
 
 

 

  
Abstract—The research community and the IT industry have 

invested significant effort in fighting spam emails. There are 
many different approaches, ranging from white listing, black 
listing, reputation ranking, postage, legislation, and content 
scanning etc. Until every ISP obeys the same rules, content 
scanning based spam email filters still have a significant role to 
play in fighting spam emails. There are many content scanning 
based spam email filters available and also in operation. Yet we 
are still inundated with spam emails everyday. This is not because 
the filters are not powerful enough, but because the filtering 
systems are not flexible enough to adapt the new development of 
spam techniques, such as HTML tagging, image based spam, and 
keyword obfuscating etc. In this paper, we propose to use dynamic 
multiple normalizers as the preprocessors for spam filters. The 
normalizers convert an email to its plain text format, called 
normalization. With the help of the normalizers, spam filters only 
need to deal with plain text format, which is what the filters are 
good at. The flexibility of the proposed architecture does not only 
make the adoption to the new creations of spammers easier but 
also makes the integration to the other spam fighting technologies 
easier. 
 

Index Terms—spam, spam filters, spam detection, 
normalization.  
 

I. INTRODUCTION 
Spam emails are a type of cyber nuisances we have to put up 

with everyday. The industry and the research community have 
been investing significant effort in fighting spam emails. There 
are many different types of proposed technologies. Black 
listing approach maintains a list of offenders. Any email from 
the listed offenders is regarded as a spam email and is 
discarded. White listing approach takes the opposite direction. 
It maintains an inclusionary list. An email from anybody who is 
not on the list is regarded as spam and discarded. Postage 
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approach tries to associate some kinds of cost to sending an 
email in the attempt to make bulk emailing too costly and thus 
impossible. Legislation, of course, is another approach. By 
outlawing spam emails, hopefully, prosecution can prevent 
spam emails being sent out. The most popular approach so far is 
still content scanning based spam email filtering. The approach 
resembles how we human beings identify spam emails – 
learning from past experience. A detection engine is trained 
with identified spam emails and legitimate emails. The engine 
learns the features of spam emails from the training. After it is 
trained, it has the ability to detect spam emails.  

The fundamental problem of spam emails is that the Internet 
is such a distributed system across the whole world, there is no 
central authority to enforce any anti-spam rules. Until all ISPs 
and the end users obey the same rules, content scanning based 
spam email detection and filtering still have a significant role to 
play in fighting spam emails.  

There are many content scanning based spam email filters in 
operation, ranging from commercial products to open source 
software. To objectively assess the effectiveness of this type of 
spam email filters, Cormack and Lynam coordinated a 
comprehensive and independent evaluation on 44 spam email 
filters, together with 8 open source filters in 2005 [1]. Their 
conclusion is that “The results presented here indicated that 
content-based spam filter can be quite effective”. 

There are also many content scanning based filtering 
technologies proposed by the research community. Many 
papers have been published, for example, Naïve Bayes 
classifier [2], instance-based learning – memory-based 
approach [3], boosted decision tree [4], Maximum Entropy [5], 
Support Vector Machines [6], LVQ-based neural network [7], 
and practical entropy coding theory [8]. The results in the 
publications also give us very encouraging pictures. 

Yet in our daily life, all of us have been continuously 
suffering from the frustration of spam emails.  

On the one hand, spam filters have pretty high recognition 
rates in the evaluations, and most of the results can be repeated. 
On the other hand, the real life experience does not match the 
evaluations. Therefore, logically, we have to ask two questions: 
where is the problem, and where is the solution? 

Some may claim that the problem is due to the lack of 
diligent training to the spam filters. We dispute the claim. Spam 
is a universal problem, and the training results can be easily 
shared on the Internet. If the training were the problem, we 
should not see so many spam emails. A parallel observation can 
be made by the operation of virus scanning software, where 
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virus signature data can be updated reasonably effectively. 
With virus scanning software properly installed and also 
properly configured for updating, one can almost be assured of 
being free of virus attacks. 

The real reason for spam problem is actually due to the swift 
adoption of new techniques by the spammers and the 
inflexibility of spam filters to adapt the changes.  

