
 
 

 

  
Abstract—This paper presents the importance of formulating 

general discrete-time model representations for current pathway 
deterministic modeling study. Discrete-time models can be 
considered as a link between continuous-time kinetic reactions 
and discrete-time experimentation as well as computer based 
simulation and analysis. In the paper, different discretization 
techniques are investigated according to different sorts of ODE 
model structures. Two discretization strategies are mainly focused, 
that are one-step Taylor/Lie series based method and multi-step 
Runge-Kutta method. A new discretization approach based on 
Taylor expansion and Carleman linearization is proposed for 
bilinear in states pathway models. Finally, the superiority of using 
Runge-Kutta based approach as general discrete-time model 
representations are concluded.   
 

Index Terms—Biochemical pathway modeling, discretization, 
sensitivity analysis, systems biology. 
 

I. INTRODUCTION 
Based on large amounts of experiments, traditional 

biochemists and molecular biologists have developed many 
qualitative models and hypothesis for biochemical pathway 
study [1]-[3]. However, in order to evaluate the completeness 
and usefulness of a hypothesis, produce predictions for further 
testing, and better understand the interaction and dynamic of 
pathway components, qualitative models are no longer 
adequate. There has recently been a focus on more quantitative 
approach in systems biology study. In the past decade, 
numerous approaches for quantitative modeling of biochemical 
dynamics are proposed, such as Robert [4], Anand and Douglas 
[5], Jeff et al. [6], Robert and Tom [7], Tyson et al. [8], 
Wolkenhauer [9] [10], etc. Among these approaches, the most 
prominent method is to use ordinary differential equations 
(ODEs) to model biochemical reactions according to mass 
action laws.  It should be noted that using ODEs to model 
biochemical reactions assumes that the system is well-stirred in 
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a homogeneous medium and that spatial effects, such as 
diffusion, are irrelevant, otherwise partial differential equations 
(PDEs) should be used [11]. In the literature, almost all 
publications related to pathway modeling are based on 
continuous-time ODE model representations. Using 
continuous-time ODEs facilitate researchers on analytical 
study and understanding, whereas it also brings difficulties for 
numerical computation and computer based simulation. 
Therefore, constructing the corresponding discrete-time model 
representations is particular important in systems biology 
study.  

There are many reasons to formulate discrete-time model 
representations in pathway modeling research. Firstly the real 
biochemical kinetic reactions take place in continuous time, 
whereas experimental data are measured by sampling the 
continuous biochemical reaction outputs, and computer based 
analysis and simulation all depend on discrete-time datasets. 
Therefore, a discrete-time model could be an interface between 
real kinetic reaction, experimentation and computer based 
simulation. A delicate discrete-time model can not only assist 
people to better understand pathway reaction dynamics and 
reproduce the experimental data, but also generate predictions 
for computer based analysis which leaves out the expensive and 
time consuming experiment process. Moreover, it can be a 
crucial tool for further experimental design study, such as state 
measurement selection and sampling time design. Secondly, as 
we know parameter estimation is an active and important 
research topic in systems biology study. Estimating parameters 
of continuous ODEs is usually a computational costly 
procedure, as even for linear ODEs it is a non-quadratic 
optimization problem. Whereas when considering 
discrete-time based models, although we can not change the 
fundamental nature of the optimization process, however, an 
iterative polynomial discrete-time model could possibly 
simplify the structure of continuous ODEs, especially for some 
nonlinear cases. This can help researchers to develop new 
parameter estimation approaches based on the discrete-time 
models. Furthermore, dynamic sensitivity analysis plays an 
important role in parameter selection and uncertainty analysis 
for system identification procedure [12], in practice, local 
sensitivity coefficients are obtained by solving the continuous 
sensitivity functions and model ODEs simultaneously. As 
sensitivity functions are also a set of ODEs with respect to 
sensitivity coefficients, it would be worthwhile to calculate 
sensitivity coefficients in a similar discrete-time iterative way.  

