

Abstract—This paper proposes the design of PID-like fuzzy

logic controller (PIDFLC), on Field Programmable Gate Array

(FPGA) device. The Fuzzy Inference System (FIS) used in the

controller is aided with Active Rules Selection Mechanism.

Developments were made to this FIS to make it able to

manipulate signed numbers, (which is important issue in

control system), then, it was blended with integral and

derivative control components of tunable gains. These new

features enable the controller to function as a PDFLC, a

PIFLC, and a PIDFLC efficiently. The design utilizes 1394

slices of the target FPGA, and is able to produce an output at

0.421 µµµµsec with maximum frequency of 40.295 MHz.

Mathematical model of linear plants were used to test the

controller. The simulation results using the proposed controller

connected to these plants in unity feedback system were

compared with simulation results of a similar system that uses

a software-based controller. The plant responses controlled by

the proposed controller were smooth and much similar to the

plant responses when using software based controller.

Index Terms—Industrial application , FPGA, Fuzzy logic, PID-

like fuzzy controller.

I. INTRODUCTION

Fuzzy logic has rapidly become one of the most successful

of today's technologies for developing sophisticated control

systems. Fuzzy controllers are more robust than PID

controllers because they can cover a much wider range of

operating conditions than PID can, and can operate with

noise and disturbances of different nature. Given the

dominance of conventional PID control in industrial

applications, it is significant both in theory and in practice if

a controller can be found that is capable of outperforming

the PID controller with comparable ease of use. Some of

PID fuzzy controllers are quite close to this dream [1]. The

simplest and most usual way to implement a fuzzy controller

is to realize it as a computer program on a general purpose

computer. However, a large number of fuzzy control

applications require a real-time operation to interface high-

speed constraints. Software implementation of fuzzy logic

on general purpose computers

can not be considered as a suitable design solution for this

type of application, in such cases, design specifications can

be matched by specialized fuzzy processors.

Higher density programmable logic devices such as FPGAs

can be used to integrate large amounts of logic in a single

IC. Semi-custom and full-custom application specific

integrated circuit (ASIC) devices are also used for this

purpose but FPGAs provide additional flexibility: they can

be used with tighter time-to-market schedules. The Field-

Programmable Gate Array (FPGA) places fixed logic cells

on the wafer, and the FPGA designer constructs more

complex functions from these cells. The term field

programmable highlights the customizing of the IC by the

user, rather than by the foundry manufacturing the FPGA.

Several researchers discussed the design of hardware fuzzy

logic controller. Number of these works were specialized in

control application [2,]-[3], and were aim to get better

control responses. Others were concerned in developing

general fuzzy logic processors [4]-[5]-[6]-[7]. Their searches

were concern using new techniques in fuzzy algorithm, to

get higher processing speed versus low utilization of chip

resource. As a result, the proposed design in this paper is

aim to employ the new techniques of fuzzy algorithm in

controlling industrial application with the aid of

conventional PID control to serve these applications

efficiently.

II. THE PROPOSED PID-LIKE CONTROLLER

The general layout of the controller chip in a unity

feedback control system is shown in Fig. 1. Generally, the

proposed controller accept the output of the plant (yp) and

the desired output (yd), both as digital signals, and deliver

digital control action signal as an output. The design accepts

also four 8-bit digital signals that represent the gain

coefficients needed by the controller (proportional gain Kp,

derivative gain Kd, integral gain Ki, and output gain Ko), and

two one-bit signals to select the type of the controller

(PDFLC, PIFLC, or PIDFLC).

III. STRUCTURE OF THE PROPOSED PIDFLC

In order to build a PIDFLC, it is required to design a

fuzzy inference system with three inputs that represent the

proportional, derivative, and integral components.

Design of FPGA based PID-like Fuzzy

Controller for Industrial Applications

Dr. Mohammed Y. Hassan, Member, IAENG Waleed F. Sharif, M. Sc.