Almost all of content scanning based spam filters and 
research proposals are for text based emails, and the 
evaluations and the research results are also on text based 
emails. Although the spam email corpus used for some 
evaluations does contain images, HTML tags, and some 
attachments, the text part of the emails always has some degree 
of the indication of its spam nature. In the real world, spammers 
try everything they can to conceal the text which reveals the 
spam nature of an email. There are several popular ways of 
hoodwinking the spam filters. The text part of a spam email 
may not have a trace of its spam nature at all. 
Graham-Cumming maintains a comprehensive list of the 
techniques the spammers use to circumvent spam email filters 
[9]. Some examples are: 

• Using deliberately misspelled words (obfuscating): for 
example, spell Viagra, a very popular spamming topic, 
as “v1agra”, “V!@gra” or “VlhAGRA”. The 
obfuscations are still humanly readable, but they pose 
serious challenges to a computer program to catch over 
6×1020 ways of obfuscations just for the word “Viagra” 
alone [10]. 

• Concealing text in images as email attachments: 
Aradhye et al [15] estimated that 25% of spam emails 
contain images. C.-T. Wu et al’s count is 38% [11]. One 
of the authors of this paper counted spam emails 
received from his working email address. Among the 
256 spam emails received within 15 days, 91 or 36% of 
emails were image based. Text based email filters are 
helpless in dealing with image based spamming. Given 
the fact that image based spam can successfully 
circumvent spam filters, the situation can only get worse 
in the future. 

• Obscuring keywords by HTML tags: instead of spelling 
“Viagra” as it is, individual character is wrapped by 
HTML tags, such as 
<b>V</b><b>i</b><span>a<b>g</b>r<i>a</i>. 

The combination of these techniques makes it even harder 
for a spam filter to correctly judge the nature of an incoming 
email. 

In this paper, we propose more flexible software architecture 
for spam email filtering. We introduce multiple dynamic 
normalizers as the preprocessors for content scanning based 
spam email filters. The normalizers are defined by their 
acceptable input formats and output formats. The system 
automatically chains a series of normalizers and pipes through 
an email before it reaches a spam filter. The normalizers on the 
chain restore, step by step, the underlying message of the email 
into its plain text format. The spam filter at the end only has to 
deal with the plain text format, which, from the evaluation and 

research results, is actually quite effective. 
There are a few proposals of combining different spam 

filtering techniques together. E. Damiani, S, Vimercati, S. 
Paraboschi, and P. Samarati suggested a distributed P2P-based 
collaborative spam filtering system [12]. K. Albrecht, N. Burri, 
and R. Wattenhofer proposed an extendable spam filter system 
[13]. The system concentrates on a framework for fast spam 
filtering software development. The “extendable” ability means 
the implementation of multiple filters, in parallel mode. The 
system which is close to our proposal is “a unified model of 
spam filtration” proposed by W. Yerazunis, S. Chhabra, C. 
Siefkes, F. Assis, and D. Gunopulos [14]. In the model, 6 
sequential operations are employed to process an incoming 
email. They are:  

“1. Initial arbitrary transformation (a.k.a. MIME normalization) 
2. Tokenization  
3. Feature extraction  
4. Feature weighting  
5. Feature weight combination  
6. Thresholding, yielding a go/nogo result” 
During the first operation, the incoming email is transferred 

into a text stream. However, there is a significant difference 
between this proposal and our proposal. The unified model is a 
fixed and closed system. The operations are predefined by the 
system. Our proposal is a dynamic and open system. Different 
operations can be easily introduced into and removed from the 
system at any time. 

Of course, all the approaches discussed previously, such as 
black listing, white listing, and postage etc., have their merits, 
and also problems. A holistic approach with the integration of 
the merits of different approaches is needed to effectively 
identify spam emails. In this paper, due to the page limit, we 
will mainly concentrate on content scanning based 
technologies. However, we should emphasize that our proposal 
does not exclude the use of the other technologies. Our 
proposal is a flexible spam filtering software architecture, 
which is open and dynamic. The flexibility makes the 
integration of other technologies easier. 

