

Abstract—The research community and the IT industry have

invested significant effort in fighting spam emails. There are
many different approaches, ranging from white listing, black
listing, reputation ranking, postage, legislation, and content
scanning etc. Until every ISP obeys the same rules, content
scanning based spam email filters still have a significant role to
play in fighting spam emails. There are many content scanning
based spam email filters available and also in operation. Yet we
are still inundated with spam emails everyday. This is not because
the filters are not powerful enough, but because the filtering
systems are not flexible enough to adapt the new development of
spam techniques, such as HTML tagging, image based spam, and
keyword obfuscating etc. In this paper, we propose to use dynamic
multiple normalizers as the preprocessors for spam filters. The
normalizers convert an email to its plain text format, called
normalization. With the help of the normalizers, spam filters only
need to deal with plain text format, which is what the filters are
good at. The flexibility of the proposed architecture does not only
make the adoption to the new creations of spammers easier but
also makes the integration to the other spam fighting technologies
easier.

Index Terms—spam, spam filters, spam detection,
normalization.

I. INTRODUCTION
Spam emails are a type of cyber nuisances we have to put up

with everyday. The industry and the research community have
been investing significant effort in fighting spam emails. There
are many different types of proposed technologies. Black
listing approach maintains a list of offenders. Any email from
the listed offenders is regarded as a spam email and is
discarded. White listing approach takes the opposite direction.
It maintains an inclusionary list. An email from anybody who is
not on the list is regarded as spam and discarded. Postage

Manuscript received June, 2007. This work was supported by the Divisional

grants from the Division of Business, Law and Information Sciences,
University of Canberra, Australia, and the University grants from University of
Canberra, Australia.

Wanli Ma is with School of Information Sciences and Engineering,
University of Canberra, ACT 2601, Australia (phone: +61.2.62012838; fax:
+61.2.62015231; e-mail: Wanli.Ma@canberra.edu.au)

Dat Tran and Dharmendra Sharma are with School of Information Sciences
and Engineering, University of Canberra, ACT 2601, Australia (e-mail:
{Dat.Tran,Dharmendra.Sharma}@canberra.edu.au).

The paper is an extension of the previous paper of the same title published in

the Proceedings of the International MultiConference of Engineers and
Computer Scientists, Hong Kong, 21-23 March, 2007.

approach tries to associate some kinds of cost to sending an
email in the attempt to make bulk emailing too costly and thus
impossible. Legislation, of course, is another approach. By
outlawing spam emails, hopefully, prosecution can prevent
spam emails being sent out. The most popular approach so far is
still content scanning based spam email filtering. The approach
resembles how we human beings identify spam emails –
learning from past experience. A detection engine is trained
with identified spam emails and legitimate emails. The engine
learns the features of spam emails from the training. After it is
trained, it has the ability to detect spam emails.

The fundamental problem of spam emails is that the Internet
is such a distributed system across the whole world, there is no
central authority to enforce any anti-spam rules. Until all ISPs
and the end users obey the same rules, content scanning based
spam email detection and filtering still have a significant role to
play in fighting spam emails.

There are many content scanning based spam email filters in
operation, ranging from commercial products to open source
software. To objectively assess the effectiveness of this type of
spam email filters, Cormack and Lynam coordinated a
comprehensive and independent evaluation on 44 spam email
filters, together with 8 open source filters in 2005 [1]. Their
conclusion is that “The results presented here indicated that
content-based spam filter can be quite effective”.

There are also many content scanning based filtering
technologies proposed by the research community. Many
papers have been published, for example, Naïve Bayes
classifier [2], instance-based learning – memory-based
approach [3], boosted decision tree [4], Maximum Entropy [5],
Support Vector Machines [6], LVQ-based neural network [7],
and practical entropy coding theory [8]. The results in the
publications also give us very encouraging pictures.

Yet in our daily life, all of us have been continuously
suffering from the frustration of spam emails.

On the one hand, spam filters have pretty high recognition
rates in the evaluations, and most of the results can be repeated.
On the other hand, the real life experience does not match the
evaluations. Therefore, logically, we have to ask two questions:
where is the problem, and where is the solution?

