TAENG International Journal of Computer Science, 34:2, IJCS 34 2 06

Proposals to Improve Query Performance On
Business Data

Yaokai Feng*, Akifumi Makinouchi** and Kunihiko Kaneko*

Abstract—Multidimensional indices are efficient for improving
the query performance on relational data. The R*-tree, a
successful multi-dimensional index structure, has widely been
used in research and DBMS products. The clustering pattern of
the objects (i.e., tuples in relational tables) among R*-tree leaf
nodes is one of the decisive factors on query performance. How
then is the clustering pattern formed? In this paper, we first
answer this question and then present several proposals to
improve query performance on business data. Discussion and
experimental result indicate that our new proposals are very
efficient.

Index Terms—Multidimensional indices, R*-tree, clustering
criterion, Multidimensional range query, TPC-H

I. INTRODUCTION

More and more applications require the processing of
multidimensional range queries on business data usually
stored in relational tables. For example, Relational On-Line
Analytical Processing in the data warehouse is required to
answer complex and various types of range queries on large
amounts of such data. In order to obtain good performance for
such multidimensional range queries, multi-dimensional
indices, in which the tuples are clustered among the leaf nodes
to restrict the nodes to be accessed for queries, are helpful
[15,16].

Many index structures exist. Among them, the R*-tree [9] is
widely used in applications and research [1,3,4,5,8]. The
R*-tree is also used in this study, although the proposals in the
present study can also be applied to other hierarchical index
structures.

In several previous studies [1,8,11,14,18], the aggregate
values are pre-computed and stored in a multidimensional
index as a materialized view. When required, the aggregate
values can be retrieved efficiently. However, the present study
is completely different from the related works in that we focus
on enhancing the R*-tree in order to speed up the evaluation of

*The Graduate School of Information Science and Electrical
Engineering, Kyushu University, Japan
{fengyk keneko} @is.kyushu-u.ac.jp
**Department of Information Network Engineering, Kurume Institute
of Technology, Japan

akfumi@cc.kurume-it.ac.jp

range queries themselves.

In the present paper, the clustering pattern of tuples among
the leaf nodes is reported as a decisive factor on search
performance. In addition, there exist many slender leaf nodes
when the R*-tree is used to index business data, which greatly
degrades the query performance. Slender nodes refer to the
nodes in which the Minimum Bounding Rectangles (MBRs)
have at least one very narrow side (even zero) in some
dimension(s). Some examples are MBRs that are roughly
shaped as line segments in two-dimensional spaces and those
that are roughly shaped as plane or line segments in
three-dimensional spaces.

The present clustering criterion for constructing the R*-tree
will be clarified to be unsuitable to business data. Several
proposals are then presented in order to improve the query
performance on business data. A discussion is presented and
experimental results obtained in the present study indicate that
the present proposals are very efficient.

The remainder of the paper is organized as follows. Section 2
describes the use of multidimensional indices for relational data.
Section 3 presents our observations. Our proposals are
presented in Section 4. Section 5 presents our experimental
results, and Section 6 concludes the paper.

II. INDEXING BUSINESS DATA USING THE R*-TREE

In this section, we examine how to use the R*-tree to index
business data and present several terms used in the present
study.

Let T be a relational table with # attributes, denoted by T(Aj,
Ay, -+, A,). Attribute A; (1 <i < n) has domain D(A)), a set of
possible values for A;. The attributes often have types such as
Boolean, integer, floating, character string, date, and so on.
Each tuple t in T is denoted by <ay,a,, **+,a,>, where a; (1 <i <
n) is an element of D(A)).