The rest of the paper is organized as follows. Section II 
explains the techniques used to circumvent spam filters. 
Section III discusses in details the normalizers, and Section IV 
describes the extendable software architecture for spam email 
filtering. Section V discusses the issues of assembling 
normalizers. Section VI presents our experiment results. In 
Section VII, we conclude the paper with future work and the 
discussion on the new trend of the images used in spam emails. 

 

II. CIRCUMVENT TEXT BASED SPAM EMAIL FILTERS 
At the very beginning, emails were in plain text format only 

[15]. To be able to convey rich presentation styles, they were 
extended with multimedia abilities [16]. Image based spam 
emails take the advantage of using the MIME 
multipart/alternative directive, which is designed to 
accommodate multiple displays of an email, such as plaintext 
format and HTML format. The directive suggests that the 
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enclosed parts are the same in semantics, but with different 
presentation styles. Only one of them will be chosen to display, 
and a mailer “must place the body parts in increasing order of 
preference, that is with the preferred format last” [16]. 

 
Table I. An imaged based spam email sample 
 
Table I is an example of a spam email. The email has three 

alternative parts: part one contains plain text paragraphs cut 
from a book, part two has HTML formatted paragraphs cut 
from a book as well, and part three is a JPEG formatted picture 
as in Fig. 1(a). A mailer believes that these three parts are 
semantically identical and only displays one part, Fig. 1(a) in 
this case. But in this email, the first two parts have nothing to do 
with the third part. They are purposely included in the email to 
deceive text based spam filters. Another similar example can be 
found in Fig. 1(b). 

 

 
(a) 

 
(b) 

Fig. 1. Images in spam emails 
 
HTML tags can be used to efficiently obscure the keywords 

of a spam email. The example given in Section I 
(<b>V</b><u></u><b>i</b><span>a<b>g</b>r<i>a</i>) 
can be easily dealt with – removing all HTML tags reveals the 
underlying keyword. However, it is not so easy to untangle well 
crafted HTML tag obscurations. 

Using an invisible HTML table is one of the examples. The 
keyword of a spam email, say Viagra, is dissolved into the cells 
of the table, one character each cell. The visual appearance is 
still the same, but the HTML text does not have the keyword as 
a single word any more, Table II(a). 

It is not a trivial task to merge the contents of different table 
cells together, let alone using different alignments of the 
keyword, e.g., vertical spelling in Table II(b). Using 
non-uniform table cell structure can further complicate the 
situation. 

 
Table II. HTML code and visual display 

 
Deliberated misspelling (obfuscating) is also hard to detect. 

It is not hard to detect the misspells of Viagra as V1agra, 
\/iagra (V as \ and /) and Vi@gra etc. However, it is not so easy 
for a program to determine that VlhAGRA is actually Viagra. 
Given so many ways of obfuscating a keyword, e.g., 6×1020 
ways of obfuscating Viagra as listed in [10], it is not an easy 
task for a spam filter to recognize all possible obfuscations, yet 
makes no mistakes on other words of the email. 

The spamming techniques discussed in the previous 
paragraphs are just some examples. It is almost impossible for a 
single spam filter to tackle these many different types of 
spamming techniques, let alone new techniques are constantly 
being invented. A more flexible approach is needed to easily 
adapt the ever changing spamming techniques. 

 

III. THE NEED FOR NORMALIZERS 
In a general sense, spam email filtering can be illustrated in 

Fig. 2. An incoming email is fed into a filter, or a detection 
engine. The engine decides, based on its mathematical model, 
whether the email is spam or not. If it is spam, the email is 
quarantined; otherwise, the email (called ham) is sent to the 

 HTML code display 

(a) <table style="text-align: left" border="0" cellpadding="0" 
cellspacing="0"> 
<tbody><tr> 
<td style="vertical-align: bottom; font-family: arial;"> 
<span style="font-size: 10pt;">V</span><br></td> 
<td style="vertical-align: bottom; font-family: arial;">i<br></td> 
<td style="vertical-align: bottom; font-family: 
arial;">a<br></td> 
<td style="vertical-align: bottom; font-family: 
arial;">g<br></td> 
<td style="vertical-align: bottom; font-family: arial;">r<br></td> 
<td style="vertical-align: bottom; font-family: 
arial;">a<br></td> 
</tr></tbody></table> 

