation is :

1. Reflexive : X ≤ X
2. Anti-symmetric : X≤Y and Y≤X, implies X = Y
3. Transitive X ≤ Y and Y ≤ Z, implies X ≤ Z

The set P with relation ≤ is called an ordered set.
Definition II :
 Let P be a non-empty ordered set.

1. If X ∨ Y and X ∧Y exist for all X, Y∈ P, then P is called a
lattice.

2. If ∨S and ∧S exist for all S ⊆ P, then P is called a complete
lattice.

 For a set I,given the ordered set P(I), the power set of I
is a complete lattice in which join and meet are given by union and
intersection, respectively.
∨{Ai / i ∈ I} = i

Ii
A

∈
∪

∧{Ai / i ∈ I} = i
Ii
A

∈
∩

The top element of P(I) and the bottom element of P(I)
are given by T = I and ⊥ = { } respectively. For any L ⊆ P(I), L is
called a lattice of sets if it is closed under finite unions and
intersections, i.e., (L, ⊆) is a lattice with partial order specified by
the subset relation ⊆, X ∨ Y = X ∪ Y and X ∧ Y [20].

The power set lattice for our sample database I = {A, B,
C, D, E} is shown in Fig. 1 constitutes the search space. Maximal
frequent sets are indicated by dark circles. Frequent itemsets are
grey circles while infrequent itemsets are plain circles. It has been
observed that the set of all frequent itemsets forms a meet semi
lattice. For any frequent itemset X and Y, X ∩ Y is also frequent.
The infrequent itemsets form a join semi lattice.
Definition III :
Let P be an ordered set and Q ⊆ P.

1. Q is a down-set (decreasing set and order ideal) if,
whenever, x ∈ Q, y ∈ P and y ≤ x, we have y ∈ Q.
2. Dually, Q is an up-set (increasing set and order filter) if
whenever x ∈ Q, y ∈ P and y ≥ x, we have y ∈ Q.

 Given an arbitrary subset Q of P and x ∈ P, we define
↓Q = {y ∈ P / (∃x ∈ Q) y ≤ x} and
↑Q = {y ∈ P / (∃x ∈ Q)y ≥ x };
↓x = {y ∈ P / y ≤ x} and ↑x = {y ∈ P / y ≥ x}

Lemma 1 :
For a maximal frequent itemset Q ⊆ P all down-sets Q1

= ↓Q; Q1 ⊆ P will also be frequent.
This is a consequence of the above definition. Fast

enumeration of the frequent itemsets is possible in the bottom up
phase once the first maximal frequent set is detected. Examining
only the potentially frequent itemsets avoids unnecessary tid list
intersections.
Lemma 2 :
For a minimal infrequent set Q ⊆ P all up-sets
 Q1 = ↑Q; Q1 ⊆ P will be infrequent.

The top down phase detects the minimal infrequent sets.
In the powerset lattice shown in fig.1 AE is infrequent and it is
observed that all up-sets Q1= ↑Q leading to the top element are
also infrequent. Both the algorithms alternate the phases in the
search heuristically based on the detection of down-sets and
up-sets.

IV. ITEMSET ENUMERATION
The enumeration of frequent itemsets forms the computationally
intensive task. For a consideration of m distinct items. We can
have a combination of 2m subsets, which results in an exponential
growth of the search space. Itemset enumeration research thus
focuses on reducing the dataset I/O and containing the
exploration. There are four applicable classes of I/O reduction
suggested in [1]. They are
i. Projection: The projection of the database onto an equivalent
condensed representation reduces storage requirement. It may also
result in computational optimization through efficient algorithmic
techniques.
ii.Partitioning: Dataset partitioning minimizes I/O costs by
enabling memory resident processing of large datasets, thus
reducing costly disk accesses.
iii. Pruning: Dataset pruning techniques dynamically reduce the
dataset during processing,by discarding unnecessary items. This is
significant in reducing the processing time.
iv. Access reduction: Reducing the number of times that disk
resident datasets need to be accessed to identify all frequent
itemsets.The hybrid strategies that we propose are directed at
maximal pruning of the search space by an optimal exploitation of
the upward and downward closure properties.

