IAENG International Journal of Computer Science, 34:1, IJCS 34 1 9

Knowledge Acquisition from Computer Log Files
by ADG with Variable Agent Size

Akira Hara, Yoshiaki Kurosawa and Takumi Ichimura *

Abstract—We had previously proposed an out-
standing evolutionary method, Automatically De-
fined Groups (ADG), for generating heterogeneous
cooperative agents, and then we had developed a rule
extraction algorithm from computer log files using
ADG. In this algorithm, agents search multiple error-
detection rules cooperatively based on the difference
between normal state log files and abnormal state log
files. The more frequent applicable and the more ac-
curate the error-detection rule is, the more agents are
allocated for searching the rule. Therefore, the num-
ber of agents allocated for each rule can represent the
important degree of the rule. However, when the rule
extraction method was applied to the large scale log
files, which may have a number of latent rules, a prob-
lematic situation on the number of agents could be
observed. In the previous proposed method, the num-
ber of agents is not adaptive, therefore the number of
agents may be lack for evaluating the each rule’s im-
portance minutely. In this paper, we propose an im-
proved method, where the number of agents is adap-
tively increased depending on the discovered rules.
As a result, the importance of respective rules could
be evaluated minutely by increasing the number of
agents. In addition, the proposed method could ac-
quire more rules than those by the method with the
fixed number of agents.

Keywords: data mining, genetic programming, rule ex-
traction

1 Introduction

Recently, a large amount of data is stored in databases
through the advance of computer and network environ-
ments. To acquire knowledge from the databases is im-
portant for analyses of the present condition of the sys-
tems and for predictions of coming incidents. We had
previously proposed an outstanding method that united
Genetic Programming (GP) [1] with cooperative problem
solving by multiple agents. We call this method Auto-
matically Defined Groups (ADG) [2, 3]. By using this
method, we had developed the rule extraction algorithm
from database [4, 5, 6, 7, 8]. In this system, two or more
rules hidden in the database, and respective rules’ impor-

*Department of Intelligent Systems, Graduate School
of Information Sciences, Hiroshima City University, 3-4-1,
Ozuka-higashi, Asaminami-ku, Hiroshima, 731-3194 Japan,

Email: {ahara, kurosawa, ichimura}@its.hiroshima-cu.ac.jp

tance can be acquired by cooperation of agents. However,
we meet a problematic situation when the database has
many latent rules. In this case, the number of agents runs
short for search and for evaluation of each rule, because
the number of agents is fixed in advance. In order to
solve this problem, we improve ADG so that the method
can treat the variable number of agents. In other words,
the number of agents increases according to the acquired
rules adaptively.

In Section 2, we explain the algorithm of ADG and the
application to the rule extraction system. In Section 3,
we propose the ADG with variable agent size. In section
4, we describe experiments of the rule extraction from
computer log files. In section 5, we describe conclusions
and future work.

2 Rule Extraction by ADG
2.1 Automatically Defined Groups

In the field of data processing, to cluster the enormous
data and then to extract common characteristic from each
clustered data are important for knowledge acquisition.
In order to accomplish this task, we adopt a multi-agent
approach, in which agents compete with one another for
their share of the data, and each agent generates a rule for
the assigned data; the former corresponds to the cluster-
ing of data, and the latter corresponds to the rule extrac-
tion in each cluster. As a result, all rules are extracted by
multi-agent cooperation. However, we do not know how
many rules subsist in given data and how data should be
allotted to each agent. Moreover, as we prepare abundant
agents, the number of tree structural programs increases
in an individual. Therefore, the search performance de-
clines.