Viagra 

(b) <table style="text-align: left" border="0" cellpadding="0" 
cellspacing="0"> 
<tbody> <tr style="font-family: arial;"> 
<td style="text-align: center; vertical-align: 
top;">V<br></td></tr> 
<tr style="font-family: arial;"> 
<td style="vertical-align: top; text-align: 
center;">i<br></td></tr> 
<tr style="font-family: arial;"> 
<td style="vertical-align: top; text-align: 
center;">a<br></td></tr> 
<tr style="font-family: arial;"> 
<td style="vertical-align: top; text-align: 
center;">g<br></td></tr> 
<tr style="font-family: arial;"> 
<td style="vertical-align: top; text-align: 
center;">r<br></td></tr> 
<tr style="font-family: arial;"> 
<td style="vertical-align: top; text-align: 
center;">a<br></td></tr> 
</tbody></table> 

V 
i 
a 
g 
r 
a 

 

From: spammer <faked_email address> 
To: recepent_email_address 
Content-type: multipart/alternative; 
 
--Boundary_(ID_fkG49yFmM6kAJ0sBSY0dzg) 
##### Part 1: plain text format ##### 
Langdon looked again at the fax an ancient myth confirmed in black and white. 
 
--Boundary_(ID_fkG49yFmM6kAJ0sBSY0dzg) 
##### Part 2: HTML format  ##### 
<textarea style="visibility: hidden;">Stan Planton for being my</textarea> 
 
--Boundary_(ID_fkG49yFmM6kAJ0sBSY0dzg) 
##### Part 3: picture format. It has nothing to do with Part 1 or 2 ##### 
Content-type: image/jpeg; name=image001.jpg 
Content-disposition: attachment; filename=image001.jpg 
 
/9j/4AAQSkZJRgABAgAAZABkAAD/7AARRHVja3kAAQAEAAAAHgAA/ 
+4ADkFkb2JlAGTAAAAAAf/bXFxcXHx4XGhoaGhceHiMlJyUjHi8vMzML 
… 
--Boundary_(ID_fkG49yFmM6kAJ0sBSY0dzg)-- 
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intended recipient as it is. Depending on the system, there 
might be feedback loops between the end users and the 
detection engine. The feedback loops help the engine to learn 
from past mistakes and improve its detection accuracy. 

 
Fig. 2: Spam Email Filtering 

 
Content based spam email filters are effective in dealing with 

text based spam emails; however, they are helpless in dealing 
with obscured spam emails, such as imaged based spam emails, 
using HTML tags to conceal spam email keywords, and spam 
email keyword obfuscating etc. However, in essence, the 
purpose of spam emails is to deliver messages. Ultimately, text, 
as least, humanly readable text, has to be displayed on the 
screen. As text based spam email filters can be effective in 
dealing with text, and the ultimate goal of spam emails is to 
deliver text to the screen for humans to read, effective spam 
filtering will rely on the building of tools which can convert the 
obscured formats of spam text into the plain text format. From 
the detection engine point of view, it is desirable to have all 
emails in their plain text format. We called the process of 
converting obscured formats to the plain text format 
normalization, and the tools used to perform the conversion 
normalizers. 

Spam emails come with all kinds of tricks and visual 
appearances. Spammers keep inventing new tricks to hoodwink 
detection engines. It is difficult for a single engine (or filter) to 
convert all possible masked spam messages into their plain text 
format. Therefore, we advocate a multiple and dynamic 
normalizers approach.  

A normalizer is specialized in dealing with a single trick of 
masking spam messages. For example, we developed a Trigram 
normalizer and a Markov normalizer to recover obfuscated text 
into its original format, e.g., from V1agra to Viagra. To deal 
with imaged based spam, we also developed an OCR 
normalizer to extract the text from the images.  