V. DATASET ORGANIZATION
Dataset organizations are typically horizontal or vertical.. In the
horizontal format each row contains an object or a transaction id
and its related attributes, while in the vertical representation, items
are represented as columns each containing the transactions where
it occurs.Traditional methods used the horizontal format, whereas
some of the recent methds have imcreasingly relied on the vertical
format[20] [21] [14]. .Tid sets , diffsets and vertical bit vectors
are some of the commonly used vertical data formats.. In [14]
compressed vertical bitmaps or snakes were introduced to reduce
the vertical representation in comparison to the equivalent
horizontal representation. Here we make a comparative study of
the performance of two novel hybrid strategies on tidsets and
diffsets. In the diffset format we keep track of the differences of
the tidlist of an itemset from its generating pattern.Diffsets are
reported to reduce the memory requirements and since they are
shorter than the tidlists ,the support compuations are faster.

IAENG International Journal of Computer Science, 34:1, IJCS_34_1_13
__

(Advance online publication: 15 August 2007)

VI. ALGORITHM DESIGN & IMPLEMENTATION Figure.2 shows the Tidset format and diffset format for the sample
database.It is obvious that the diffsets are smaller than the tidlists. We propose two algorithms Hybrid Miner I and Hybrid

Miner II which operate on the tidlist format and the diffset format.
The pseudocode represents support computation using tidlists
only. Support computation using diffsets is explained in the
previous section Accommodating the power set lattice in primary
memory is not possible for large datasets since the lattice search
space grows exponentially with the items. We use a recursive
prefix based decomposition of the lattice . The tidlists for the
items are genarated in the first scan of the database. Figure 3
shows the equivalence class corresponding to item A.Figures 4
and 5 give the pseudocode for Hybrid Miner I and Hybrid Miner
II respectively.

In the tidlist format the support for an itemset ABC is computed
by intersecting the tidlists of any two of its subsets say AB and
BC. The cardinality of the set obtained by this intersection gives
the support.The support computation is different in diffsets.The
differences in the tidlists of a class member and its prefix itemset
is used . The original database is maintained in tidlist format.
Support of an itemset ABC is computed recursively as
(ABC) = (AB) - | d(ABC) | applying it recursively, we have,
(ABC) = d(AC) - d(AB). For a more detailed explanation one is
referred to [21].

ABCDE

ABCD ABCE ABDE ACDE BCDE

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

AB AC AD AE BC BD BE CD CE DE

A B C D E

 { } Fig.1.ThePowerset lattice P(I)

A B C D E

1 1 1 1 3
2 2 3 3 5
3 3 4 4
4 4 5
5 6 6
6

TIDsets

A B C D E

 5 2 2 1
 5 2
 6 4
 6

Diffsets

Fig. 2 : TIDSets and DiffSets for Sample Database

IAENG International Journal of Computer Science, 34:1, IJCS_34_1_13
__

(Advance online publication: 15 August 2007)

R

A

.

Fig. 4.Pseudocode for Hybrid Miner I Fig. 5.Pseudocode for Hybrid Miner II

Hybrid Miner II /* Top down phase identifies minimal length
infrequent itemsets. Bottom up phase examines potential nodes only*/
Begin
 for all sub lattices S induced by θk do
 /* atoms sorted on ascending order of support */
 topdown (S):
 begin
 level = 2; infreq = φ; flag = false;
 Repeat for all nodes at level while flag = false
 ∨ Aj ∈ S with j > i do

 L(R) = L(Ai) ∩ L(Aj);
 if σ(R) < min_supp then infreq = infreq ∪ R;
 if lastnode and flag = true then break;
 else level = level + 1;

 end; /*Top down(S)*/
 Bottom_up(S):
 begin
 Mfreq = φ; level = n;
 for R∉Mfreq and R ⊄ Nfreq
 L(R) = ∩{L(Ai) / Ai ∈ S};

 if σ(R) ≥ min_supp then MFreq = Mfreq ∪R;
 else level = level – 1; continue;

 end;

freq = { infreq iA MfreqiA
length Max

1i
⊄Λ⊂

=
∪ };

end.

Hybrid Miner I : /* Bottom up phase discovers the maximal
frequent itemsets, top down Phase discovers the minimal
infrequent itemsets*/
Begin
 Set flag = false;
 for all sub lattices S induced by θk do
 Bottom-up(S):
 Mfreq = φ;
 Repeat until flag = true
 for R ∉ Mfreq
 L(R) = ∩{L(Ai) / Ai ∈ S};

if σ(R) ≥ min-supp then
 Mfreq = Mfreq ∪ R; flag = true;
 top-down(S):
 level = 2 /* starts for 2-length itemsets */
 infreq = φ;
 Repeat for all atoms not in Mfreq
 ∨ Aj ∈ S with j > i do
 L(R) = L(Ai) ∩ L(Aj);
 if σ(R) < min_supp then
 infreq = infreq ∪ R; break;
 else
 level = level + 1; continue;
 Repeat Bottom up for nodes not containing infrequent
 subsets; /* generate freq itemsets */

 freq = { ∪ }; infreq iA MfreqiA
length Max

1i
⊄Λ⊆

=

end.