Control and Systems Engineering Department

University of Technology

Baghdad, Iraq

Manuscript received August 19, 2007. Paper title: Design of FPGA

based PID-like Fuzzy Controller for Industrial Applications.

M. Y. Hassan is a lecturer with the Control and Systems

Engineering Department, University of Technology, Iraq.

(Corresponding author to provide e-mail: myhazawy@ yahoo.com.).

W. F. Sharif is an assistant lecturer with the Control and Systems

Engineering Department, University of Technology, Iraq.

(Corresponding author to provide E-mail: waleedfawwaz@

yahoo.com).

IAENG International Journal of Computer Science, 34:2, IJCS_34_2_05
__

(Advance online publication: 17 November 2007)

 Fig. 1: Layout of the proposed controller in a unity feedback control system

A fuzzy controller with three inputs may not be

preferred, because it needs large number of rules, instead,

the PID fuzzy controller can be constructed as a parallel

structure of a PD fuzzy controller and a PI fuzzy controller

and the output of the PIDFLC is formed by algebraically

adding the outputs of the two fuzzy control blocks.

However, it is difficult to formulate control rules with the

input variable sum of error (∑e), as its steady-state value is

unknown for most control problems. To overcome this

problem, a PD controller may be employed to serve as PI

controller in incremental form. Equation (1) shows a PD

controller obtained in position form, while (2) shows a PI

controller in incremental form:

u(n)=Kpe(n)+Kdr(n) (1)

∆u(n)=Kpr(n)+Kie(n) (2)

where e(n) is sampled error signal, r(n) rate of change of

sampled error signal, and a(n) is accelerated rate of change

of sampled error signal.

Now by comparing (1) and (2), one sees that the PD

controller in position form becomes the PI controller in

incremental form if : 1) e(n) and r(n) exchange positions, 2)

Kd is replaced by Ki, and 3) u(n) is replaced by ∆u(n) [1,8].

This modification is shown in Fig. 2, where a PDFLC, with

summation at its output, is used instead of the PIFLC.

Fig. 2: Main structure of proposed controller.

The fuzzy inference system used in the each PDFLC is a

two-inputs, one-output fuzzy system of Mamdani type that

uses singleton membership functions for the output variable

(it could also be considered as a Sugeno type with constant

rule consequents). The first input is the error signal e(n), and

the second input is the rate of change of error signal. Before

entering the fuzzy inference block, each one of these two

inputs is multiplied by a gain coefficient inside the PDFLC,

(Kp and Kd or Kp and Ki). In similar manner, the output of the

fuzzy inference block is multiplied by the output gain

coefficient inside the PDFLC, (Ko). The outputs of the

PDFLC and PIFLC, (uPDFLC and uPIFLC) are summed together

to form the PIDFLC output (uPIDFLC). Since each PDFLC has

its own gains and rules, the final design could act as a

PDFLC, a PIFLC, or a PIDFLC depending on the two

selection lines m1 and m0, as shown in Table I.

Table I: Selection lines setting

m1 m0 controller type

0 0 PDFLC

0 1 PIFLC

1 × PIDFLC

As seen from Fig. 2 the basic block in the proposed

controller is the PDFLC. The main components in the

proposed PDFLC are: Gain block, Fuzzifier block, inference

engine block, and Defuzzifier block, which will be discussed

in the sections below.

A. Gain Block

The gain block resides at each of the two inputs and also

at the output of each of the two PDFLC blocks. It receives

two inputs: the variable to be scaled (input or output) and its

related gain coefficient, and then multiply them. Each gain

block contains an eight-bit latch to store the gain coefficient

value received from one of the gain ports, depending on

selection line values. Each gain latch is divided into two

parts: 4 bits fraction and 4 bits integer. This limits the

maximum scaling of a variable by 15 times (either

expanding or compressing). Scaling the variables (or fuzzy

sets) by large scale factors may cause fuzzy sets to get too

far from its original meaning. If larger scaling factor is

required, it would be better to assign new fuzzy sets. Details

of Gain block are shown in Fig. 3. The gain blocks involve

another process which is called shifting. Shifting process

converts the range of the input variables from

[127128 →−] to [2550 →]. This conversion is

necessary because the error signal and rate of change of

error signal signals can have positive and negative values,

while the used fuzzy inference block in each PDFLC can

handle positive values only. The shift process implies

adding the number (
72) to the input variable. This addition

can be easily implemented by inverting the last bit (MSB) of

input variable. Notice that, at the input, the gain process took

place before the shift process, while at the output this

IAENG International Journal of Computer Science, 34:2, IJCS_34_2_05
__

(Advance online publication: 17 November 2007)

