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Abstract 

The task of finding frequent itemsets in a dataset 
forms the computationally intensive task in association rule 
mining. The last decade has witnessed a number of 
state-of-art strategies directed at the Frequent Itemset 
Mining (FIM) problem. Some of these are hybrid which 
combine the desirable characteristics of several algorithms. 
The proposed hybrid strategies employ intelligent heuristics to 
optimally switch between a bottom up and top down phase to 
reduce the search space by almost fifty percent.In this paper the 
performance of the strategies are compared on two dataset 
organizations. 
Index Terms — Association rules, data mining, frequent 
itemsets, hybrid search. 

  
I.INTRODUCTION 

Association rule mining was originally applied in Market Basket 
Analysis which aims at understanding the behaviour and shopping 
preferences of retail customers. The knowledge is used in product 
placement, marketing campaigns and sales promotions.Besides 
the retail sector, the market basket analysis framework is also 
being extended to the health and other service sectors. The 
application of  Association rule mining now extend far beyond 
Market Basket Analysis and includedetection of network 
intrusion, attacks from the logs of web server and prediciting user 
traversal patterns on the web. 
    FIM algorithms could be broadly classified as candidate 
generation algorithms or pattern growth algorithms. Within 
these categories further classification can be done based on 
the traversal strategy and data structures used.Apart from 
these several hybrid algorithms which combine desirable 
features of different algorithms have been proposed. 
Apriori Hybrid, VIPER,Max Eclat, KDCI are some of 
them. Our work has  been motivated by the Eclat and 
Maxeclat[20] ,which is a hybrid strategy . We propose two 
hybrid strategies which make an intelligent combination of 
a bottom up and top down search to rapidly prune the 
search space.The intelligence gained from each phase is 
powered to optimally exploit the upward and downward 
closure properties .The strategies are found to outperform 
the Eclat and Maxeclat as indicated in section VII. In this 
paper we give a comparitive performance of the strategies 
on Tidset and the Diffset organizations. Diffsets[21] have 

proved to occupy a smaller footprint in the memory and 
hence are reported to be advantageous. 
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II.PROBLEM STATEMENT 

The association mining task, introduced in [1] can be 
stated as follows : 

Given a set of transactions, where each transaction is a 
set of items, an association rule is an expression      X⇒ Y where X 
and Y are sets of items. The meaning of such a rule is that 
transactions in the database which contain the items in X also tend 
to contain the items in Y. Two measures which determine the 
interestingness of such a rule are support and confidence. For a 
given rule expressed as  
Bread ⇒ Cheese [support = 5%, Confidence = 90%]. 

The measure “support = 5%” indicates that 5% of all 
transactions under consideration show that bread and cheese are 
purchased together. “Confidence = 90%” indicates that 90% of the 
customers who purchased bread also purchased cheese. The 
association rule mining task is a two step process. 

1. Find all frequent itemsets. This is both computation and 
I/O intensive. Given m items there can be potentially 2m 
frequent itemsets. It constitutes an area where 
significant research findings have been reported. 

2. Generating confident rules – Rules of the form X/Y ⇒ 
Y where Y ⊂ X are generated for all frequent itemsets 
obtained in step I provided they satisfy the minimum 
confidence. 
Our focus is on the generation of frequent itemsets. 

Table I(a) shows a sample database with six transactions. The 
frequent itemsets generated at minimum support 50% is shown in 
Table I(b). 
Table I(a) : Sample Database 

Transactions Items 
1.   
2.   
3.   
4.   
5.   
6.   

A, B, C, D 
A, B 
A, B, C, D, E 
A, B, C, D 
A, C, E 
A, B, C 

Table I(b) : Frequent Itemsets 

Frequent Itemsets Support  
(Min. Supp = 50%) 

A  100 % (6) 
B, C, AC, AB 83 % (5) 
ABC, BC 67 % (4) 
BCD, D, ACD, ABCD 
AD, ABD 50 % (3) 

 
The number in brackets indicates the number of 

transactions in which the itemset occurs. We call an itemset as 
frequent if it satisfies the minimum support. A frequent itemset is 
termed maximal frequent if it is not a subset of any other frequent 
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set for a given minimum support. In our example {A, B, C, D} is a 
maximal frequent itemset at minimum support set to 50%. The 
proposed hybrid strategies aim at finding out the maximal 
frequent sets and generating its subsets.  