AB

ABCDE

ABCD ABCE ABDE ACDE

ABC ABD ABE ACD ACE ADE

AC AD AE

Level 1

Level 2

Level 3

Level 4

Level 5

Fig. 3: Equivalence Class for Item A

IAENG International Journal of Computer Science, 34:1, IJCS_34_1_13
__

(Advance online publication: 15 August 2007)

A. Description of Hybrid Miner I

The search starts with a bottom up phase to identify the
maximal frequent item sets. It starts at level n and performs a
breadth first search moving to the next lower level if no maximal
frequent itemsets are found at the current level. Once the first
maximal frequent itemset is found, we determine items missing
from the maximal frequent set and start a top down phase that lists
the minimal length infrequent sets. Faster search is possible
because we examine nodes which contain the missing items only.
This phase starts at level 2. If no infrequent sets are found at level
2 we go to the next higher level. The top down phase ends when
minimal infrequent sets are detected. The bottom up phase then
resumes to list the other maximal frequent itemsets and frequent
items sets after eliminating the nodes containing infrequent
itemsets generated in the top down phase. The computationally
intensive support computation task is thus reduced by cleverly
alternating the bottom up and top down phases everytime a
maximal itemset is detected . The process of generating the
frequent itemsets is then a simple task of enumerating the subsets
of all maximal frequent sets. We also make a check to avoid
duplicates. The heuristic here is based on the assumption that the
items missing from the maximal frequent itemsets are likely to
lead to infrequent combinations. The top down phase thus
examines only potentially infrequent nodes.
B. Description of Hybrid Miner II

Hybrid Miner II starts with a top down phase to
enumerate the minimal length infrequent itemsets. This method
examines the nodes in the ascending order of supports. The
bottom up phase starts when minimal length infrequent itemsets
are found in an equivalence class. In this phase, the maximal
frequent itemsets are generated by only examining nodes not
containing the minimal infrequent itemsets. Generating the
remaining frequent itemsets is as described for Hybrid Miner I. It
is a variation of the Hybrid Miner I in that it attempts to avoid the
intensive computation of supports which are encountered for the
candidate nodes in the bottom up phase in the initial stage itself.
Hence efficient subset pruning is incorporated at the start of the
algorithm itself. We now highlight some of the strengths of our
algorithms.

(i) Significant reduction in I/O and memory.
(ii) The sorting of itemsets at second level imposes an

implicit ordering on the tree. Each child is attached to
the parent with the highest support. Redundancy and
overlapping amongst classes is avoided.

(iii) On comparison with the approaches in [20] it is found
that the number of tid list intersections and nodes
examined is reduced by optimally using heuristics to
alternate between the top down and bottom up phases.
We further draw a theoretical comparison with the best

performing Maxeclat proposed in [20]. We manually trace the
Hybrid Miner I, Hybrid Miner II and Maxeclat for the powerset
lattice which is shown in Fig. 1. Hybrid Miner I examines only 10

nodes to generate the maximal frequent set {A,B,C,D} Hybrid
Miner II examines 12 nodes while Maxeclat will examine 18
nodes for generating the maximal frequent itemset. Our methods
thus achieve a search space reduction of almost fifty percent over
the Maxeclat. The savings in computation time and overhead is
significant for large databases.

VII. EXPERIMENTAL RESULTS

The experiments were carried out on a Pentium-IV
machine with 512 MB RAM running at 1500Mhz. Synthetic
databases were generated using the Linux version of the IBM
dataset generator. The data mimic the transactions in a retailing
environment. The performance of our algorithms are illustrated
for synthetic and real datasets. T, I and D indicate the average
transaction size, the size of a maximal potentially frequent itemset
and the number of transactions respectively. . On the Tidlist
format the execution times of the proposed algorithms in
comparison to Eclat are illustrated in Figure 6. Hybrid Miner I
performs better than Hybrid Miner II and Eclat for lower supports
whereas Hybrid Miner II performs better for higher supports.
Figure 7 shows the tid list intersections. Both Hybrid Miner I and
Hybrid Miner II perform about half the number of intersections
compared to Maxeclat.We give a comparison of the tid list
intersections only with Maxeclat since it is a hybrid strategy.
Further reduction in time may be possible through more efficient
and compressed data structures. Figure 8 shows the performance
of the two strategies on the tidset and diffset organizations.The
hybrid strategies on the diffset format are advantageous on the
dense datasets. T10I8D100k is a relatively sparse dataset.There is
no significant advantage here. However on
T10I8D400k,T20I8D400K and the mushroom dataset the hybrid
strategies benefit from reduced execution times while using the
diffset format. The results indicate that the diffset organization
may be more suitable for dense datasets. The choice of the
traversal strategy may also favour a particular data format. Since
the hybrid strategies use a combination of traversal mechanisms,
the diffset organization offers only a moderate advantage in terms
of execution times as is indicated in the graphs of figure 6 .