Some may claim that the problem is due to the lack of
diligent training to the spam filters. We dispute the claim. Spam
is a universal problem, and the training results can be easily
shared on the Internet. If the training were the problem, we
should not see so many spam emails. A parallel observation can
be made by the operation of virus scanning software, where

On Extendable Software Architecture for Spam
Email Filtering

Wanli Ma, Dat Tran, Dharmendra Sharma, Member, IAENG

IAENG International Journal of Computer Science, 34:1, IJCS_34_1_18
__

(Advance online publication: 15 August 2007)

virus signature data can be updated reasonably effectively.
With virus scanning software properly installed and also
properly configured for updating, one can almost be assured of
being free of virus attacks.

The real reason for spam problem is actually due to the swift
adoption of new techniques by the spammers and the
inflexibility of spam filters to adapt the changes.

Almost all of content scanning based spam filters and
research proposals are for text based emails, and the
evaluations and the research results are also on text based
emails. Although the spam email corpus used for some
evaluations does contain images, HTML tags, and some
attachments, the text part of the emails always has some degree
of the indication of its spam nature. In the real world, spammers
try everything they can to conceal the text which reveals the
spam nature of an email. There are several popular ways of
hoodwinking the spam filters. The text part of a spam email
may not have a trace of its spam nature at all.
Graham-Cumming maintains a comprehensive list of the
techniques the spammers use to circumvent spam email filters
[9]. Some examples are:

• Using deliberately misspelled words (obfuscating): for
example, spell Viagra, a very popular spamming topic,
as “v1agra”, “V!@gra” or “VlhAGRA”. The
obfuscations are still humanly readable, but they pose
serious challenges to a computer program to catch over
6×1020 ways of obfuscations just for the word “Viagra”
alone [10].

• Concealing text in images as email attachments:
Aradhye et al [15] estimated that 25% of spam emails
contain images. C.-T. Wu et al’s count is 38% [11]. One
of the authors of this paper counted spam emails
received from his working email address. Among the
256 spam emails received within 15 days, 91 or 36% of
emails were image based. Text based email filters are
helpless in dealing with image based spamming. Given
the fact that image based spam can successfully
circumvent spam filters, the situation can only get worse
in the future.

• Obscuring keywords by HTML tags: instead of spelling
“Viagra” as it is, individual character is wrapped by
HTML tags, such as
Viagr<i>a</i>.

The combination of these techniques makes it even harder
for a spam filter to correctly judge the nature of an incoming
email.

In this paper, we propose more flexible software architecture
for spam email filtering. We introduce multiple dynamic
normalizers as the preprocessors for content scanning based
spam email filters. The normalizers are defined by their
acceptable input formats and output formats. The system
automatically chains a series of normalizers and pipes through
an email before it reaches a spam filter. The normalizers on the
chain restore, step by step, the underlying message of the email
into its plain text format. The spam filter at the end only has to
deal with the plain text format, which, from the evaluation and

research results, is actually quite effective.
There are a few proposals of combining different spam

filtering techniques together. E. Damiani, S, Vimercati, S.
Paraboschi, and P. Samarati suggested a distributed P2P-based
collaborative spam filtering system [12]. K. Albrecht, N. Burri,
and R. Wattenhofer proposed an extendable spam filter system
[13]. The system concentrates on a framework for fast spam
filtering software development. The “extendable” ability means
the implementation of multiple filters, in parallel mode. The
system which is close to our proposal is “a unified model of
spam filtration” proposed by W. Yerazunis, S. Chhabra, C.
Siefkes, F. Assis, and D. Gunopulos [14]. In the model, 6
sequential operations are employed to process an incoming
email. They are:

“1. Initial arbitrary transformation (a.k.a. MIME normalization)
2. Tokenization
3. Feature extraction
4. Feature weighting
5. Feature weight combination
6. Thresholding, yielding a go/nogo result”
During the first operation, the incoming email is transferred

into a text stream. However, there is a significant difference
between this proposal and our proposal. The unified model is a
fixed and closed system. The operations are predefined by the
system. Our proposal is a dynamic and open system. Different
operations can be easily introduced into and removed from the
system at any time.