In order to solve these problems, we have proposed an im-
proved GP method, Automatically Defined Groups. The
method optimizes both the grouping of agents and the
tree structural program of each group in the process of
evolution. By grouping multiple agents, we can prevent
the increases of search space and perform an efficient op-
timization. Moreover, we can easily analyze agents’ be-
havior group by group. Respective groups play different
roles from one another for cooperative problem solving.
The acquired group structure is utilized for understand-

(Advance online publication: 15 August 2007)

IAENG International Journal of Computer Science, 34:1, IJCS 34 1 9

P LR "
&% * & _reference
s

program
for group A

”wgwu-axxﬂﬂgl

An individual of ADG-GP

Grouping

T

Multi-agent System

Figure 1: Concept of Automatically Defined Groups

ing how many roles are needed and which agents have
the same role. That is, the following three points are
automatically acquired by using ADG.

e How many groups (roles) are required to solve the
problem?

e Which group does each agent belong to?

e What is the program of each group?

In ADG, each individual consists of the predefined num-
ber of agents. The individual maintains multiple trees,
each of which functions as a specialized program for a
distinct group as shown in Fig. 1. We define a group as
the set of agents referring to the same tree for the de-
termination of their actions. All agents belonging to the
same group use the same program.

Generating an initial population, agents in each GP
individual are divided into several groups at random.
Crossover operations are restricted to corresponding tree
pairs. For example, a tree referred to by an agent 1 in
an individual breeds with a tree referred to by an agent
1 in another individual. This breeding strategy is called
restricted breeding [9, 10, 11]. In ADG, we also have to
consider the sets of agents that refer to the trees used for
the crossover. The group structure is optimized by di-
viding or unifying the groups according to the inclusion
relationship of the sets.

The concrete processes are as follows: We arbitrarily
choose an agent for two parental individuals. A tree
referred to by the agent in each individual is used for
crossover. We use T and T’ as expressions of these trees,
respectively. In each parental individual, we decide a set
A(T), the set of agents that refer to the selected tree T'.
When we perform a crossover operation on trees 7 and
T', there are the following three cases.

(a) If the relationship of the sets is A(T) = A(T’
structure of each individual is unchanged.

), the

(b) If the relationship of the sets is A(T) D A(T”), the
division of groups takes place in the individual with

agent
1,2,34
4 crossover I
*{2}C {1234
agent
agent . 13
2(3

agent 1,3
4
{12} g[{1,3},
{12} {13}
agent * agen
1,2,3 4 123 4

(typec)

Figure 2: Examples of crossover

T, so that the only tree referred to by the agents in
A(T)NA(T") can be used for crossover. The individ-
ual which maintains 7" is unchanged. Fig. 2 (type
b) indicates an example of this type of crossover.

(c) If the relationship of the sets is A(T) 7 A(T’) and
A(T) ¢ A(T'), the unification of groups takes place
in both individuals so that the agents in A(T)UA(T")
can refer to an identical tree. Fig. 2 (type c) shows
an example of this crossover.

We expect that the search works efficiently and the ade-
quate group structure is acquired by using this method.

2.2 Rule Extraction from classified data

In some kinds of databases, each data is classified into
positive or negative case (or more than two categories).
For example, patient diagnostic data in hospitals are clas-
sified into some categories according to their disease. It
is an important task to extract characteristics for a tar-
get class. However, even if data belong to the same class,
all the data in the class do not necessarily have the same
characteristic. A part of data set might show a different
characteristic. It is possible to apply ADG to rule ex-
traction from such classified data. In ADG, multiple tree

(Advance online publication: 15 August 2007)

IAENG International Journal of Computer Science, 34:1, IJCS 34 1 9

Database

Target Clas

[’W@g[ﬂ] ””””” TAgem‘

subset 1 subset 2 subset 3

An individual of ADG-GP

Figure 3: Rule extraction using ADG

structural rules are generated evolutionally, and each rule
represents the characteristic of a subset in the same class
data. Fig.3 shows a sketch of rule extraction using ADG.
Each agent group extracts a rule for the divided subset,
and the rules acquired by multiple groups can cover all
the data in the target class. Moreover, when agents are
grouped, the load of each agent and predictive accuracy
of its rule are considered. As a result, a lot of agents come
to belong in the group with the high use-frequency and
high-accuracy rule. In other words, we can regard the
number of agents in each group as the important degree
of the rule. Thus, two or more rules and the important
degree of respective rules can be acquired at the same
time. This method was applied to the medical data and
the effectiveness is verified [4, 5, 6, 7].