Fig. 3: Structure of Gain block: (a) input gain block, (b) output gain block.

sequence is reversed. Also, the shift process at the output

implies subtraction, instead of addition, to convert the range

of the output variable from [2550 →] to [127128 →−].

B. The Fuzzifier Block

Fuzzification process is performed using two fuzzifier

blocks, one for each input variable. Each fuzzifier block

takes the input variable and produces four output values

represent the sequence numbers of the two active fuzzy sets,

(i and i+1), and the membership degrees of the variable in

each one of them, (µi and µi+1). Fuzzifier block consists of

three elements: memory module (called Input fuzzy sets’

memory), inverter, and incrementer, connected as shown

in Fig. 4. The memory module is used as a lookup table that

stores membership values and active fuzzy set number for

each entry value of input. Membership functions of any

shape could be implemented in this memory by choosing the

right memory words that represent the desired membership

functions accurately. The memory module was implemented

using core utility provided by Xilinx core generator system

as a read-only memory (ROM).

Fig. 4: Structure of Fuzzifier block

Each word in the input fuzzy sets’ memory is divided

into two parts. The first part is 3 bits data word represents

the sequence number of the first active fuzzy set. The

sequence number of the second active fuzzy set is obtained

by adding one to the sequence number of the first active

fuzzy set using the incrementer. Assigning 3 bits for the

sequence number of the fuzzy set will restrict the maximum

number of fuzzy sets for each input variable to 8 fuzzy sets.

The second part of memory word is 6 bits data word that

represents the membership value of input in the first active

fuzzy set. The membership value of input in the second

active fuzzy set can be obtained by subtracting the

membership value of the input in first active fuzzy set from

one [4]. This dictates that the summation of membership

values of two consecutive fuzzy set is always equal to one,

as in the following equation:

11ii =µ+µ + (3)

This limits the changing of the shapes of fuzzy sets.

However, this restriction is widespread in many fuzzy

control systems.

C. Inference Engine Block

The Inference Engine Block used in the proposed design

is based on active rule selector mechanism. Active rules

selector block uses the information delivered from fuzzifier

about active fuzzy sets, (have nonzero membership values),

to launch only active rules. In this way, using an active rule

selector, the number of rules to be processed will be reduced

according to this equation:

Number of active rules =
m

V (4)

where m is the number of inputs, and V is the maximum

number of overlapped fuzzy set. In the proposed design, it

assumes that m = 2 and V = 2. Hence, the number of active

rules at each time is: 42V 2m == rules.

In addition to active rules selector block, inference

engine involve two other block: rule memory (contains rule

consequent) and minimum circuit (circuit to calculate the

applicability degree for each active rule). The memory was

designed using core utility. These three blocks are shown in

Fig. 5.

Output of

the FIS

A

d
d

it
io

n

M
u
lt

ip
li

ca
ti

o
n

Gain coefficient (K)

Input of

the FIS

(a)

M
u
lt

ip
li

ca
ti

o
n

S
u

b
tr

ac
ti

o
n

Gain coefficient (K)

Output of

the controller

(b)

Gain process

Shift process

2
7

Shift process

Gain process

2
7

Input of the

 controller

IAENG International Journal of Computer Science, 34:2, IJCS_34_2_05
__

(Advance online publication: 17 November 2007)

Fig. 5: Structure of Inference Engine block.