In practice, there are several methods can be considered for 
discretization of ODEs. One sort of methods is based on Taylor 
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or Lie series expansion which is one-step-ahead discretization 
stratagem. For models represented by linear ODEs which 
means linear in states, the discrete-time model representation is 
given in discrete-time control system textbooks [13] as linear 
ODEs can be expressed as state-space equations. Unfortunately, 
for nonlinear ODEs there is no such general direct 
discretization mapping. In mathematical and control theory, 
some discretization techniques related to nonlinear ODEs are 
comparatively reviewed and discussed in section 3. 
Considering real biological signaling cases, we investigate a 
time varying linear approach for bilinear in states ODEs 
situation based on Taylor expansion and Carleman 
linearization. However, even for this method the mathematical 
model expression would be complex when considering higher 
order approximation. Another important discretization strategy 
discussed in this paper is multi-step discretization approach 
based on Runge-Kutta method. One advantage of this approach 
is it improves the discretization accuracy by utilizing multi-step 
information for approximation of one-step-ahead model 
prediction. Moreover, it gives a general exact discrete-time 
representation for both linear and nonlinear biochemical ODE 
models.  

II. CONTINUOUS-TIME PATHWAY MODELING 

A. Continuous-Time Model Representation 
In the literature [14] [15], signal pathway dynamics can 

usually be modeled by the following ODE representation: 

       0 0( ) ( ( ), ( ), ), ( )
( ) ( ( ))
t t t t x
t t

= =
 =

x f x u θ x
y g x
�

                (1) 

where m∈x \ , p∈u \ , and n∈θ \  are the state, input and 
parameter column vectors. 0x  is the initial states vector at 0t . 
From biochemical modeling viewpoint, x represents molecular 
concentrations; u generally represents external cellular signals; 
θ  stands for reaction rates. ( )⋅f  is a set of linear or nonlinear 
functions which correspond to a series of biochemical reactions 
describing pathway dynamics. ( )⋅g  here is the measurement 
function which determines which states can be measured. For 
the simplest case, if all the states can be measured, the 
measurement function g in (1) is an identity matrix. Otherwise, 
g is a rectangular zero-one matrix with corresponding rows 
with respect to unmeasurable states deleted from the full rank 
identity matrix mI .  

When model ODEs are linear and time invariant in states, 
which is also known as linear ODEs, (1) can be simplified as: 

( ) ( ) ( )
( ) ( ( ))
t t t
t t

= +
=

x Ax Bu
y g x
�

                           (2) 

Here m m×A  is the parameter matrix, m p×B  is the known input 
matrix. For most systems biology pathway models A is typical 
a sparse matrix, only the corresponding reaction state terms 
appear in the forcing function. However, this kind of linear 
ODEs is not prevalent for representation of most biochemical 
reactions, only if it is an irreversible chain reaction. An 
illustrative example is the first-order isothermal liquid-phase 
chain reaction [16] [17]: 

1 2A B Cθ θ→ →  
It states from liquid reaction component A to liquid product B 
and then to liquid product C. This reaction process can be 
model by following ODEs: 

1 1 1

2 1 1 2 2

x x
x x x

θ
θ θ

= −
= −

�
�

                                (3) 

where 1 2,x x  denote concentrations of components A and B, 
which were the only two concentrations measured. Therefore, 
component C does appear in the model. This ODE model (3) 
can be readily represented as linear state space form (2). 
  More generally, and more applicably, we can consider ODEs 
that are linear in their unknown parameters, but not necessarily 
states. For instance, the Michaelis-Menten enzyme kinetics [20] 
[21], JAK-STAT [18], ERK [19], TNF NF Bα κ− −  [20] and 
I B NF Bκ κ− −  [15] pathway models are all bilinear in the 
states but linear in parameters. The state function of this kind of 
ODEs can be represented as: 

         ( ) ( ( ))t t=x F x θ�                                 (4) 
where ( )⋅F represents a set of nonlinear functions which is also 
commonly presence as a sparse matrix. For example, 
considering a bilinear in states model, when a reaction only 
takes place in the presence of two molecules, most elements of 
the corresponding row in F would be zeros except for those 
related to this two states.  Here we do not take account of model 
inputs u(t) as most of these published pathways are not 
considered subject to external cellular signals. 