2.3 Application to Knowledge Acquisition
from Log Files

We apply the rule extraction method using ADG to de-
tect troubles of computer systems from log files. In or-
der to use the method described in the previous section,
we need the supervised information for learning phase.
In other words, we have to classify each message in log
files into two classes: normal message class and abnor-
mal message class indicating system troubles. However,
this is a troublesome task, because complete knowledge
for computer administration is needed and log data may
be enormous size. In order to classify log messages into
appropriate class automatically, we consider state tran-
sition pattern of computer system operation. We focus
on the following two different states and make use of the
difference of the states as the supervised information.

(1) Normal State This is the state in the period of sta-
ble operation of the computer system. We assume
that the administrators keep good conditions of var-

ious system configurations in this state. Therefore,
frequently observed messages (e.g. “Successfully ac-
cess,” “File was opened,” etc.) are not concerned
with the error messages. Of course, some insignif-
icant warning messages (e.g. “Short of paper in
Printer,” etc.) sometimes may appear.

(2) Abnormal State This is the state in the period of
unstable operation of the computer system. The
transition to the abnormal state may happen by the
hardware trouble such as hard disk drive errors, or by
restarting service programs with new configurations
in the current system. Moreover, some network se-
curity attacks may cause the unstable state. In this
state, many error messages (e.g. “I/O error,” “Ac-
cess denied,” “File Not Found,” etc.) are included
in the log files. Of course, the messages observed in
the normal state also appear in abnormal state.

The extraction of rules is performed by using log files in
the respective states. First, we define the base period of
normal state, which seems to be stable, and define the
testing period, which might be in abnormal state. Then,
we prepare the two databases. One is composed of log
messages in the normal state period, and the other is
composed of log messages in the abnormal state period.
By evolutionary computations, we can find rules, which
respond to the messages appearing only in the abnormal
state.

For knowledge representation for detecting remarkable
problematic case, we use the logical expressions, which
return true only to such problematic messages. The rules
should return false to the messages that appear in the
both states. Multiple trees in an individual of ADG rep-
resent the respective logical expressions. Each message in
the log files is input to all trees in the individual. Then,
calculations are performed to determine whether the mes-
sage satisfy each logical expression. The input message is
regarded as problematic case if one or more trees in the
individual return true. In contrast, the input message is
not regarded as the problematic case if all trees in the
individual return false.

The fitness is calculated based on the accuracy for the er-
ror detection and load balancing among agents. The high
accuracy for the error detection means that the rules de-
tect messages as many as possible in the abnormal state
and react to messages as few as possible in normal state.
The concept of each agent’s load arises from the view-
point of cooperative problem solving by multiple agents.
The load is calculated from the adopted frequency of each
group’s rule and the number of agents in each group. The
adopted frequency of each rule is counted when the rule
returns true to the messages in abnormal state log. If
multiple trees return true for a message, the frequency of
the tree with more agents is counted. When the agent a
belongs to the group g, the load of the agent w, is defined

(Advance online publication: 15 August 2007)

IAENG International Journal of Computer Science, 34:1, IJCS 34 1 9

as follows: F
Wq = —3 4) (1)
nagent

where nggem represents the number of agents which be-
long to the group g, and f,; represents the adopted fre-
quency of g. For balancing every agent’s load, the vari-
ance of the loads V,, as shown in (2) should be minimized.