 

IV. THE EXTENDABLE SOFTWARE ARCHITECTURE 
Using multiple normalizers as preprocessors for a spam 

detection engine improves its ability to deal with many 
different ways of masking spam messages. It also provides the 
flexibility to adapt to new masking tricks. As illustrated in Fig. 
3, an incoming email is first duplicated, by a duplicator (dup), 
and then channeled through a number of normalizers (N1 to 
N4). Each of the normalizers tries to recover the underlying text 
of the email. At the end, a merger (mrg) merges the recovered 
text from all normalizers into a single piece of text and then 
feeds it into the spam detection engine. The engine then decides 

the nature of the email, spam or ham, as usual. 
 

 
Fig. 3: The Extendable Software Architecture 
 
Every normalizer accepts a particular input format and 

converts it into another format for output. For example, a 
HTML normalizer accepts the HTML format, strips off HTML 
tags, and outputs in the plain text format. An OCR normalizer 
accepts image formats, jpeg and gif etc., extracts text from 
images by using OCR technology, and then outputs the 
extracted text in the plain text format. A Trigram or Markov 
normalizer accepts noisy text – words with misspellings – and 
restores the correct spellings. 

Not every normalizer can produce the plain text format 
needed by the detection engine. For example, an OCR 
normalizer is supposed to extract text from email images and 
outputs the extracted text in plain text format. However, the text 
produced by the OCR normalizer very likely contains OCR 
noise, i.e., misspellings due to misrecognitions. The output text 
cannot yet be accepted by a content based spam filter. Instead, 
it should go through another normalizer, e.g., a Trigram or 
Markov normalizer, to restore the correct spellings from the 
noisy OCR text. 

A normalizer is defined by its acceptable input format and 
output format, written as (InFormat, OutFormat). An HTML 
normalizer can be defined as (HTML, Text), an OCR 
normalizer as (Image, NoisyText), and a Trigram normalizer 
as (NoisyText, Text). The input format and the output format 
can be a simple format, e.g., Text, or a combined format, e.g., 
Image, which can be further defined as jpeg and gif etc. 
formats. 

The duplicator first generates a unique identifying number 
for an incoming email and then duplicates the email into 
multiple streams by its all possible formats, e.g., Text, HTML, 
and Image etc. It then notifies the merger this unique number 
and the number of the streams. Each stream carries the unique 
identifying number of the email and is channeled into a 
normalizer, based on the acceptable input formats of 
normalizers. The normalizer or a chain of normalizers 
reproduce the email in the plain text format for the detection 
engine. Upon receiving a unique number from the duplicator, 
the merger knows an email is coming in several streams. It 
starts to count all normalization streams of this email. After 
collecting all streams, the merger concatenates the pieces of 
text from these streams into a single piece of text and then 
passes it to the detection engine. 

The order an incoming email going through the normalizers 
could be rather complicated. However, after clearly defining 
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the input format and the output format of each normalizer, the 
system should be able to dynamically find its way through the 
normalizers by chaining input formats and output formats of 
the normalizers. There are no predefined pathways among the 
normalizers. A normalizer is only defined by its input format 
and output format, and the normalizers are chained dynamically 
based on the formats. The ultimate goal is to produce the plain 
text format (Text) for the detection engine. In Fig. 3, the 
pathways within the round cornered rectangle of dotted line are 
dynamically assembled based on the content of the incoming 
email. 

All normalizers are equal. A normalizer can be easily 
introduced into or removed from the system. Within the system, 
a normalizer is only chained with another normalizer when it is 
necessary. A normalizer may not be aware of the existence of 
other normalizers. The only restriction to the system is that all 
streams out from the duplicator should find their ways to the 
merger. 

Finally, a normalizer may not just trivially convert the input 
format into the output format. It does the conversion with the 
emphasis of highlighting spam features. For example, an 
HTML normalizer, in addition to stripping off HTML tags, also 
tries to restore words arranged in vertical order, Table II(b). 

 

V. ASSEMBLING NORMALIZERS 
While the normalizers are dynamically assembled, there are 

several issues which have to be addressed. For example, how 
could the merger know it receives all results from all possible 
normalizers, how many streams of data flow exist, what 
happens if there is no match to the output format of a 
normalizer, how to deal with the potential looping among some 
normalizers, and how a normalizer is introduced into and 
maintained in the system? 