 
III. CONNECTING LATTICES AND HYBRID 
SEARCH STRATEGIES 

 
We review some of the definitions from lattice and 

representation theory [5]. We propose lemma I and II which form 
the basis of our itemset pruning strategy.  
Definition I : 

Let P be a set. A partial order on P is a binary relation ≤, 
such that for all X, Y, Z ∈ P, the relation is : 

1. Reflexive : X ≤ X 
2. Anti-symmetric : X≤Y and Y≤X, implies X = Y 
3. Transitive X ≤ Y and Y ≤ Z, implies X ≤ Z 

The set P with relation ≤ is called an ordered set. 
Definition II : 
 Let P be a non-empty ordered set. 

1. If X ∨ Y and X ∧Y exist for all X, Y∈ P, then P is called a 
lattice. 

2. If ∨S and ∧S exist for all S ⊆ P, then P is called a complete 
lattice. 

 For a set I,given the ordered set P(I), the power set of I 
is a complete lattice in which join and meet are given by union and 
intersection, respectively. 
∨{Ai / i ∈ I} =  i

Ii
A

∈
∪

∧{Ai / i ∈ I} =  i
Ii
A

∈
∩

The top element of P(I) and the bottom element of P(I) 
are given by T = I and ⊥ = { } respectively. For any L ⊆ P(I), L is 
called a lattice of sets if it is closed under finite unions and 
intersections, i.e., (L, ⊆) is a lattice with partial order specified by 
the subset relation ⊆, X ∨ Y = X ∪ Y and X ∧ Y [20]. 

The power set lattice for our sample database I = {A, B, 
C, D, E} is shown in Fig. 1 constitutes the search space. Maximal 
frequent sets are indicated by dark circles. Frequent itemsets are 
grey circles while infrequent itemsets are plain circles. It has been 
observed that the set of all frequent itemsets forms a meet semi 
lattice. For any frequent itemset X and Y, X ∩ Y is also frequent. 
The infrequent itemsets form a join semi lattice. 
Definition III : 
Let P be an ordered set and Q ⊆ P. 

1. Q is a down-set (decreasing set and order ideal) if, 
whenever, x ∈ Q, y ∈ P and y ≤ x, we have   y ∈ Q. 
2. Dually, Q is an up-set (increasing set and order filter) if 
whenever x ∈ Q, y ∈ P and y ≥ x, we have y ∈ Q. 

 Given an arbitrary subset Q of P and x ∈ P, we define 
↓Q = {y ∈ P / (∃x ∈ Q) y ≤ x} and  
↑Q = {y ∈ P / (∃x ∈ Q)y ≥ x }; 
↓x = {y ∈ P / y ≤ x} and ↑x = {y ∈ P / y ≥ x} 

 
 
 
 

Lemma 1 : 
For a maximal frequent itemset Q ⊆ P all down-sets Q1 

= ↓Q; Q1 ⊆ P will also be frequent.  
This is a consequence of the above definition. Fast 

enumeration of the frequent itemsets is possible in the bottom up 
phase once the first maximal frequent set is detected. Examining 
only the potentially frequent itemsets avoids unnecessary tid list 
intersections. 
Lemma 2 : 
For a minimal infrequent set Q ⊆ P all up-sets 
 Q1 = ↑Q; Q1 ⊆ P will be infrequent.  

The top down phase detects the minimal infrequent sets. 
In the powerset lattice shown in fig.1 AE is infrequent and it is 
observed that all up-sets Q1= ↑Q leading to the top element are 
also infrequent. Both the algorithms alternate the phases in the 
search heuristically based on the detection of down-sets and 
up-sets. 
 