Of course, all the approaches discussed previously, such as
black listing, white listing, and postage etc., have their merits,
and also problems. A holistic approach with the integration of
the merits of different approaches is needed to effectively
identify spam emails. In this paper, due to the page limit, we
will mainly concentrate on content scanning based
technologies. However, we should emphasize that our proposal
does not exclude the use of the other technologies. Our
proposal is a flexible spam filtering software architecture,
which is open and dynamic. The flexibility makes the
integration of other technologies easier.

The rest of the paper is organized as follows. Section II
explains the techniques used to circumvent spam filters.
Section III discusses in details the normalizers, and Section IV
describes the extendable software architecture for spam email
filtering. Section V discusses the issues of assembling
normalizers. Section VI presents our experiment results. In
Section VII, we conclude the paper with future work and the
discussion on the new trend of the images used in spam emails.

II. CIRCUMVENT TEXT BASED SPAM EMAIL FILTERS
At the very beginning, emails were in plain text format only

[15]. To be able to convey rich presentation styles, they were
extended with multimedia abilities [16]. Image based spam
emails take the advantage of using the MIME
multipart/alternative directive, which is designed to
accommodate multiple displays of an email, such as plaintext
format and HTML format. The directive suggests that the

IAENG International Journal of Computer Science, 34:1, IJCS_34_1_18
__

(Advance online publication: 15 August 2007)

enclosed parts are the same in semantics, but with different
presentation styles. Only one of them will be chosen to display,
and a mailer “must place the body parts in increasing order of
preference, that is with the preferred format last” [16].

Table I. An imaged based spam email sample

Table I is an example of a spam email. The email has three

alternative parts: part one contains plain text paragraphs cut
from a book, part two has HTML formatted paragraphs cut
from a book as well, and part three is a JPEG formatted picture
as in Fig. 1(a). A mailer believes that these three parts are
semantically identical and only displays one part, Fig. 1(a) in
this case. But in this email, the first two parts have nothing to do
with the third part. They are purposely included in the email to
deceive text based spam filters. Another similar example can be
found in Fig. 1(b).

(a)

(b)

Fig. 1. Images in spam emails

HTML tags can be used to efficiently obscure the keywords

of a spam email. The example given in Section I
(V<u></u>iagr<i>a</i>)
can be easily dealt with – removing all HTML tags reveals the
underlying keyword. However, it is not so easy to untangle well
crafted HTML tag obscurations.

Using an invisible HTML table is one of the examples. The
keyword of a spam email, say Viagra, is dissolved into the cells
of the table, one character each cell. The visual appearance is
still the same, but the HTML text does not have the keyword as
a single word any more, Table II(a).

It is not a trivial task to merge the contents of different table
cells together, let alone using different alignments of the
keyword, e.g., vertical spelling in Table II(b). Using
non-uniform table cell structure can further complicate the
situation.

Table II. HTML code and visual display

Deliberated misspelling (obfuscating) is also hard to detect.

It is not hard to detect the misspells of Viagra as V1agra,
\/iagra (V as \ and /) and Vi@gra etc. However, it is not so easy
for a program to determine that VlhAGRA is actually Viagra.
Given so many ways of obfuscating a keyword, e.g., 6×1020
ways of obfuscating Viagra as listed in [10], it is not an easy
task for a spam filter to recognize all possible obfuscations, yet
makes no mistakes on other words of the email.

The spamming techniques discussed in the previous
paragraphs are just some examples. It is almost impossible for a
single spam filter to tackle these many different types of
spamming techniques, let alone new techniques are constantly
being invented. A more flexible approach is needed to easily
adapt the ever changing spamming techniques.

III. THE NEED FOR NORMALIZERS
In a general sense, spam email filtering can be illustrated in

Fig. 2. An incoming email is fed into a filter, or a detection
engine. The engine decides, based on its mathematical model,
whether the email is spam or not. If it is spam, the email is
quarantined; otherwise, the email (called ham) is sent to the

 HTML code display

(a) <table style="text-align: left" border="0" cellpadding="0"
cellspacing="0">
<tbody><tr>
<td style="vertical-align: bottom; font-family: arial;">
V
</td>
<td style="vertical-align: bottom; font-family: arial;">i
</td>
<td style="vertical-align: bottom; font-family:
arial;">a
</td>
<td style="vertical-align: bottom; font-family:
arial;">g
</td>
<td style="vertical-align: bottom; font-family: arial;">r
</td>
<td style="vertical-align: bottom; font-family:
arial;">a
</td>
</tr></tbody></table>