When the mail server receives an email, it first assigns a 
unique identification number to the email and stores the email 
in a temporary repository. It then makes a copy of the email, 
with the unique identification number, and passes this copy to 
the duplicator (dup) of our filtering system. Upon receiving the 
result from the filtering system, yes or no of spam, the mail 
server either forwards the stored email to the end user(s) or 
simply discards this email. 

When the duplicator (dup) receives a copy of email, it does 
some preliminary processes: separating the header, body, and 
attachment parts of the email and identifying the types of those 
parts. Every separated part inherits the unique identification 
number from the original email. This unique identification 
number will be used by the merger at the end to assemble the 
text segments of the same email together. Unpacking 
attachments requires extra effort. An attachment could be in 
any format: image (jpeg or jif etc), video, audio, pdf, or Word 
etc., and even worse being compressed. At this stage, only one 
level uncompressing is implemented. The duplicator identifies 
the type of each part of the email and then invokes the relevant 
normalizer, for example, an OCR normalizer for Image type. 

After passing all parts to the normalizers, the duplicator notifies 
the merger how many normalizers it invokes for this email, in 
other words, how many data streams flowing through the 
normalizers. Upon receiving the results of all data streams, the 
merger concatenates the segments of text together and passes 
the combined text to the spam email detection engine. Although 
the combined text loses the display rendering information of 
the email, and it may also have duplications among the text 
segments, it is good enough for spam detection purpose. If any 
of the segment triggers the spam email detection engine, the 
email is spam; otherwise, it is not. The result is thus passed 
back to the mail server, which will take the action accordingly. 

When a normalizer receives its input data, it processes the 
data and produces the outcomes. The type of output data is 
predefined by the normalizer. Most normalizers have one type 
of input and another type of output. However, a normalizer may 
produce multiple types of outcomes, for example, a normalizer 
responsible for uncompressing data. Regardless the number of 
output types, the normalizer further invokes subsequent 
normalizers the same way as the duplicator does. If a 
normalizer invokes more than one subsequent normalizer, 
where the data flow branches, it notifies the merger to increase 
its counter of data streams of this email. The merger thus will 
correctly collect the result from this extra branch. At this stage, 
we do not consider the situation where a normalizer takes two 
incoming streams, i.e., requiring 2 different types of incoming 
data. However, there exists the possibility that more than one 
normalizer matches the output data format. If it happens, the 
current normalizer multiples the output data stream and invokes 
all possible normalizers. It also notifies the merger of the 
increment of the data streams. 

Normalizers are introduced into the system over the time 
base on the need. A normalizer is introduced into the system by 
a triplet: input type, output type, and the identity name of the 
normalizer. If an OCR normalizer is needed, it is introduced 
into the system. However, there might be more than one 
normalizer of the same input and output types in the system, for 
example, OCR normalizers of different OCR engines. Multiple 
normalizers of the same type increase the accuracy of spam 
detection, because the results of all normalizers are concatenate 
together. Duplications do not have negative effect. However, 
multiple normalizers of the same type impose performance 
penalty to the system. The system maintains a list of 
normalizers available. The list is consulted for the purpose of 
invoking normalizers. 

As a normalizer is dynamically invoked without a predefined 
path, it is possible that a normalizer cannot find a suitable 
subsequent normalizer. This is called a dead end situation. If it 
does happen, this branch of data will just be silently dropped. 
The current normalizer notifies the merger to decrease the 
number of data streams by one. 

The most difficult and also dangerous problem of 
dynamically assembling normalizers on the way is the looping 
problem. The simpliest and tightest loop involves 2 
normalizers. Normalizer A is of the type (X, Y), and normalizer 
B has the type (Y, X). As soon as any of the data streams 
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reaches any of these 2 normalizers, it cannot escape anymore. 
The result will never reach the merger, and therefore, we come 
to a looping problem or deadlock. As termination problem is 
undecidable, it is impossible to detect the looping problem. 
There are mature deadlock prevention algorithms. However, 
they are costly and may not be suitable for our application. At 
this stage, we do not enforce any looping check, but we 
envisage in the future we will introduce the levels of 
normalizers. The data streams can only go from lower levels to 
higher levels. More research work is needed in this area. 