1 Nagent) ,

Vw - NAgent Zz:; (w_wl) ’ (2)
1 Nagent

wo= NAgent ; v (3)

where N ggen: represents the number of agents in the in-
dividual. By the load balancing, more agents are allotted
to the group that has a greater frequency of adoption. On
the other hand, the number of agents in the less adopted
group becomes small. Therefore, the number of agents of
respective rules indicates how general each rule is for de-
tection of problematic messages. Moreover, when usual
messages in normal state are judged to be problematic
message through a mistake of a rule, it is considered that
the number of agents who support the rule should be
small. To satisfy the requirements mentioned above, we
will maximize the fitness f defined as follows:

Hapn /N abn
HNorm/NNorm

_— ZNNomn fault_agent _
Hyorm X NAgent

f

§ V. (4)

In this equation, Nap, and Npyorm represent the num-
ber of messages in the abnormal state and normal state
respectively. Hap, and Hpyorm represent the frequency
that one or more trees in the individual return true for
abnormal state logs and normal state logs respectively.
fault_agent represents the number of agents who support
the wrong rule, when the rule returns true for messages in
the normal state. Therefore, the second term represents
the average rate of agents who support the wrong rules
when misrecognition occurs. By this term, the allotment
of agents to a rule with more misrecognition will be re-
strained. By the third term, load balancing of agents
will be achieved. In addition, in order to inhibit the re-
dundant division of groups, the fitness value is modified
according to the number of groups, G (G > 1), in the
individual as follows:

fertx f

where ~ represents the discount rate for the fitness. This
equation means that the fitness is penalized according to
the increase of G.

0<y<1), ()

By evolution, one of the multiple trees learns to return
true for problematic messages that appears only in the

abnormal state logs, and all trees learn to return false for
normal messages that appears both in the normal and
abnormal state logs. Moreover, agents are allotted to
respective rules according to the adopted frequency and
the low rate of misrecognitions. Therefore, the rule with
more agents is the typical and accurate error-detection
rule, and the rule with less agents is a specialized rule
for the rare case. We had applied this method to the
sample log files, and we could successfully get multiple
rules, which respond only to the problematic messages
[12]. However we met an issue in experiments using ac-
tual large scale log files. When we applied this method to
large scale log files in an actual server, 44 rules were ex-
tracted by ADG using 50 agents for each individual. Only
one agent was allotted for most rules, because the num-
ber of prepared agents is insufficient. Even the rule with
maximum number of agents has the only three agents.
It was impossible to understand minutely the difference
of the importance of the rules. To evaluate rules in de-
tail, we need more agents so that the number of agents
can exceed the extracted number of rules enough. How-
ever, it is impossible to estimate the extracted number of
rules. Therefore, it is difficult to set an enough number
of agents beforehand.

3 ADG with Variable Agent Size

In order to solve the problem on the number of agents,
we set that the number of agents dynamically increases
to be more than multiples of the number of the acquired
rules. The procedures for increasing agents are as follows.

In the best individual of each generation ¢, we find Nj ;05
the number of rules that return true for problematic mes-
sages. When the number of agents in each individual at
the generation ¢ is N gents» the condition for increasing
agents is expressed as follows:

Ndents < kN;%ules (k > 10)7 (6)

where k is the parameter for controlling the agent size.
When this condition is satisfied, the number of agents in
each individual is incremented by one. The flow of the
evolutionary process is shown below.

(a) Initialization of individuals
(b) Fitness evaluation of each individual

(c) Genetic operations

(Selection + Elitist Strategy, Crossover, Mutation)

(d) Operation for increasing agents

(We find the number of rules and agents in the best
individual. If the condition for increasing agents is
satisfied, one agent is added to respective individu-
als.)

(Advance online publication: 15 August 2007)

IAENG International Journal of Computer Science, 34:1, IJCS 34 1 9

(e) If termination condition is not satisfied, return to

(b).

When the number of extracted rules increases to Ngyies,
the number of agents finally reaches to kNpgyies by the
above operations.

4 Experimental Results

We apply the proposed method to the rule extraction
from the large scale log files, where the problem concern-
ing the number of agents previously occurred as described
in Section 2.3. We set that the number of agents in each
individual at initial population is 50, and the parameter
k in the condition for increasing agents is 3.0. For com-
parison with fixed large size of agents, we also perform
another experiment using ADG with fixed 200 agents in
each individual.