Viagra

(b) <table style="text-align: left" border="0" cellpadding="0"
cellspacing="0">
<tbody> <tr style="font-family: arial;">
<td style="text-align: center; vertical-align:
top;">V
</td></tr>
<tr style="font-family: arial;">
<td style="vertical-align: top; text-align:
center;">i
</td></tr>
<tr style="font-family: arial;">
<td style="vertical-align: top; text-align:
center;">a
</td></tr>
<tr style="font-family: arial;">
<td style="vertical-align: top; text-align:
center;">g
</td></tr>
<tr style="font-family: arial;">
<td style="vertical-align: top; text-align:
center;">r
</td></tr>
<tr style="font-family: arial;">
<td style="vertical-align: top; text-align:
center;">a
</td></tr>
</tbody></table>

V
i
a
g
r
a

From: spammer <faked_email address>
To: recepent_email_address
Content-type: multipart/alternative;

--Boundary_(ID_fkG49yFmM6kAJ0sBSY0dzg)
Part 1: plain text format #####
Langdon looked again at the fax an ancient myth confirmed in black and white.

--Boundary_(ID_fkG49yFmM6kAJ0sBSY0dzg)
Part 2: HTML format #####
<textarea style="visibility: hidden;">Stan Planton for being my</textarea>

--Boundary_(ID_fkG49yFmM6kAJ0sBSY0dzg)
Part 3: picture format. It has nothing to do with Part 1 or 2 #####
Content-type: image/jpeg; name=image001.jpg
Content-disposition: attachment; filename=image001.jpg

/9j/4AAQSkZJRgABAgAAZABkAAD/7AARRHVja3kAAQAEAAAAHgAA/
+4ADkFkb2JlAGTAAAAAAf/bXFxcXHx4XGhoaGhceHiMlJyUjHi8vMzML
…
--Boundary_(ID_fkG49yFmM6kAJ0sBSY0dzg)--

IAENG International Journal of Computer Science, 34:1, IJCS_34_1_18
__

(Advance online publication: 15 August 2007)

intended recipient as it is. Depending on the system, there
might be feedback loops between the end users and the
detection engine. The feedback loops help the engine to learn
from past mistakes and improve its detection accuracy.

Fig. 2: Spam Email Filtering

Content based spam email filters are effective in dealing with

text based spam emails; however, they are helpless in dealing
with obscured spam emails, such as imaged based spam emails,
using HTML tags to conceal spam email keywords, and spam
email keyword obfuscating etc. However, in essence, the
purpose of spam emails is to deliver messages. Ultimately, text,
as least, humanly readable text, has to be displayed on the
screen. As text based spam email filters can be effective in
dealing with text, and the ultimate goal of spam emails is to
deliver text to the screen for humans to read, effective spam
filtering will rely on the building of tools which can convert the
obscured formats of spam text into the plain text format. From
the detection engine point of view, it is desirable to have all
emails in their plain text format. We called the process of
converting obscured formats to the plain text format
normalization, and the tools used to perform the conversion
normalizers.

Spam emails come with all kinds of tricks and visual
appearances. Spammers keep inventing new tricks to hoodwink
detection engines. It is difficult for a single engine (or filter) to
convert all possible masked spam messages into their plain text
format. Therefore, we advocate a multiple and dynamic
normalizers approach.

A normalizer is specialized in dealing with a single trick of
masking spam messages. For example, we developed a Trigram
normalizer and a Markov normalizer to recover obfuscated text
into its original format, e.g., from V1agra to Viagra. To deal
with imaged based spam, we also developed an OCR
normalizer to extract the text from the images.

IV. THE EXTENDABLE SOFTWARE ARCHITECTURE
Using multiple normalizers as preprocessors for a spam

detection engine improves its ability to deal with many
different ways of masking spam messages. It also provides the
flexibility to adapt to new masking tricks. As illustrated in Fig.
3, an incoming email is first duplicated, by a duplicator (dup),
and then channeled through a number of normalizers (N1 to
N4). Each of the normalizers tries to recover the underlying text
of the email. At the end, a merger (mrg) merges the recovered
text from all normalizers into a single piece of text and then
feeds it into the spam detection engine. The engine then decides

the nature of the email, spam or ham, as usual.