VIII. CONCLUSION

Our experiments have proved that Hybrid Miner I and
Hybrid Miner II are efficient search strategies. Both the methods
benefit from reduced computations and incorporate excellent
pruning that rapidly reduces the search space.From the
experiments on two different data formats, we find that the diffset
format is better in the case of dense datasets Further both the
upward and downward closure properties have been efficiently
and optimally utilized. The objective has been to optimize the
search for frequent itemsets by applying appropriate heuristics.

IAENG International Journal of Computer Science, 34:1, IJCS_34_1_13
__

(Advance online publication: 15 August 2007)

T 10I8D 400K

15
16
17
18
19
20
21
22
23
24

1.0 0.75 0.5 0.25

M inimum Suppo rt (%)

Ti
m

e
(s

ec
on

ds
)

Hybrid M iner I Hybrid M iner II Eclat

T 20I8D 400K

30

35

40

45

1.0 0.75 0.5 0.25

M i ni mum S uppor t (%)

Ti
m

e
(s

ec
on

ds
)

Hybrid M iner I Hybrid M iner II Eclat

MUSHROOM

7
7.5

8
8.5

9
9.5
10

10.5

1.0 0.75 0.5 0.25

Minimum Support (%)

Ti
m

e
(S

ec
on

ds
)

Eclat Hybrid I Hybrid II

Fig. 6 : Comparative Performance of Hybrid Strategies with Eclat

0

20000

40000

60000

T10I8D200K T10I8D400K T20I8D400K

In
te

rs
ec

tio
ns

Hybrid M iner I Hybrid M iner II M axeclat

M in Support - 0.5%

Fig. 7. Tid List Intersections

IAENG International Journal of Computer Science, 34:1, IJCS_34_1_13
__

(Advance online publication: 15 August 2007)

T20I8D100K

0
1

2
3

4
5

6

1.0 0.75 0.5 0.25

Minimum Support (%)

Ti
m

e
(S

ec
on

ds
)

Hybrid I - TID Hybrid II - TID

Hybrid I - DIFF Hybrid II - DIFF

T20I8D100K

0
1
2
3

4
5
6

1.0 0.75 0.5 0.25

Minimum Support (%)

Ti
m

e
(S

ec
on

ds
)

Hybrid I - TID Hybrid II - TID

Hybrid I - DIFF Hybrid II - DIFF

T10I8D400K

15

17

19

21

23

25

1.0 0.75 0.5 0.25

Minimum Support (%)

Ti
m

e
(S

ec
on

ds
)

Hybrid I - TID Hybrid II - TID

Hybrid I - DIFF Hybrid II - DIFF

T20I8D400K

30
32

34
36
38

40
42

1.0 0.75 0.5 0.25

Minimum Support (%)

Ti
m

e
(S

ec
on

ds
)

Hybrid I - TID Hybrid II - TID

Hybrid I - DIFF Hybrid II - DIFF

MUSHROOM

4
5
6
7
8
9

10
11

1.0 0.75 0.5 0.25

Minimum Support (%)

Ti
m

e
(S

ec
on

ds
)

Hybrid I - TID Hybrid II - TID

Hybrid I - DIFF Hybrid II - DIFF

Fig. 8 : Comparative Performance of Hybrid Strategies on TIDsets and Diffsets

IAENG International Journal of Computer Science, 34:1, IJCS_34_1_13
__

(Advance online publication: 15 August 2007)

ACKNOWLEDGEMENT

We would like to thank Prof. .M.J. Zaki for providing the link to
the source code of Maxeclat and Eclat.

REFERENCES

[1] A.Ceglar and J.F.Roddick. “Association Mining”, ACM

Computing Surveys,vol.38,No.2,July,2006.
[2] R. Agrawal, T. Imielinski and A. Swami, “Mining Association Rules

Between Sets of Items in Large Databases”, ACM SIGMOD Conf.
Management of Data, May, 1993.