D. Defuzzifier Block

The defuzzification process is performed in the

Defuzzifier block using the Centroid method defined by

Equation below:

∑

∑

=

=

µ

β∗µ

=
N

1k
k

N

1k
kk

z

 (5)

where N represents the number of the rules, µk is the degree

of the applicability of the kth rule, βk is the defuzzified value

of the output membership function of the kth rule [9]. The

Defuzzifier involves two accumulators, one multiplier, and

one divider. The defuzzifier block accepts four rules

consequent and their membership degrees from the inference

engine, (sequentially, in four clock cycles), and produces a

crisp output to the output gain block, as shown in Fig. 6.

Figure (6) Structure of Defuzzifier block

The membership degrees and rules consequents are

delivered from the inference engine in a sequential manner

in four consecutive clock cycles, instead of being produced

in parallel in one clock cycle. This will enhance (reduce) the

used area of the target FPGA, at the expense of increasing

time interval between input latching and output producing.

IV. FPGA DESIGN CONSIDERATIONS AND

SPECIFICATIONS

The chosen target device family in the proposed design

is Virtex FPGAs family from Xilinx Company. Virtex

FPGAs family offers a useful criterion to the proposed

design, which is the internal RAM block. Virtex FPGAs

incorporate several large block memories. This criterion is

very useful because fuzzy system almost needs large storage

element to store fuzzy sets information and rules table. The

implementation of the design on FPGA chip is out of the

work scope; hence the programming phase in Xilinx

implementation tools was not carried out. In order to

implement the proposed design, the selected Target Device

is xv150 (Xilinx Virtex device of 150 kilo gates), the Target

Package is bg256, and the Target Speed grade is (-6).

According to simulation reports, the design utilizes one

clock net, 61 I/O blocks, and 1394 slices of the target

device, with maximum frequency of 40.295 MHz.

V. SIMULATION ENVIRONMENTS AND RESULTS

The proposed controller is designed using ISE4.1

software tool, in addition to ModelSim5.5 software tool,

which was used for simulation purposes. The same fuzzy

controller is designed and simulated using MATLAB

software tool. This Software-Based Controller (SBC) will be

used to make a comparison with the proposed design. This

comparison is important because it tells us to which extent

our FPGA-Based Controller (FBC) is close to similar

controller designed as a computer program. For the purpose

of simulation symmetric triangular fuzzy sets and singleton

fuzzy sets are used for input and output variable

respectively, in addition to rule table of 64 fuzzy rules,

(shown in Fig. 7).

IAENG International Journal of Computer Science, 34:2, IJCS_34_2_05
__

(Advance online publication: 17 November 2007)

(a)

NB N NS NZ PZ PS P PB

-1 0 1 e(t) or r(t)

0 1 -1

NB N

M
NS NZ PZ PS PM PB

Output

u(t)
(b)

(c)

Fig. 7: Fuzzy sets and rule table: (a) fuzzy sets for e(t) or r(t), (b) fuzzy set for u(t) , (c) fuzzy rule table

During test, the controllers (FBC and SBC) are used in

unity feedback control systems, as shown in Figure (1) and

subjected to 0.5 step input. Mathematical models of two

linear plants were used for this test. These two models were

chosen in way that represents range of plants used in

industrial applications. Many industrial processes, such as

temperature, pressure, pH, and fluid-level controls, can be

approximated by a first order models. The time delay occurs

when a sensor (e.g., a thermocouple) and an actuator (e.g., a

heater) are installed with a physical separation. Second

order model may represent process such as position control

of an ac motor [10]. Discrete transfer functions of the

models were obtained using ZOH method, and the selected

sampling period (T) is 0.1 second for the first model and

0.25 second for the second model. The discrete transfer

functions (in z-plane) of models are listed below:

1. First order plant:

 ()
1

1

1
z9048.01

z1903.0
zG

−

−

−
= , T = 0.1 (6)

2. Second order plant with delay:

()
21

21
2

2
z5028.0z48.11

z01997.0z02511.0
zzG

−−

−−
−

+−

+
=

 , T = 0.25

(7)

Each one of these plants was designed in MATLAB (for

simulation in MATLAB), and also in non-synthesizable

VHDL code (for simulation in ModelSim). Since each

controller could serve as PDFLC, PIFLC, or PIDFLC,

therefore, a test is made for each one of these types using

different plants. Fig. 8 shows step responses of the first

order plant when controlled using the PDFLC, PIFLC and

PIDFLC, while Fig. 9 shows step responses of the delayed

second order plant when controlled using the PDFLC,

PIFLC and PIDFLC. The values of Kp, Kd, Ki, and Ko used

in this test were selected using trial and error.