Fig. 3: The Extendable Software Architecture

Every normalizer accepts a particular input format and

converts it into another format for output. For example, a
HTML normalizer accepts the HTML format, strips off HTML
tags, and outputs in the plain text format. An OCR normalizer
accepts image formats, jpeg and gif etc., extracts text from
images by using OCR technology, and then outputs the
extracted text in the plain text format. A Trigram or Markov
normalizer accepts noisy text – words with misspellings – and
restores the correct spellings.

Not every normalizer can produce the plain text format
needed by the detection engine. For example, an OCR
normalizer is supposed to extract text from email images and
outputs the extracted text in plain text format. However, the text
produced by the OCR normalizer very likely contains OCR
noise, i.e., misspellings due to misrecognitions. The output text
cannot yet be accepted by a content based spam filter. Instead,
it should go through another normalizer, e.g., a Trigram or
Markov normalizer, to restore the correct spellings from the
noisy OCR text.

A normalizer is defined by its acceptable input format and
output format, written as (InFormat, OutFormat). An HTML
normalizer can be defined as (HTML, Text), an OCR
normalizer as (Image, NoisyText), and a Trigram normalizer
as (NoisyText, Text). The input format and the output format
can be a simple format, e.g., Text, or a combined format, e.g.,
Image, which can be further defined as jpeg and gif etc.
formats.

The duplicator first generates a unique identifying number
for an incoming email and then duplicates the email into
multiple streams by its all possible formats, e.g., Text, HTML,
and Image etc. It then notifies the merger this unique number
and the number of the streams. Each stream carries the unique
identifying number of the email and is channeled into a
normalizer, based on the acceptable input formats of
normalizers. The normalizer or a chain of normalizers
reproduce the email in the plain text format for the detection
engine. Upon receiving a unique number from the duplicator,
the merger knows an email is coming in several streams. It
starts to count all normalization streams of this email. After
collecting all streams, the merger concatenates the pieces of
text from these streams into a single piece of text and then
passes it to the detection engine.

The order an incoming email going through the normalizers
could be rather complicated. However, after clearly defining

feedback

quarantin

filter,
engine

email
to users

feedback

dup

N4

N1

N2

N3

mrg

quarantin

filter,
engine

email
ham

spam

to users

feedback

feedback

IAENG International Journal of Computer Science, 34:1, IJCS_34_1_18
__

(Advance online publication: 15 August 2007)

the input format and the output format of each normalizer, the
system should be able to dynamically find its way through the
normalizers by chaining input formats and output formats of
the normalizers. There are no predefined pathways among the
normalizers. A normalizer is only defined by its input format
and output format, and the normalizers are chained dynamically
based on the formats. The ultimate goal is to produce the plain
text format (Text) for the detection engine. In Fig. 3, the
pathways within the round cornered rectangle of dotted line are
dynamically assembled based on the content of the incoming
email.

All normalizers are equal. A normalizer can be easily
introduced into or removed from the system. Within the system,
a normalizer is only chained with another normalizer when it is
necessary. A normalizer may not be aware of the existence of
other normalizers. The only restriction to the system is that all
streams out from the duplicator should find their ways to the
merger.

Finally, a normalizer may not just trivially convert the input
format into the output format. It does the conversion with the
emphasis of highlighting spam features. For example, an
HTML normalizer, in addition to stripping off HTML tags, also
tries to restore words arranged in vertical order, Table II(b).

V. ASSEMBLING NORMALIZERS
While the normalizers are dynamically assembled, there are

several issues which have to be addressed. For example, how
could the merger know it receives all results from all possible
normalizers, how many streams of data flow exist, what
happens if there is no match to the output format of a
normalizer, how to deal with the potential looping among some
normalizers, and how a normalizer is introduced into and
maintained in the system?

When the mail server receives an email, it first assigns a
unique identification number to the email and stores the email
in a temporary repository. It then makes a copy of the email,
with the unique identification number, and passes this copy to
the duplicator (dup) of our filtering system. Upon receiving the
result from the filtering system, yes or no of spam, the mail
server either forwards the stored email to the end user(s) or
simply discards this email.