[3] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen and A. Inkeri
Verkamo, ”Fast Discovery of Association Rules”, Advances in
Knowledge Discovery and Data Mining, U. Fayyad and et al., eds. Pp.
307-328, Menlo Park, Calif. : AAAI Press, 1996.

[4] S. Brin, R. Motwani, J. Ullman and S. Tsur, “Dynamic Itemset
Counting and Implication Rules for Market Basket Data”, ACM
SIGMOD Conf. Management of Data, June 1997.

[5] B.A. Davey and H.A. Priestley, Introduction to Lattices and Order,
Cambridge Univ. Press, 1990

[6] Han, J., M. Kamber, “Data Mining Concepts and Techniques”,
Morgan Kaufmann Publishers, 2001.

[7] Hand, D., H. Mannila and P. Smyth, Principles of Data Mining,
Eastern Economy Edition, PHI, 2004.

[8] D.I. Lin and Z.M. Kedem, “Pincer Search “ A New Algorithm for
Discovering the Maximum Frequency Set”, Sixth Int’l Conf.
Extending Database Technology, Mar. 1998.

[9] J.L.Lin and M.H. Dunham, “Mining Association Rules: Anti-skew
Algorithms”, 14th Int’l Conf. Data Eng., Feb., 1998.

[10] C. Lucchese, S. Orlando, P. Palmerini, R. Perego and F.Silvestri,
“kDCI: A Multistrategy algorithm for Mining Frequent Sets”, IEEE
ICDM workshop on frequent Itemset Mining Implementation,2003.

[11] A. Mueller, “Fast Sequential and Parallel Algorithms for Association
Rule Mining: A Comparison”, Technical Report CS-TR-3515, Univ.
of Maryland, College Park, Aug. 1995.

[12] Pujari. A.K. Data Mining Techniques, University Press, 2004.
[13] S. Sarawagi, S. Thomas, and R. Agrawal, “Integrating Association

Rule Mining with Databases: Alternatives and Implications”, ACM
SIGMOD Int’l Conf. Management of Data, June 1998.

[14] Savasere, E. Omiecinski and S. Navathe, ”An Efficient Algorithm for
Mining Association Rules in Large Databases”, Proc. 21st Very Large
DataBases Conf., 1995.

[15] P.Shenoy ,et al.”Turbo Charging Vertical Mining of Large
databases”,Intl.Conf. Management of Data,May, 2000.

[16] T.Uno, T. Asai, Y. Uchida and H. Arimura, “LCM: An Efficient
Algorithm for Enumerating Closed Frequent Itemsets”, Workshop on
Frequent Itemset Mining Implementation (FIMI 03).

[17] T. Uno, M. Kiyori and H. Arimura ,“LCM Ver 2: Efficient Mining
Algorithms for Frequent Closed Maximal Itemsets”, Workshop on
Frequent Itemset Mining Implementation (FIMI 04).

[18] T. Uno, M. Kiyori and H. Arimura ,“LCM Ver 3: Collaboration of
Array Bitmap and FP tree for Frequent Itemset Mining”, Conference
of Knowledge Discovery in Data, Proceedings of First International
Workshop on Open Sources Data Mining :Frequent Pattern Mining
Implementations,pg.77-86,2005

[19] P. Valtchev, R. Missaoui, R. Godin and M. Meridji, “Generating
Frequent Itemsets Incrementally: Two Novel Approaches based on
Galois Lattice Theory”, Computational Intelligence, vol 15,1999.

[20] S.J. Yen and A.L.P. Chen, “An Efficient Approach to Discovering
Knowledge from Large Databases”, Fourth Int’l Conf. Parallel and
Distributed Information Systems, Dec. 1996.

[21] M.J. Zaki, S. Parthasarathy, M. Ogihara and W. Li, “New Algorithms
for Fast Discovery of Association Rules”, Third Int’l Conf.
Knowledge Discovery and Data Mining, Aug. 1997.

[22] M.J. Zaki, ”Scalable Algorithms for Association Mining”, IEEE
Transactions on Knowledge and Data Engineering”, vol.12 no.3,
pp.372-390,May/June,2000.

[21]M.J.Zaki,K.Gouda,”Fast Vertical Mining Using Diffsets”, SIGKDD’,
August 2003.

IAENG International Journal of Computer Science, 34:1, IJCS_34_1_13
__

(Advance online publication: 15 August 2007)