B. Parameter Estimation 
Given the model structure and experiment data of measured 

state variables, the aim of parameter estimation is to calculate 
the parameter values that minimize some loss function between 
the model’s prediction and measurement data. Considering the 
set of ,{ ( )}i i ky k� as the measurement data and the corresponding 
model’s predictions ,{ ( , )}i i ky k θ , which is simply discrete-time 
sampling of continuous-time ODE model’s output y(t), then a 
standard least squares loss function along the trajectory gives: 

21ˆ arg min ( ( ) ( , ))
2 i i ii k

y k y kω= −∑ ∑θ θ�             (5) 

where the double sum can be taken simply as taking the 
expected value over all states (i) and over the complete 
trajectory (k), iω  are the weights to normalize the contributions 
of different state signals and can be taken as 

( )2
1 max( ( ))i ik

y kω = �                             (6) 

We assume that the model hypothesis space includes the 
optimal model, so that when *ˆ =θ θ , the model’s parameter are 
correct and *ˆ( , ) ( )i iy k y k=θ . Typically, we assume that the 
states are not directly measurable, but are subject to additive 
measurement noise: 

             * 2( ) ( ) (0, )i i iy k y k σ= +ℵ�                       (7) 
Here, the noise is zero mean Gaussian, where the variances 
depend on the state.   

We have to take into account the fact that we can only 
measure/estimate the states rather than the first-order derivative 
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of states to time (left-hand-side of ODEs), so even for linear 
ODE models, the optimization problem is not quadratic. In the 
literature, parameter estimation of pathway ODEs is usually 
reduced into solving nonlinear boundary value problem using 
multiple shooting method [22]-[24]. 

C. Sensitivity Analysis 
Dynamic sensitivity analysis plays an important role in 

parameter selection and uncertainty analysis for system 
identification procedure. The first-order local sensitivity 
coefficient ,i js  is defined as the partial derivative of ith state to 
jth parameter  

,

( , ) ( , )( )
( ) i j j i ji

i j
j j

x t x tx t
s t

θ θ θ
θ θ

+ ∆ −∂
= =

∂ ∆
         (8)            

In (8), sensitivity coefficient is calculated using finite 
difference method (FDM), however, the numerical values 
obtained may vary with jθ∆ , and repeated measurement of 
state is required at least once for each parameter. In practice 
[15], direct differential method (DDM) is employed as an 
alternative by taking partial derivative of (1) with respect to 
parameter jθ , and the absolute parameter sensitivity equations 
can be written as: 

0 0, ( )j j j j
j j j

d S J S P S t S
dt xθ θ θ

∂ ∂ ∂ ∂
= + ⇔ = ⋅ + =

∂ ∂ ∂ ∂
x f x f �   (9) 

where J  and jP  are the Jacobian matrix and parameter 
Jacobian matrix. By solving the m equations in (1) and n m×  
equations in (9) together as a set of differentical equations, both 

( )tx  and ( )m nt ×S  can be determined simultaneously.  
For ODEs are linear in both parameters and states, a special 

case described in (2), and when assuming biochemical 
reactions are autonomous which means do not affected by 
external inputs u, the corresponding linearized sensitivity 
equations can be expressed as: 
                                   ( ) ( ) ( )t t t= +S AS P�                             (10) 
where P is the m n×  parameter Jacobian matrix. 

For linear in the parameters ODEs (4), the corresponding 
sensitivity equations can be simplified as: 

( ( ( ) )( ) ( ) ( ( ))tt t t∂
= +

∂
F x θS S F x

x
�                   (11) 

Parameter sensitivity coefficients provide crucial 
information for parameter importance measurement and further 
parameter selection. A measure of the estimated parameters’ 
quality is given by the Fisher information matrix (FIM): 

2 2
T

Td d
d d

σ σ   = =   
   

x xF S S
θ θ

                    (12) 

which is a lower bound on the parameter variance/covariance 
matrix. This is a key measure of identifiability which 
determines how easily the parameter values can be reliably 
estimated from the data, or alternatively, how many 
experiments would need to be performed in order to estimate 
the parameters to a pre-defined level of confidence.  

In the literature, several algorithms for parameter selection 
are proposed based on parameter sensitivity analysis [26] [27]. 
Besides, many optimal experimental design methods [27]-[29] 

are developed based on maximize the information of FIM 
according to commonly used optimal design criteria [30].  

III. DISCRETE-TIME MODEL REPRESENTATION 
Equation (1) describes pathway dynamics in continues time. 

However, in real experiment the measurement results are 
obtained by sampling continues time series, and later on system 
analysis, parameter estimation and experimental design are all 
based on these discrete data sets. Therefore, it’s important to 
formulate a discrete time model representation. 