When the duplicator (dup) receives a copy of email, it does
some preliminary processes: separating the header, body, and
attachment parts of the email and identifying the types of those
parts. Every separated part inherits the unique identification
number from the original email. This unique identification
number will be used by the merger at the end to assemble the
text segments of the same email together. Unpacking
attachments requires extra effort. An attachment could be in
any format: image (jpeg or jif etc), video, audio, pdf, or Word
etc., and even worse being compressed. At this stage, only one
level uncompressing is implemented. The duplicator identifies
the type of each part of the email and then invokes the relevant
normalizer, for example, an OCR normalizer for Image type.

After passing all parts to the normalizers, the duplicator notifies
the merger how many normalizers it invokes for this email, in
other words, how many data streams flowing through the
normalizers. Upon receiving the results of all data streams, the
merger concatenates the segments of text together and passes
the combined text to the spam email detection engine. Although
the combined text loses the display rendering information of
the email, and it may also have duplications among the text
segments, it is good enough for spam detection purpose. If any
of the segment triggers the spam email detection engine, the
email is spam; otherwise, it is not. The result is thus passed
back to the mail server, which will take the action accordingly.

When a normalizer receives its input data, it processes the
data and produces the outcomes. The type of output data is
predefined by the normalizer. Most normalizers have one type
of input and another type of output. However, a normalizer may
produce multiple types of outcomes, for example, a normalizer
responsible for uncompressing data. Regardless the number of
output types, the normalizer further invokes subsequent
normalizers the same way as the duplicator does. If a
normalizer invokes more than one subsequent normalizer,
where the data flow branches, it notifies the merger to increase
its counter of data streams of this email. The merger thus will
correctly collect the result from this extra branch. At this stage,
we do not consider the situation where a normalizer takes two
incoming streams, i.e., requiring 2 different types of incoming
data. However, there exists the possibility that more than one
normalizer matches the output data format. If it happens, the
current normalizer multiples the output data stream and invokes
all possible normalizers. It also notifies the merger of the
increment of the data streams.

Normalizers are introduced into the system over the time
base on the need. A normalizer is introduced into the system by
a triplet: input type, output type, and the identity name of the
normalizer. If an OCR normalizer is needed, it is introduced
into the system. However, there might be more than one
normalizer of the same input and output types in the system, for
example, OCR normalizers of different OCR engines. Multiple
normalizers of the same type increase the accuracy of spam
detection, because the results of all normalizers are concatenate
together. Duplications do not have negative effect. However,
multiple normalizers of the same type impose performance
penalty to the system. The system maintains a list of
normalizers available. The list is consulted for the purpose of
invoking normalizers.

As a normalizer is dynamically invoked without a predefined
path, it is possible that a normalizer cannot find a suitable
subsequent normalizer. This is called a dead end situation. If it
does happen, this branch of data will just be silently dropped.
The current normalizer notifies the merger to decrease the
number of data streams by one.

The most difficult and also dangerous problem of
dynamically assembling normalizers on the way is the looping
problem. The simpliest and tightest loop involves 2
normalizers. Normalizer A is of the type (X, Y), and normalizer
B has the type (Y, X). As soon as any of the data streams

IAENG International Journal of Computer Science, 34:1, IJCS_34_1_18
__

(Advance online publication: 15 August 2007)

reaches any of these 2 normalizers, it cannot escape anymore.
The result will never reach the merger, and therefore, we come
to a looping problem or deadlock. As termination problem is
undecidable, it is impossible to detect the looping problem.
There are mature deadlock prevention algorithms. However,
they are costly and may not be suitable for our application. At
this stage, we do not enforce any looping check, but we
envisage in the future we will introduce the levels of
normalizers. The data streams can only go from lower levels to
higher levels. More research work is needed in this area.

VI. EXPERIMENT RESULTS
So far, we have been concentrating on an imaged based

normalizer and 2 obfuscating normalizers [17-21].
We tested a Trigram normalizer and a Markov normalizer by

using a test set containing 50 keywords, their 500+
misspellings, and 10,000 normal words. Our experiments
showed that the normalizers could restore keywords from their
misspellings in the test set with the equal error rate (false
rejection error = false acceptance error) of 0.1%. In other word,
the recovering rate (from misspellings to correct spellings)
reaches 99.9%.