VII SIMULATION RESULT DISCUSSION

As seen in Fig. 8 and Fig. 9, the responses of the systems

that use FBC are smooth and much similar to the SBC

responses. The mean difference between the SBC results

(step response) and the FBC results, shown in Fig. 8 and

Fig. 9, is calculated, for each case, and listed in Table II.

The table shows that the absolute mean of differences in the

plant response, (for 0.5 step input), between the SBC and

FBC is less than 0.01 for all test cases (less than 0.5% of the

output range). The table also shows the mean of differences

between the control action (u(n)) of the SBC and FBC for

all test cases.

Table II: Mean differences between SBC and FBC results

It is noticeable that some responses in figures (8) and

(9), have large steady state error (ess) and/or slow response

(long rise time (tr)). Here we should emphasize that the aim

of this test is to find to which extent the FBC responses

are close to SBC responses, and not to find how to

tune a PIDFLC to get better response.

Error e(n)

NB NM NS NZ PZ PS PM PB

NB NB NB NB NM NM NS NZ PZ

NM NB NB NM NM NS NZ PZ PZ

NS NB NM NM NS NZ PZ PZ PS

NZ NM NM NS NZ PZ PZ PS PM

PZ NM NS NZ NZ PZ PS PM PM

 PS NS NZ NZ PZ PS PM PM PB

PM NZ NZ PZ PS PM PM PB PB R
a

te
 o

f
er

ro
r

r(
n

)

PB NZ PZ PS PM PM PB PB PB

Mean differences between SBC and

FBC

Controller

type

Plant

type

Step response Control action

G1 0.0016 0.0039
PDFLC

G2 0.0001 0.0040

G1 0.0072 0.0072
PIFLC

G2 0.0067 0.0081

G1 -0.0076 -0.0010
PIDFLC

G2 0.0076 0.0086

IAENG International Journal of Computer Science, 34:2, IJCS_34_2_05
__

(Advance online publication: 17 November 2007)

 (a) (a)

 (b) (b)

 (c) (c)

Fig. 8: First order plant controlled by

(a) PDFLC (b) PIFLC (c) PIDFLC

Fig. 9: Delayed second order plant controlled by (a)

PDFLC (b) PIFLC (c) PIDFLC

IAENG International Journal of Computer Science, 34:2, IJCS_34_2_05
__

(Advance online publication: 17 November 2007)

VIII. CONCLUSION

The design of a PID-like fuzzy logic controller based on

fuzzy system with active rule selection mechanism and four

tunable gains factor on FPGA chip is presented in this

paper. Simulation results of applying the design on the

target chip state that the design utilizes 1394 slices of the

target device and needs 17 clock cycles per action. With the

maximum clock frequency 40.295MHz, the controller was

able to produce an output in less than 0.421 µs. Therefore,

the proposed controller will be able to control many

industrial applications with sampling time ranging from

milliseconds, e.g. in pressure control, up to higher sampling

time in the case of temperature control of larger installations

(industrial furnaces). This small-size high-speed chip is able

to offer adequate accuracy. The result of simulation shown

that the step responses of first and second order linear

models controlled by the proposed controller were very

close to responses of the same models controlled by a

software-based controller. The absolute mean of differences

between the responses, was less than 0.5% of the output

range.

REFERENCES

[1] H. Ying, Fuzzy Control and Modeling, Analytical Foundations

and Applications. USA: Institute of Electrical and Electronic

Engineers Inc., 2000.