A. One-Step System Discretization 

  For linear in the states ODEs, the exact discrete-time 
representation of system ODEs (2) will take the form: 

( 1) ( ) ( )k k k+ = ⋅ + ⋅x G x H u                      (13) 
If we denote t kT= and T tλ = − , where, 

( )0
,

TTe e dλ λ= = ∫A AG H B                      (14) 

If matrix A is nonsingular, then H given in (14) can be 
simplified to 

 ( ) 1 1

0
( ) ( )

T T Te d e eλ λ − −= = − = −∫ A A AH B A I B I A B      (15) 

Similarly, if the biochemical reactions are autonomous, the 
discrete-time sensitivity equations can be written as: 

( 1) ( ) ( )dk k k+ = ⋅ +S G S B P                      (16) 
where,  

0

T

d e dλ λ= ∫ AB                                  (17) 

The discrete-time representation discussed above had been 
mentioned in some pathway modeling literature [31] [32].  

Unfortunately, there is no general exact mapping between 
continuous and discrete time systems when ODEs are nonlinear. 
In numerical analysis and control theory, there are several 
methods had been discussed for one-step discretization of 
nonlinear ODEs. Such as finite differences method [33], which 
comprises Euler’s method and finite order Taylor series 
approximation, Carleman linearization [34], Jacobian 
linearization [35], feedback linearization [35], Monaco and 
Normand-Cyrot’s method [36] [37], etc. However, as 
mentioned previously not all biochemical pathway systems are 
subject to external cellar signals, therefore Jacobian and 
feedback linearization approaches which aim at design a 
complex input signal would not be discussed in this paper. In 
this section, we propose a time-varying linear approach based 
on Taylor expansion and Carleman linearization method for 
discretization of bilinear in the states pathway ODEs, and also 
briefly investigate Monaco and Normand-Cyrot’s scheme.  

1) Taylor-Carleman Method 

We initially consider a generally nonlinear model of the 
form: 

( ) ( ),( )t t=x f x θ�                                (18) 
Then using Taylor expansion around the current time instant 

t=tk, the state value at the next sample point t=tk+T is given by: 

1

( )( ) ( )
!

k

l l

k k l
l t t

T tt T t
l t

∞

= =

∂
+ = +

∂∑ xx x               (19) 
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which can be further simplified as: 
[ ]

1
( 1) ( ) ( )

!

l
l

l

Tk k k
l

∞

=

+ = + ∑x x x                     (20) 

As discussed in Section 2, for some bioinformatics systems, 
the nonlinear ODEs are simply bilinear in the states: 

  = + ⊗x Ax Dx x�                              (21) 
where ⊗  denotes the Kronecker product and 2m m× matrix D 
is assumed to be symmetric in the sense that the coefficients 
corresponding to x1x2 and x2x1 are the same in value. For many 
biochemical pathway models, D is generally very sparse.  So 
lets evaluate the first few derivative terms of (20) to deduce the 
overall structure of the exact discrete time model of (21): 

2

2

( 2 ( ))( ) 2 ( )( )

= + ⊗
= + ⊗

= + + ⊗ ⊗ + ⊗ ⊗ ⊗

x Ax Dx x
x Ax Dx x

A x AD D A I x x D D I x x x

�
�� � �  

2

3 2 2

2( 2 ( ))( ) 6 ( )( )

( 2 ( ) 4 ( ) )( )
(2 ( ) 4 ( )( )

= + + ⊗ ⊗ + ⊗ ⊗ ⊗

= + + ⊗ + ⊗ ⊗ +
⊗ + ⊗ ⊗ +

x A x AD D A I x x D D I x x x

A x A D AD A I D A I x x
AD D I D A I D I

��� � � �

 

6 ( )( ))( )
6 ( )( )( )

⊗ ⊗ ⊗ ⊗ ⊗ +
⊗ ⊗ ⊗ ⊗ ⊗ ⊗

D D I A I I x x x
D D I D I I x x x x

                            (22)                  

It can be seen that it is a polynomial in x of degree m+1.  Hence 
the infinite sum in (19) is an infinite polynomial. We can notice 
that the coefficient of x in nth order derivative expansion is nA , 
and the coefficient of the second order terms ⊗x x  can be 
expressed recursively:  

1

1 12 ( )n n n

q

q q− −

=

= + ⊗

D

A D A I
                   (23) 

The exact representation of (21) in discrete time should have 
the form: 

( 1) ( ( ))k k+ =x p x                             (24) 
where requires p to be a vector valued. Here, instead of treating 
the system as a global non-linear discrete time representation, it 
would be possible to treat it as a time-varying linear system, 
where the time varying components depend on x. It’s obviously 
an infinite degree polynomial and some finite length 
approximation must be used instead. For instance, if we only 
consider the second order approximation of derivative terms in 
(22) and using jth order Taylor expansion, the discrete-time 
representation of (21) can be expressed as:  

[ ]

1

1

( 1) ( ) ( )
!