IV. ITEMSET ENUMERATION 
The enumeration  of frequent itemsets forms the computationally 
intensive task. For a consideration of m distinct items. We can 
have a combination of   2m subsets, which results in an exponential 
growth of the search space. Itemset enumeration research thus 
focuses on reducing the dataset I/O and containing the 
exploration. There are four applicable classes of I/O reduction 
suggested in [1 ]. They are 
i. Projection: The projection of the database onto an equivalent 
condensed representation reduces storage requirement. It may also 
result in computational optimization through efficient algorithmic 
techniques. 
ii.Partitioning: Dataset partitioning minimizes I/O costs by 
enabling memory resident processing of large datasets, thus 
reducing costly disk accesses. 
iii. Pruning: Dataset pruning techniques dynamically reduce the 
dataset during processing,by discarding unnecessary items. This is 
significant in reducing the processing time. 
iv. Access reduction: Reducing the number of times that disk 
resident datasets need to be accessed to identify all frequent 
itemsets.The hybrid strategies that we propose are directed at 
maximal pruning of the search space by an optimal exploitation of 
the upward and downward closure properties. 
 
V. DATASET ORGANIZATION 
Dataset organizations are typically horizontal or vertical.. In the 
horizontal format each row contains an object or a transaction id 
and its related attributes, while in the vertical representation, items 
are represented as columns each containing the transactions where 
it occurs.Traditional methods used the horizontal format, whereas 
some of the recent methds have imcreasingly relied on the vertical 
format[ 20] [21 ] [14]. .Tid sets , diffsets and vertical bit vectors 
are some of the commonly used vertical data formats.. In [14]   
compressed vertical bitmaps or snakes were introduced to reduce 
the vertical representation in comparison to the equivalent 
horizontal representation. Here we make a comparative study of 
the performance of two novel hybrid strategies on tidsets and 
diffsets. In the diffset  format we keep track of the differences of 
the tidlist of an itemset from its generating pattern.Diffsets are 
reported to reduce the memory requirements and since they are 
shorter than the tidlists ,the support compuations are faster. 
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VI. ALGORITHM DESIGN & IMPLEMENTATION Figure.2 shows the Tidset format and diffset format for the sample 
database.It is obvious that the diffsets are smaller than the tidlists. We propose two algorithms Hybrid Miner I and Hybrid 

Miner II which operate on the tidlist format and the diffset format. 
The pseudocode represents support computation using tidlists 
only. Support computation using diffsets is explained in the 
previous section Accommodating the power set lattice in primary 
memory is not possible for large datasets since the lattice search 
space grows exponentially with the items. We use a recursive 
prefix based decomposition of the lattice . The tidlists for the 
items are genarated in the first scan of the database.  Figure 3 
shows the  equivalence class corresponding to item A.Figures 4 
and  5 give the pseudocode for Hybrid Miner I and Hybrid Miner 
II respectively. 

In the tidlist format the support for an itemset ABC is computed 
by intersecting the tidlists of any two of its subsets say AB and 
BC. The cardinality of the set obtained by this intersection gives 
the support.The support computation is different in diffsets.The 
differences in the tidlists of  a class member and its prefix itemset 
is used . The original database is maintained in tidlist format. 
Support of an itemset ABC is computed recursively as  
(ABC) = (AB) - | d(ABC) | applying it recursively, we have,  
(ABC) = d(AC) -  d(AB). For a more detailed explanation one is 
referred to [21 ]. 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                                             

ABCDE

ABCD ABCE ABDE ACDE BCDE

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

AB AC AD AE BC BD BE CD CE DE

A B C D E

   
 
                                                                                              { }  Fig.1.ThePowerset lattice P(I) 

A  B  C  D  E 
         

1  1  1  1  3 
2  2  3  3  5 
3  3  4  4   
4  4  5     
5  6  6     
6         

 
TIDsets  

A  B  C  D  E 
         
  5  2  2  1 
      5  2 
      6  4 
        6 
         
         

 
Diffsets  

Fig. 2 : TIDSets and DiffSets for Sample Database 
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Fig. 4.Pseudocode for Hybrid Miner I                            Fig. 5.Pseudocode for Hybrid Miner II 

 
 