 

VI. EXPERIMENT RESULTS 
So far, we have been concentrating on an imaged based 

normalizer and 2 obfuscating normalizers [17-21].  
We tested a Trigram normalizer and a Markov normalizer by 

using a test set containing 50 keywords, their 500+ 
misspellings, and 10,000 normal words. Our experiments 
showed that the normalizers could restore keywords from their 
misspellings in the test set with the equal error rate (false 
rejection error = false acceptance error) of 0.1%. In other word, 
the recovering rate (from misspellings to correct spellings) 
reaches 99.9%. 

An OCR normalizer is developed by using ripmime and 
gocr. Both are open source software. We grouped the text 
embedded in the images into two categories: image text, Fig. 
1(a), and text generated image text (tegit), Fig. 1(b). In the 
experiment, the OCR normalizer provided good outcomes in 
terms of being accepted by the Trigram normalizer or the 
Markov normalizer. Out of the 33 spam images we recently 
collected, 23 (70%) are tegits, and 10 (30%) are of image text. 
Among the 23 files which are produced by the OCR normalizer 
from tegits, we achieved 100% recovering rate. And, for the 10 
files from image text, we achieved 70% recovering rate. 
Therefore, the overall weighted recovering rate is 91%. 

The preliminary experiment is very encouraging, and a large 
scale evaluation of the effectiveness of the normalizers is on the 
way. We anticipate better results in the near future.  

 

VII. CONCLUSION AND FUTURE WORK 
The extendable software architecture for spam email filtering 

has been presented. The most important feature of the 
architecture is the flexibility in easily adapting techniques to 
fight new spamming inventions. Normalizers can be easily 
introduced into or removed from the system. A normalizer is 
defined by its input format and output format, and a processing 
pathway is dynamically decided by chaining the normalizers 
based on their input and output format specifications. The spam 
detection engine, with the help of the normalizers, only deals 
with plain text format, which is pretty effective. 

The architecture brings in a few advantages. First, the same 
detection engine is used to process the text part and other 
obscured parts of a spam email. Training and updating the 
detection engine are very expensive operations and in most 

cases, human intervention is needed. From an operational point 
of view, keeping one engine saves on cost, and from a system 
point of view, one engine preserves the integrity of the data and 
logic. Second, Bayesian filters of text based detection engines 
are the working horses on the field [22] and also quite effective 
in detecting text based spam emails [1]. Our proposal takes full 
benefit of current text based detection engines. Finally, the 
system is ready to implement on real mail servers. The multiple 
normalizer pathways only add extra branches to the data flow 
of an existing spam detection setup. These extra branches of 
data flow can be easily and seamlessly integrated into the 
existing spam filters. 

The architecture we proposed does not exclude other 
technologies. To the contrary, it tries to increase the flexibility 
and thus makes the adaptation to the other technology easier. A 
normalizer could very well be the one to read the email header 
information and retrieve other information about this email, 
say, the reputation rating of the ISP of the sender etc.  

We have developed several normalizers. Our next step is to 
integrate the normalizers into a single system and then conduct 
a large scale testing on the effectiveness of the normalizers, 
based on the spam emails from SpamArchive corpus and our 
own private collections. 

Finally, we are aware of that the spammers are trying to 
sabotage OCR programs by obfuscating images, such as 
introducing noises to the images and skewing and rotating the 
text on the images etc. We believe that we have found a 
solution to recognize these images used for spam purposes. We 
are conducting more experiment to test the solution. And on the 
other hand, as the final note, spammers do not spam for fun. 
They do it for financial return. The obfuscated images, 
although still humanly readable, won't bring the expected 
return to the spammers, as human readers are less likely to 
respond to this type of images. Spammers try to circumvent the 
spam email filters, but still prefer that the emails look normal so 
that they won't raise human alarm. In essence, the purpose of 
spam emails is to deliver messages, and in a nice format. This is 
the Achilles’ heel of spam emails, and it is also the key for us to 
fight spam emails. 
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