Table 1 shows GP functions and terminals for these ex-
periments. We impose constraints on the combination of
these symbols, such as Strongly Typed Genetic Program-
ming [13]. For example, terminal symbols do not enter
directly in the arguments of the and function. Crossovers
and mutations that break the constraints are not per-
formed.

The tagging procedure using regular expressions as de-
scribed in [12] was used for the preprocessing to the log
files and the representation of the rules. Fig.4 shows an
illustration of the preprocessing. Each message in the log
files is separated into several fields (e.g. daemon name
field, host name field, comment field, etc.) by the prepro-
cessing, and each field is tagged. Moreover, words that
appear in the log messages are registered in the word
lists for respective tags beforehand. The rule is made by
the conjunction of multiple terms, each of which judges
whether the selected word is included in the field of the
selected tag. The following expression is an example of
the rule.

(and (include <DAEMON> 3) (include <EXP> 8))

We assume that the word “nfsd” is registered at the third
in the word list for <DAEMON> tag, and the word
“failure” is registered at the eighth in the word list for
<EXP> tag. For example, this rule returns true to the
message including the following strings.

<DAEMON>nfsd</DAEMON> <EXP>Warning:access
failure</EXP>

The parameter settings are as follows: Population size is
300. The respective weights in (4) and (5) are 8 = 0.001,
0 = 0.01, and v = 0.9999. These parameter values were
determined by preliminary experiments. The numbers
of messages included in log files, Nnorm and Nap,, are
32,411 and 17,561 respectively.

Log Flles

[serverl: /var/log/messages]
2005/11/14 12:58:16 serverl named unexpected
RCODE(SERVFAIL) resolving 'host.there.ne.jp/A/IN’

2006/12/11 14:34:09 serverl smbd write_data:
write failure in writing to client. Error Connection rest by peer

* preprocessing (Tagging)

<HOST> serverl </[HOST> <LOGNAME> messages </LOGNAME>

<DATE> 2005/11/14 </DATE> <TIME> 12:58:16 </TIME>

<COMP> serverl </COMP> <DAEMON> named </DAEMON>

<EXP> unexpected RCODE(SERVFAIL) resolving
’host.there.ne.jp/A/IN’ </[EXP>

<HOST> serverl </HOST> <LOGNAME> messages </LOGNAME>
<DATE> 2006/12/11 </DATE> <TIME>14:34:09 </TIME>
<COMP> serverl </COMP> <DAEMON> smbd </DAEMON>
<EXP> write_data: write failure in writing to client.

Error Connection rest by peer </EXP>

v Word Lists

DAEMON Tag

HOST Tag EXP Tag
1. unexpected
2. RCODE

3. SERVFAIL
4. resolving

5. host.there...
6. write

7. data

8. failure

1. named
2. smbd
3. nfsd

1. serverl
2. server2 “- .=

Figure 4: Preprocessing to log files

Table 1: GP functions and terminals

Symbol #args Functions
and 2 arg0 A argl
include 2 If Tag arg0 includes argl
(Word) then T else F
<HOST>,<EXP>,... 0 Tag name
0,... ,N-1 0 Select corresponding word

from word list. N is the
number of words in list.

As a result, agents in the best individual were divided
into 72 groups by the proposed method. That is, we
could get 72 rules. The number of agents was 216 at the
last generation. Fig.5 shows the best fitness curves by the
conventional ADG [12] using fixed 50 or 200 agents and
proposed ADG with variable agent size. We can see from
this figure that the search of any methods converged by
1,000 generations, and the proposed method got better
fitness value than the conventional fixed agent size meth-
ods. Fig.6 shows the change of the number of extracted
rules and agents by the proposed method. We can see
from this figure that 50 agents are enough for search till
127 generation, but after the generation the number of
agents increases according to the number of rules so as
not to be in short.