 
 

Hybrid Miner II  /* Top down phase identifies minimal length 
infrequent itemsets. Bottom up phase examines potential nodes only*/ 
Begin 
 for all sub lattices S induced by θk do  
 /*  atoms sorted on ascending order of support  */ 
  topdown (S): 
  begin 
   level = 2; infreq = φ; flag = false; 
   Repeat for all nodes at level while flag = false 
    ∨ Aj ∈ S with j > i do 

 L(R) = L(Ai) ∩ L(Aj); 
 if σ(R) < min_supp then infreq = infreq ∪ R; 
 if lastnode and flag = true then break; 
 else  level = level + 1; 

  end; /*Top down(S)*/ 
  Bottom_up(S): 
   begin 
   Mfreq = φ; level = n; 
   for R∉Mfreq and R ⊄ Nfreq 
    L(R) = ∩{L(Ai) / Ai ∈ S}; 

    if σ(R) ≥ min_supp then MFreq = Mfreq ∪R;  
  else level = level – 1; continue; 

  end; 

freq = { infreq  iA   MfreqiA
length Max

1i
⊄Λ⊂

=
∪ }; 

end. 

Hybrid Miner I :  /* Bottom up phase discovers the maximal 
frequent itemsets, top down Phase discovers the minimal 
infrequent itemsets*/ 
Begin 
 Set flag = false; 
 for all sub lattices S induced by θk do 
 Bottom-up(S): 
  Mfreq = φ; 
  Repeat until flag = true 
   for R ∉ Mfreq 
    L(R) = ∩{L(Ai) / Ai ∈ S}; 

if σ(R) ≥ min-supp then 
      Mfreq = Mfreq ∪ R;  flag = true;  
  top-down(S): 
  level = 2 /* starts for 2-length itemsets */ 
  infreq = φ; 
  Repeat for all atoms  not in Mfreq  
   ∨ Aj ∈ S with j > i do 
    L(R) = L(Ai) ∩ L(Aj);  
    if σ(R) < min_supp then  
     infreq = infreq ∪ R;  break; 
    else   
     level = level + 1;  continue; 
 Repeat Bottom up for nodes not containing infrequent 
 subsets;  /* generate freq itemsets */ 

  freq = { ∪ }; infreq  iA   MfreqiA
length Max

1i
⊄Λ⊆

=
 
end. 

AB 

ABCDE 

ABCD ABCE ABDE ACDE

ABC ABD ABE ACD ACE ADE 

AC AD AE

Level 1 

Level 2 

Level 3 

Level 4 

Level 5 

Fig. 3: Equivalence Class for Item A
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A. Description of Hybrid Miner I 
                                            

The search starts with a bottom up phase to identify the 
maximal frequent item sets. It starts at level n and performs a 
breadth first search moving to the next lower level if no maximal 
frequent itemsets are found at the current level. Once the first 
maximal frequent itemset is found, we determine items missing 
from the maximal frequent set and start a top down phase that lists 
the minimal length infrequent sets. Faster search is possible 
because we examine nodes which contain the missing items only. 
This phase starts at level 2. If no infrequent sets are found at level 
2 we go to the next higher level. The top down phase ends when 
minimal infrequent sets are detected. The bottom up phase then 
resumes to list the other maximal frequent itemsets and frequent 
items sets after eliminating the nodes containing infrequent 
itemsets generated in the top down phase. The computationally 
intensive support computation task is thus reduced by cleverly 
alternating the bottom up and top down phases everytime a 
maximal itemset is detected . The process of generating the 
frequent itemsets is then a simple task of enumerating the subsets 
of all maximal frequent sets. We also make a check to avoid 
duplicates. The heuristic here is based on the assumption that the 
items missing from the maximal frequent itemsets are likely to 
lead to infrequent combinations. The top down phase thus 
examines only potentially infrequent nodes. 
B. Description of Hybrid Miner II 

Hybrid Miner II starts with a top down phase to 
enumerate the minimal length infrequent itemsets. This method 
examines the nodes in the ascending order of supports. The 
bottom up phase starts when minimal length infrequent itemsets 
are found in an equivalence class. In this phase, the maximal 
frequent itemsets are generated by only examining nodes not 
containing the minimal infrequent itemsets. Generating the 
remaining frequent itemsets is as described for Hybrid Miner I. It 
is a variation of the Hybrid Miner I in that it attempts to avoid the 
intensive computation of supports which are encountered for the 
candidate nodes in the bottom up phase in the initial stage itself. 
Hence efficient subset pruning is incorporated at the start of the 
algorithm itself.  We now highlight some of the strengths of our 
algorithms. 