An OCR normalizer is developed by using ripmime and
gocr. Both are open source software. We grouped the text
embedded in the images into two categories: image text, Fig.
1(a), and text generated image text (tegit), Fig. 1(b). In the
experiment, the OCR normalizer provided good outcomes in
terms of being accepted by the Trigram normalizer or the
Markov normalizer. Out of the 33 spam images we recently
collected, 23 (70%) are tegits, and 10 (30%) are of image text.
Among the 23 files which are produced by the OCR normalizer
from tegits, we achieved 100% recovering rate. And, for the 10
files from image text, we achieved 70% recovering rate.
Therefore, the overall weighted recovering rate is 91%.

The preliminary experiment is very encouraging, and a large
scale evaluation of the effectiveness of the normalizers is on the
way. We anticipate better results in the near future.

VII. CONCLUSION AND FUTURE WORK
The extendable software architecture for spam email filtering

has been presented. The most important feature of the
architecture is the flexibility in easily adapting techniques to
fight new spamming inventions. Normalizers can be easily
introduced into or removed from the system. A normalizer is
defined by its input format and output format, and a processing
pathway is dynamically decided by chaining the normalizers
based on their input and output format specifications. The spam
detection engine, with the help of the normalizers, only deals
with plain text format, which is pretty effective.

The architecture brings in a few advantages. First, the same
detection engine is used to process the text part and other
obscured parts of a spam email. Training and updating the
detection engine are very expensive operations and in most

cases, human intervention is needed. From an operational point
of view, keeping one engine saves on cost, and from a system
point of view, one engine preserves the integrity of the data and
logic. Second, Bayesian filters of text based detection engines
are the working horses on the field [22] and also quite effective
in detecting text based spam emails [1]. Our proposal takes full
benefit of current text based detection engines. Finally, the
system is ready to implement on real mail servers. The multiple
normalizer pathways only add extra branches to the data flow
of an existing spam detection setup. These extra branches of
data flow can be easily and seamlessly integrated into the
existing spam filters.

The architecture we proposed does not exclude other
technologies. To the contrary, it tries to increase the flexibility
and thus makes the adaptation to the other technology easier. A
normalizer could very well be the one to read the email header
information and retrieve other information about this email,
say, the reputation rating of the ISP of the sender etc.

We have developed several normalizers. Our next step is to
integrate the normalizers into a single system and then conduct
a large scale testing on the effectiveness of the normalizers,
based on the spam emails from SpamArchive corpus and our
own private collections.

Finally, we are aware of that the spammers are trying to
sabotage OCR programs by obfuscating images, such as
introducing noises to the images and skewing and rotating the
text on the images etc. We believe that we have found a
solution to recognize these images used for spam purposes. We
are conducting more experiment to test the solution. And on the
other hand, as the final note, spammers do not spam for fun.
They do it for financial return. The obfuscated images,
although still humanly readable, won't bring the expected
return to the spammers, as human readers are less likely to
respond to this type of images. Spammers try to circumvent the
spam email filters, but still prefer that the emails look normal so
that they won't raise human alarm. In essence, the purpose of
spam emails is to deliver messages, and in a nice format. This is
the Achilles’ heel of spam emails, and it is also the key for us to
fight spam emails.

REFERENCES
[1] Cormack, G. and T. Lynam. TREC 2005 Spam Track Overview. in The

Fourteenth TExt Retrieval Conference (TREC 2005). 2005. Gaithersburg,
MD, USA.

[2] Sahami, M., S. Dumais, et al. A Bayesian Approach to Filtering Junk
E-mail. in AAAI-98 Workshop on Learning for Text Categorization. 1998.

[3] Sakkis, G., I. Androutsopoulos, et al., A Memory-Based Approach to
Anti-Spam Filtering for Mailing Lists. INFORMATION RETRIEVAL,
2003. 6(1): p. 49-73.