(Advance online publication: 15 August 2007)

IAENG International Journal of Computer Science, 34:1, IJCS 34 1 9

Best Fitness
3800 v

'Variable'Agem Si'ze

3700

3600

3500

3400

3300

3200

3100

3000

100 200 300 400 500 600 700 800 900 1000
Generation

Figure 5: Comparison of the best fitness curves

Quantity
0

#Agents

150 [

100 [

#Rul
50 ules

0 200 400 600 800 1000

Generation

Figure 6: The number of extracted rules and agents

When the number of the extracted rules converged at
about the 950 generation, the number of agents also con-
verged. Table 2 shows some of the acquired rules by
the conventional method and proposed method. Respec-
tive rules correspond to the tree structural programs in
the best individual. Table 2 also shows the number of
agents of each rule. These rules are arranged according
to the number of agents. In the conventional method,
the number of agents for each rule is in the range from
1 to 3, and most rules (rule 4, 5, ..., and 44) have only
1 agent. Therefore, we cannot list the rules in impor-
tant order. While, in proposed method, the number of
agents for each rule is in the wide range from 1 to 15 by
the increase of agents. This result shows that the pro-
posed method is useful for the minute evaluation of the
importance of respective rules.

Furthermore, the number of acquired rules by the pro-
posed method is 72. On the other hand, the number of
rules by the conventional method is 44. That is, we can
get more rules by using variable number of agents. This
result indicates that the search performance of the pro-

Table 2: Some acquired rules and the number of agents

ID | Rule #Agents | #Agents
Fixed (50) | Variable

1 | (include DAEMON smbd) 3 15

2 | (include EXP race) 3 12

3 | (include EXP nrpc) 2 14

4 | (include EXP NOTLB) 1 9

42 | (include DAEMON 1 2

gdm(pam_unix))

43 | (include EXP Connection) 1

44 | (include EXP I/0) 1

72 | (include EXP Journalled) - 1

<HOST> fsv </ HOST> <LOGNAME> nessages </ LOGNAME>
<DATE>2006/ 04/ 19</ DATE> <TI ME>14: 15: 37</ TI ME>
<COWP> fsv </ COVP> <DAEMON> snbd </ DAEMON>

<EXP> decode_pac_date: failed to verify PAC server
si gnature </ EXP>

<HOST> fsv </ HOST> <LOGNAME> nessages </ LOGNAME>
<DATE>2006/ 04/ 19</ DATE> <TI ME>14: 34: 09</ Tl ME>
<COWP> fsv </ COWP> <DAEMON> snbd </ DAEMON>
<EXP> wite_data: wite failure in witing to
client. Error Connection reset by peer </EXP>

<HOST> fsv </ HOST> <LOGNAME> nessages </ LOGNAVE>
<DATE>2006/ 04/ 19</ DATE> <TI ME>16: 43: 30</ Tl ME>
<COWP> fsv </ COVP> <DAEMON> ker nel </ DAEMON>
<EXP> |/ O error: dev 08:f0, sector 0 </EXP>

Figure 7: Log messages detected by the acquired rules

posed method becomes better by the increase of agents,
and the new rule can be acquired. Therefore, the pro-
posed method shows the high fitness value than conven-
tional method as shown in Fig.5. Examples of log mes-
sages detected by the acquired rules are shown in Fig.7.

5 Conclusions and Future Work

In this research, the mechanism where the number of
agents increases in proportion to the number of discov-
ered rules was introduced to the ADG method. As a
result, two good effects were observed. One effect is that
it becomes possible to evaluate the importance of respec-
tive rules in detail, and the other is that the number of
extracted rules increases. In this experiment, we set that
the number of agents should be more than three times of
the number of extracted rules. We have to examine an
appropriate criteria for increasing the number of agents.
Moreover, in the present fitness function, agents are al-
lotted to respective rules from the viewpoints of load bal-
ancing of agents and from the viewpoint of the decrease
of agents who support the wrong rules. As a result, the
number of agents becomes an index of the importance for
each rule, in which both the frequency of use and accu-

(Advance online publication: 15 August 2007)

IAENG International Journal of Computer Science, 34:1, IJCS 34 1 9

racy are considered. However, when log information is
treated, not only the occurrence frequency but also the
degree of the influence to computer systems becomes im-
portant. We have to investigate the way for introducing
other viewpoints (e.g. risk or urgency level, etc.) into the
fitness function, so that the number of agents can become
a more profitable index.