(i) Significant reduction in I/O and memory.  
(ii) The sorting of itemsets at second level imposes an 

implicit ordering on the tree. Each child is attached to 
the parent with the highest support. Redundancy and 
overlapping amongst classes is avoided.   

(iii) On comparison with the approaches in [20] it is found 
that the number of tid list intersections and nodes 
examined is reduced by optimally using heuristics to 
alternate between the top down and bottom up phases.  
We further draw a theoretical comparison with the best 

performing Maxeclat proposed in [20]. We manually trace the 
Hybrid Miner I, Hybrid Miner II and Maxeclat for the powerset 
lattice which is shown in Fig. 1. Hybrid Miner I examines only 10 

nodes to generate the maximal frequent set {A,B,C,D} Hybrid 
Miner II examines 12 nodes while Maxeclat will examine  18  
nodes for generating the maximal frequent itemset. Our methods 
thus achieve a search space reduction of almost fifty percent over 
the Maxeclat. The savings in computation time and overhead  is 
significant for large databases.  
 
VII. EXPERIMENTAL RESULTS 

The experiments were carried out on a Pentium-IV 
machine with 512 MB RAM running at 1500Mhz. Synthetic 
databases were generated using the Linux version of the IBM 
dataset generator. The data mimic the transactions in a retailing 
environment. The performance of our algorithms are illustrated 
for synthetic and real datasets. T, I and D indicate the average 
transaction size, the size of a maximal potentially frequent itemset 
and the number of transactions respectively. . On the Tidlist 
format the execution times of the proposed algorithms in 
comparison to Eclat are illustrated in Figure 6.  Hybrid Miner I 
performs better than Hybrid Miner II and Eclat for lower supports 
whereas Hybrid Miner II performs better for higher supports. 
Figure 7 shows the tid list intersections. Both Hybrid Miner I and 
Hybrid Miner II perform about half the number of intersections 
compared to Maxeclat.We give a comparison of the tid list 
intersections only with Maxeclat since it is a hybrid strategy. 
Further reduction in time may be possible through more efficient 
and compressed data structures. Figure 8 shows the performance 
of the two strategies on the tidset and diffset organizations.The 
hybrid strategies on the diffset format are advantageous on the 
dense datasets. T10I8D100k is a relatively sparse dataset.There is 
no significant advantage here. However on 
T10I8D400k,T20I8D400K and the mushroom dataset the hybrid 
strategies benefit from reduced execution times while using the 
diffset format. The results indicate that the diffset organization 
may be more suitable for dense datasets. The choice of the 
traversal strategy may also favour a particular data format. Since 
the hybrid strategies use a combination of traversal mechanisms, 
the diffset organization offers only a moderate advantage in terms 
of execution times as is indicated in the graphs of figure 6 . 

 
VIII. CONCLUSION 

Our experiments have proved that Hybrid Miner I and 
Hybrid Miner II are efficient search strategies. Both the methods 
benefit from reduced computations and incorporate excellent 
pruning that rapidly reduces the search space.From the 
experiments on two different data formats, we find that the diffset 
format is better in the case of dense datasets  Further both the 
upward and downward closure properties have been efficiently 
and optimally utilized. The objective has been to optimize the 
search for frequent itemsets by applying appropriate heuristics.  
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Fig. 6 : Comparative Performance of Hybrid Strategies with Eclat 
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Fig. 7. Tid List Intersections 
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Fig. 8 : Comparative Performance of Hybrid Strategies on TIDsets and Diffsets 
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