[4] Carreras, X. and L. Marquez. Boosting Trees for Anti-Spam Email
Filtering. in 4th International Conference on Recent Advances in Natural
Language Processing (RANLP-2001). 2001.

[5] ZHANG, L. and T.-s. YAO. Filtering Junk Mail with A Maximum
Entropy Model. in 20th International Conference on Computer
Processing of Oriental Languages (ICCPOL03). 2003.

IAENG International Journal of Computer Science, 34:1, IJCS_34_1_18
__

(Advance online publication: 15 August 2007)

[6] Drucker, H., D. Wu, and V.N. Vapnik, Support vector machines for spam
categorization. IEEE Transactions on Neural Networks, 1999. 10(5): p.
1048-1054.

[7] Chuan, Z., L. Xianliang, et al., A LVQ-based neural network anti-spam
email approach. ACM SIGOPS Operating Systems Review, 2005. 39(1):
p. 34 - 39.

[8] Zhou, Y., M.S. Mulekar, and P. Nerellapalli. Adaptive Spam Filtering
Using Dynamic Feature Space. in 17th IEEE International Conference on
Tools with Artificial Intelligence (ICTAI'05). 2005.

[9] Graham-Cumming, J. The Spammers' Compendium. 2006 15 May 2006
[cited 2006 May]; Available from: http://www.jgc.org/tsc/.

[10] Cockeyed. There are 600,426,974,379,824,381,952 ways to spell Viagra.
2006 [cited 2006 October 2006]; Available from:
http://cockeyed.com/lessons/viagra/viagra.html.

[11] Wu, C.-T., K.-T. Cheng, et al. Using visual features for anti-spam
filtering. in IEEE International Conference on Image Processing, 2005
(ICIP 2005). 2005.

[12] Damiani, E., S.D.C.d. Vimercati, et al. P2P-based collaborative spam
detection and filtering. in 4th IEEE International Conference on
Peer-to-Peer Computing (P2P'04). 2004. Zurich, Switzerland.

[13] Albrecht, K., N. Burri, and R. Wattenhofer. Spamato - An Extendable
Spam Filter System. in 2nd Conference on Email and Anti-Spam
(CEAS'05). 2005. Stanford University, Palo Alto, California, USA.

[14] Yerazunis, W.S., S. Chhabra, et al., A Unified Model of Spam Filtration.
2005, Mitsubishi Electric Research Laboratories, Inc: 201 Broadway,
Cambridge, Massachusetts 02139, USA.

[15] Postel, J.B. Simple Mail Transfer Protocol. 1982 [cited 2006 May];
Available from: http://www.ietf.org/rfc/rfc0821.txt.

[16] Freed, N. and N. Borenstein. Multipurpose Internet Mail Extensions
(MIME) Part Two: Media Types. 1996 [cited 2006 May]; Available
from: http://www.ietf.org/rfc/rfc2046.txt.

[17] Ma, W., D. Tran, et al. Detecting Spam Email by Extracting Keywords
from Image Attachments. in Asia-Pacific Workshop On Visual
Information Processing (VIP2006). 2006. Beijing, China.

[18] Tran, D., W. Ma, and D. Sharma. Fuzzy Normalization for Spam Email
Detection. in Proceedings of SCIS & ISIS. 2006.

[19] Tran, D., W. Ma, and D. Sharma. A Noise Tolerant Spam Email Detection
Engine. in the 5th Workshop on the Internet, Telecommunications and
Signal Processing (WITSP'06). 2006. Hobart, Australia.

[20] Ma, W., D. Tran, and D. Sharma. Detecting Image Based Spam Email by
Using OCR and Trigram Method. in International Workshop on Security
Engineering and Information Technology on High Performance Network
(SIT2006). 2006. Cheju Island, Korea.

[21] Tran, D., W. Ma, et al. A Proposed Statistical Model for Spam Email
Detection. in Proceedings of the First International Conference on
Theories and Applications of Computer Science (ICTAC 2006). 2006.

[22] Pelletier, L., J. Almhana, and V. Choulakian. Adaptive filtering of spam.
in Second Annual Conference on Communication Networks and Services
Research (CNSR'04). 2004.

IAENG International Journal of Computer Science, 34:1, IJCS_34_1_18
__

(Advance online publication: 15 August 2007)