( ) ( ( ) ( ) ( ))
!

lj
l

l
lj

l l

l

Tk k k
l
Tk k q k k
l

=

=

+ = +

= + + ⊗

∑

∑

x x x

x A x x x
      (25) 

The advantage of this approach is it gives a finite polynomial 
discrete time representation for bilinear in states models. 
However, as shown in (22) the model expression would be 
complex when considering exact higher order derivative 
expansion, otherwise, the lower order approximation of 
derivatives have to be employed as in (25), and corresponding 
discretization accuracy would decrease accordingly.  

2) Monaco and Normand-Cyrot’s Method 

In stead of approximating derivatives, a recent algebraic 
discretization method proposed by Monaco and Normand 
-Cyrot is based on Lie expansion of continuous ODEs. When 
considering nonlinear ODEs with the form (18), the 
corresponding discretization scheme can be expressed as: 

1

( 1) ( ) ( ( ))
!

lj
l

l

Tk k k
l=

+ = + ∑ fx x xL                  (26) 

where the Lie derivative is given by 

1

( ( ))
m

i
i i

k f
x=

∂
=

∂∑f
xxL                             (27) 

and the higher order derivatives can be calculated recursively 
1( ( )) ( ( ( )))l lk k−=f f fx xL L L                        (28) 

Thus, (26) can be rewritten as: 
2 31 1( 1) ( ) ( ) ( ( ) )

2 6
k k T T J T J J+ = + + ∗ + ∗ ∗ +x x f f f f f f …                   

(29) 
where ( )J ⋅  is the Jacobian matrix of the argument. This 
truncated Taylor-Lie expansion approach has been shown with 
accurate discrete-time approximation and superior robust 
performance especially when considering large sampling time 
step in discretization [37] [38]. However, this approach could 
also be computational expansive as a series of composite 
Jacobian matrices need to be calculated.  

B. Multi-Step System Discretization 
Runge-Kutta methods [25] which are widely used for 

solving ODEs’ initial value problems can be a nature choice for 
discrete time system representation. Runge-Kutta methods 
propagate a solution over an interval by combining the 
information from several Euler-style steps (e.g. (30)), and then 
using the information obtained to match a Taylor series 
expansion to some higher order.  

( 1) ( ) ( ( ))k k h k+ = +x x f x                         (30) 
Here, h is the sampling interval, 1k kt t h+ = + .  

The discrete time representation of continues-time pathway 
model (1) can be written as follows using Runge-Kutta method: 

( 1) ( ) ( ( ))
( 1) ( ( 1))
k k k
k k

+ = +
+ = +

x x R x
y g x

                        (31) 

Here, ( ( ))kR x  represents the Runge-Kutta formula. 
According to desired modeling accuracy, different order 
Runge-Kutta formula can be employed, and corresponding 

( ( ))kR x  would be different. For instance, the second-order 
Runge-Kutta formula with the expression: 

1

2 1

2

( ( ))
( ( ) 2)

( ( ))

d h k
d h k d

k d

=
= +

=

f x
f x

R x
                             (32) 

where ( )⋅f  is the right-hand side of model’s ODEs in (1). 
The most often used classical fourth-order Runge-Kutta 

formula is: 
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1

2 1

3 2

4 3

1 2 3 4

( ( ))
( ( ) 2)
( ( ) 2)
( ( ) )

( ( )) 6 3 3 6

d h k
d h k d
d h k d
d h k d

k d d d d

=
= +
= +
= +

= + + +

f x
f x
f x
f x

R x

             (33) 

In practice, fourth-order Runge-Kutta is generally superior 
to second -order due to four evaluations of the right-hand side 
per step h.  

Compared with one-step discretization approaches discussed 
in previous subsection, the main advantage of using 
Runge-Kutta method for discretization is it utilizes multi-step 
information for approximation of one-step-ahead predictions. 
This strategy enhances the discretization accuracy and reduces 
the complexity of the mathematical expressions compared with 
using higher order derivative approximation in one-step 
discretization. Moreover, Runge-Kutta method could provide a 
general discrete-time ODE representation for either linear or 
nonlinear ODEs, whereas for one-step strategy using Taylor 
expansion it’s difficult to formulate a close representation for 
nonlinear ODEs, instead some finite order approximation has 
to be used. 