[2] O. Karasakal, E. Yesil, M. Guzelkaya, and I. Eksin, " Implementation

of a New Self-Tuning Fuzzy PID Controller on PLC," Turkish

Journal of Electrical Engineering, Vol.13, No.2, pp.277-286, 2005.

[3] V. Tipsuwanpornm T. Runglimmawan, S. Intajag, and V.

Krongratana, "Fuzzy Logic PID Controller Based on FPGA for

Process Control," IEEE International Symposium on Industrial

Electronics, Vol. 2, pp. 1495-1500, 4-7 May 2004.

[4] S. S. Solano, A. Barriga, C. J. Jiménez, and J. L. Huertas, “Design

and Application of Digital Fuzzy Controllers,” Sixth IEEE

International Conference on Fuzzy Systems (FUZZ-IEEE’97), Vol. 2,

pp. 869-874, July 1-5, 1997, Barcelona-Spain.

[5] D. Falchieri, A. Gabrielli, and E. Gandolfi, "Very Fast Rate 2-Input

Fuzzy Processor for High Energy Physics," Fuzzy Sets and Systems

Vol. 132, Issue 2, pp. 261-272, December 2002.

[6] S. H. Huang and J. Y. Lai, "A High-Speed VLSI Fuzzy Inference

Processor for Trapezoid-Shaped Membership Functions," Journal of

Information Science and Engineering Vol. 21, No. 3, pp.607-626,

May 2005.

[7] S. H. Huang, and J. Y. Lai, "A High Speed Fuzzy Inference Processor

with Dynamic Analysis and Scheduling Capabilities," IEICE

Transaction Information & System., Vol. E88-D, No.10 October

2005.

[8] G. K. Mann, B. G. Hu, and R. G. Gosine, "Analysis of Direct Action

Fuzzy PID Controller Structures,” IEEE Transactions on Systems,

Man, and Cybernetics-Part B: Cybernetics, Vol. 29, No. 3, pp. 371-

388, June, 1999.

[9] S. S. Farinwata, D. Filev, and R. Langari, Fuzzy Control: Synthesis

and Analysis. John Wiley & Sons, Ltd., 2000.

[10] B. G. Hu, G. K. Mann, and R. G. Gosine, " New Methodology

for Analytical and Optimal Design of Fuzzy PID Controllers,” IEEE

Transactions on Fuzzy Systems, Vol. 7, No. 5, pp. 521-539, October,

1999.

Mohammed Y. Hassan This author became a Member

(2007) of IAENG. He was born in Baghdad, Iraq 1967.

He received his B. Sc. in Electrical and Electronics

Engineering from Al-Rasheed Collage of Engineering

and Science, University of Technology, Iraq in 1989.

Master Degree in Control Engineering from Al-Rasheed

Collage of Engineering and Science, University of Technology, Iraq in

1995 and he received his Ph. D. in Control Engineering and Automation

from the University of Technology, Iraq 2003. He is now a lecturer in the

control and systems Engineering Department, University of Technology in

Baghdad, Iraq.

He has several research publications in journals and conference

proceedings. His areas of research interest are in Intelligent Control,

Adaptive control, Modeling, Fuzzy logic,Neural network, Genetic

Algorithm, Microcomputers and Microcontrollers.

Dr. Hassan has received in 2007 an Endeavour postdoctoral research

Fellowship award from the department of Education, Training and Science

in Australian government to do a research in the school of Engineering and

Mathematic, Edith Cowan University in West Australia.

Waleed F. Sharif was born in Baghdad, Iraq, in 1982. He

received his B. Sc. degree and M. Sc. degree from the

University of Technology, Baghdad, Iraq, in 2004 and

2007, respectively, all in control and systems engineering.

His current research interests include fuzzy modeling and

fuzzy control systems

He is currently working as an assistant lecturer in the same department.

IAENG International Journal of Computer Science, 34:2, IJCS_34_2_05
__

(Advance online publication: 17 November 2007)