References

[1]

J.R. Koza: Genetic Programming — On the Program-
ming of Computers by Means of Natural Selection,
The MIT Press, 1992.

A. Hara and T. Nagao, “Emergence of coopera-
tive behavior using ADG; Automatically Defined
Groups,” Proc. of the 1999 Genetic and FEvolution-
ary Computation Conf., pp.1039-1046, 1999.

A. Hara and T. Nagao: “Construction and analysis
of stock market model using ADG; Automatically
Defined Groups,” International Journal of Com-
putational Intelligence and Applications (IJCIA),
Vol.2, No.4, pp.433-446, 2002.

A. Hara, T. Ichimura and K. Yoshida, “Discovering
multiple diagnostic rules from coronary heart dis-
ease database using automatically defined groups,”
Journal of Intelligent Manufacturing, Vol.16, No.6,
pp.645-661, 2005.

A. Hara, T. Ichimura, T. Takahama and Y. Isomichi,
“Discovery of Cluster Structure and The Clustering
Rules from Medical Database Using ADG; Automat-
ically Defined Groups,” Knowledge-Based Intelligent
Systems for Healthcare, T.Ichimura and K.Yoshida
(Eds.), pp-51-86, 2004.

T. Ichimura, S. Oeda, M. Suka, A. Hara, K. J.
Mackin, and K. Yoshida, “Knowledge Discovery and
Data Mining in Medicine,” Advanced Techniques in
Knowledge Discovery and Data Mining, Pal, Nikhil
and Jain, Lakhmi C. (Eds.), pp.177-210, 2005.

A. Hara, T. Ichimura, T. Takahama and Y. Isomichi:
“Extraction of Risk Factors by Multi-agent Vot-
ing Model Using Automatically Defined Groups,”
Proc. of The Ninth Conference on Knowledge-Based
Intelligent Information and Engineering Systems
(KES’2005), Vol.3, pp.1218-1224, 2005.

A. Hara, T. Ichimura, T. Takahama and Y. Isomichi:
“Extraction of rules by Heterogeneous Agents Us-
ing Automatically Defined Groups,” Proc. of The
Seventh Conference on Knowledge-Based Intelligent
Information and Engineering Systems (KES’2003),
Vol.2, pp.1405-1411, 2003.

[9]

[12]

[13]

S. Luke and L. Spector: “Evolving teamwork and co-
ordination with genetic programming,” Genetic Pro-
gramming 1996: Proc. of the First Annual Confer-
ence, pp.150-156, 1996.

H. Iba: “Emergent cooperation for multiple agents
using genetic programming,” Parallel Problem Solv-
ing from Nature IV, Proc. of the International
Conference on Evolutionary Computation, pp.32-41,
1996.

H.Iba: “Multiple-agent learning for a robot naviga-
tion task by genetic programming,” Genetic Pro-
gramming 1997: Proc. of the Second Annual Con-
ference, pp.195-200, 1997.

Y. Kurosawa, A. Hara, T Ichimura and Y. Kawano,
“Extraction of Error Detection Rules without Super-
vised Information from Log Files Using Automati-
cally Defined Groups,” Proc. of The 2006 IEEE In-
ternational Conference on System, Man and Cyber-
netics, pp.5314-5319, 2006.

T. Haynes, R. Wainwright, S. Sen and D. Schoene-
feld: “Strongly typed genetic programming in
evolving cooperation strategies,” Genetic Algo-

rithms: Proc. of the Sizth International Conference
(ICGA95), pp.271-278, 1995.

(Advance online publication: 15 August 2007)