Similarly, now the parameter sensitivity equations (9) can 
also be discretized using Runge-Kutta method: 

( 1) ( ) ( ( ))Sk k k+ = +S S R S                          (34) 
Here within the Runge-Kutta formula ( ( ))S kR S , ( )S ⋅f  
represents the right-hand side of sensitivity equations (9), e.g.  

( ( )) ( ( ))S k J t k P= +f S S                             (35) 
Thus, parameter sensitivity coefficients (8) and Fisher 
information matrix (12) can now be represented and calculated 
iteratively using discrete-time formula (34).  

In this section, two sorts with three kinds of discrete-time 
model representation methods are investigated for pathway 
ODEs in depth. The Runge-Kutta based method shows 
superiority in mathematical model expression especially for 
discretization of nonlinear ODEs. In next section, the 
simulation results of five discrete-time models based on these 
three approaches are discussed and compared numerically and 
graphically using Michaelis-Menten kinetic model. 

IV. SIMULATION RESULTS 
In this section, a simple pathway example is employed for 

illustration of different discussed discretization approaches. 
The accuracy and computational cost of different methods are 
compared as well. The example discussed here is the well 
known Michaelis-Menten enzyme kinetics. The kinetic 
reaction of this signal transduction pathway can be represented 
as: 

  
31

2

S E ES E P
θθ

θ
+ → +R                           (36) 

Here, E is the concentration of an enzyme that combines with a 
substrate S to form an enzyme substrate complex ES. The 
complex ES holds two possible outcomes in the next step. It can 
be dissociated into E and S, or it can further proceed to form a 
product P. Here, 1θ , 2θ  and 2θ  are the corresponding reaction 

rate. The pathway kinetics described in (36) can usually be 
represented by the following set of ODEs: 

                        

1 1 1 2 2 3

2 1 1 2 2 3 3

3 1 1 2 2 3 3

4 3 3

( )
( )

x x x x
x x x x
x x x x
x x

θ θ
θ θ θ

θ θ θ
θ

= − +
= − + +
= − +
=

�
�
�
�

                    (37) 

Here four states 1x , 2x , 3x  and 4x  refer to S, E, ES and P in 
(36) respectively. As it is a set of linear in the parameter and 
bilinear in state ODEs, (37) can be written into matrix form:  

= + ⊗x Ax Dx x�                               (38) 
Firstly, we consider one-step-ahead discretization methods 

discussed in Section 3. For the Taylor series and Carleman 
linearization based method, according to (20), the first and 
second order local Taylor series approximation can be 
expressed as: 

( 1) ( ) ( )k k T k+ = +x x x�                         (39) 
2( 1) ( ) ( ) 2 ( )k k T k T k+ = + +x x x x� ��               (40) 

As shown in (22), here 
( ) ( ) ( ) ( )
( ) ( ) 2 ( ) ( )
k k k k
k k k k

= + ⊗
= + ⊗

x Ax Dx x
x Ax Dx x
�
�� � �

               (41) 

In this example,  
21

2 32

2 33

34

0 0 0
0 0 0

,
0 0 ( ) 0
0 0 0

x
x
x
x

θ
θ θ
θ θ

θ

  
   +  = =
   − +
  

   

x A

 
1

1

1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

θ
θ

θ

− 
 − =
 
 
 

D

(42) 
We can notice that, for this simple kinetic example with only 
four state variables, matrix D ( 2m m× ) is already in large scale. 
 For Monaco and Normand-Cyrot’s method, here we employ 
a truncated third order Lie expansion for simulation. As shown 
in (29), we only need to notice f represnets the right hand side 
expression of model ODE  

1 1 2 2 3

1 1 2 2 3 3

1 1 2 2 3 3

3 3

( )
( )

( )

x x x
x x x

x x x
x

θ θ
θ θ θ

θ θ θ
θ

− + 
 − + + =
 − +
 
  

f x                      (43) 

The general Lie series expansion (29) seems concise in 
expression, however, the composite Jacobian expression would 
be large in scale and computational costly.  

Now we consider the multi-step discretization approach 
based on Runge-Kutta method. It is straightforward to 
formulate the second and fourth order Runge-Kutta 
discrete-time expression using (31)-(33). For this example, we 
just need to replace ( )⋅f with (43), and as all the states can be 
measured for this example, the measurement function g is an 
identity matrix 4I , therefore: 

 ( 1) ( 1)k k+ = +y x                             (44) 
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Comparing the discrete-time model expression using local 
Taylor-Carleman expansion, Monaco and Mormand-Cyrot’s 
method, and Runge-Kutta method, the expression using 
Runge-Kutta method is more straightforward and compact, we 
only need to replace ( )f x  with the right-hand side expression 
of the specific biochemical reaction ODEs. On the contrary, the 
discrete representation using second-order Taylor expansion is 
already a bit complicated as the scale of D matrix would 
become very large as the parameter dimension increases. As 
discussed in Section Ⅲ. A, it would be even more difficult to 
formulate a model expression using third or higher order Taylor 
expansion. 

The time series simulation using different discrete-time 
model expressions are displayed and compared in Fig. 1. Here, 
five discrete-time models, which are based on first and second 
order Taylor expansion, second and fourth order Runge-Kutta, 
and Monaco and Mormand-Cyrot’s respectively, are employed 
for comparison. The initial values of states are: 1(0) 12x = , 

2 (0) 12x = , 3 (0) 0x = , 4 (0) 0x = . Parameter values are set to 
be: 1 0.18θ = , 2 0.02θ = , 1 0.23θ = . Simulation time period is 
from 0 to 10 with sampling interval 0.3. We solve the model’s 
ODEs (37) using ode45 function in Matlab with sampling 
interval 0.1, and suppose the result as an approximation of real 
system observation and to be a judgment of different 
discretization methods. The residual mean squared errors 
(RMSE) between different models’ outputs and the observation 
are listed and compared in Table I. 
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Fig. 1 Time series simulation results of using five different 

discrete-time models 
 

TABLE I 
Time Series Simulation Residual MSE of Different Models 
 

RMSE
1st order 
Taylor

2nd order 
Taylor

2nd order 
Runge-Kutta 

4th order 
Runge-Kutta

Monaco & 
Normand-Cyrot

x1 0.4771 0.0205 0.0942 0.0306e-4 0.0020 
x2 0.5054 0.0144 0.1019 0.0774e-4 0.0030 
x3 0.5054 0.0144 0.1019 0.0774e-4 0.0030 
x4 0.0503 0.0105 0.0020 0.1770e-4 0.0002 

Total 1.5381 0.0598 0.3000 3.6249e-5 0.0083 
  

Fig. 1 and Table I provide states’ trajectory simulation 
results based on five different discrete-time models. It is clearly 
to see that the discrete-time model based on first-order Taylor 
series gives the worst approximation results with the largest 
RMSE, and the one based on fourth-order Runge-Kutta gives 
the closest simulation result to the real observation with the 
smallest RMSE. Besides, the discrete-time model using 
Monaco and Normand-Cyrot’s method and second order 
Taylor series also give an acceptable approximation results 
with relatively small RMSEs to the real observation. 

V. CONCLUSION 
Quantitative discrete-time model representations are 

important as a link between continuous-time biochemical 
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kinetic reactions and discrete-time experimentation. It will 
receive more and more attentions as computer based simulation 
and analyses are widely used in current biochemical pathway 
modeling study. Two important sorts of discretization methods 
are mainly investigated in this paper. One strategy is based on 
one-step-ahead Taylor or Lie series expansion. This kind of 
method could give an exact discrete-time representation for 
linear ODEs, however, for more typical bilinear or nonlinear 
ODEs pathway models, truncated finite order Taylor/Lie series 
approximation have to be used. The mathematical discrete-time 
expression using higher order Taylor/Lie expansion can be 
very complex and it would be computational costly as well. The 
alternative is the Runge-Kutta based approaches, which are 
multi-step discretization strategy. The mathematical model 
representation using this method is straightforward and 
compact, and the simulation approximation result using 
fourth-order Runge-Kutta is superior to others as well. 
Synthetically speaking, Runge-Kutta based discretization 
method can be a better choice for discrete-time model 
representation in pathway modeling study, and the 
corresponding discrete-time model structure will be a useful 
and promising tool in the future systems biology research. 
Further work can focus on dynamic analysis of discrete-time 
models and comparison with corresponding continuous model, 
here dynamic analysis should include model zero dynamics, 
equilibrium property, chaotic behavior when varying sampling 
step, etc. Additionally, discrete-time local and global 
parametric sensitivity analysis methods would also be a 
significant further focus for pathway modeling study.  
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