When the R*-tree is used in relational tables, some of the
attributes are usually chosen as index attributes, which are used
to build the R*-tree. For simplification of description, it is
supposed without loss of generality that the first k (1< k < n)
attributes of T, <A|,A,, *** ,A;>, are chosen as index attributes.
Since the R*-tree can only deal with numeric data, an
order-preserving transformation is necessary for each
index attribute. After the necessary
transformations, the & index attributes form a k-dimensional
space, called the index space, where each tuple of T
corresponds to one point.

non-numeric

(Advance online publication: 17 November 2007)

TAENG International Journal of Computer Science, 34:2, IJCS 34 2 06

It is not difficult to find such a mapping function for Boolean
attributes and date attributes [17]. In a previous study [6], an
efficient approach was proposed that maps character strings to
real numeric values within [0,1], where the mapping preserves
the lexicographic order. This approach is also used in the
present study to deal with attributes of character string.

We call the value range of A;, [1;, u;] (1£i £ k) data range of
A, an index attribute (in the present paper, “dimension” and
“index attribute” are used interchangeably). The length of the
data range of A, [u;-1}, is denoted by R(A,). The k-dimensional
hyper-rectangle, [1,u;]% [Ip,us]* = X[l;,], forms the index
space. Attributes specified in the range query condition are
called query attributes.

Simple but basic range queries are considered in the present
paper. The query condition is formed by chaining atomic
predicates by logical “AND”. An atomic predicate represents
an interval of a dimension such as “/ <A< u", where A is an
attribute, and / and u are range constants. The special case of “/
< A< [” means “A = [”. A range query on table T(Al, A2, ...,
An) is expressed by an SQL-like query language as follows.

Select ...
From T
where /g <Aq <ugq

and lququ Squ
and /gm <Aqm <tigm

Here {Aqi,....,Aqm} {A1,...,A}. Attributes specified in the
range query condition are called query attributes.

If the R*-tree is used to index business data stored in a
relational table, the all of the tuples are clustered in R*-tree leaf
nodes. See Figure 1.

leaf nodes

o B
- | __query range
Eg//tuple

Figure 1. Leafnodes and query range.

Figure 1 shows an example of leaf nodes and query range.
The query range, given by the user, refers to the region in
which the user wants to find the result.

Figure 1 shows that if the tuples are properly clustered
among the leaf nodes, then the number of leaf nodes to be
accessed for this range query will drop. Thus, the clustering
pattern is one of decisive factors on query performance.
However, the question as to who decides the clustering pattern
remains. The answer is the “clustering criterion” in the insert

algorithm of the R*-tree. Let us next examine the reason for
this.

The R*-tree is constructed by inserting the objects one by
one. In the constructing procedure, the insert algorithm has to
choose a proper subtree to contain each new incoming tuple. In
the present paper, the criterion that decides which subtree
should be chosen is called the insert criterion or the clustering
criterion. For a given dataset, this criterion decides the final
clustering pattern of the tuples among the leaf nodes. Note that
the present clustering criterion of the R*-tree cannot lead to a
proper clustering pattern when the R*-tree is applied to
business data. In addition, a novel clustering criterion and an
extended normalization will be proposed.

III. OBSERVATIONS

This section describes our observations on the R*-tree used for
business data.

A. Many Slender Nodes Exist

1) Business data distribution
As reported in our previous study [1], the data ranges of the
attributes of business data differs greatly from each other. For
instance, the data range of “Year” from 1990 to 2003 is only 14
whereas the amount of “Sales” for different types of “Product”
may reach several hundreds of thousands. Another typical
example of such attributes with small cardinalities is the
Boolean attribute, which inherently has only two possible
values. Attributes with other data types may also semantically
have small cardinality (e.g., “Weekday” with seven values). In
the LINEITEM table of the TPC-H benchmark,
RETURNFLAG, SHIPINSTRUCT, and SHIPMODE,
respectively, have only 3, 4, and 7 distinct values, although
their data type is character string.
Figure 2 shows an example in two-dimensional space.

y-axis (3 values)

»
»

x-axis (floating value)

Figure 2. Tuples in indexspace.

In Figure 2, the y-axis has only three different values. In
contrast, the x-axis shows many possible floating values. Thus,
the tuples (black dots) are distributed in lines. It is not difficult
to understand that the R*-tree built on business data with a such
special distribution has many slender leaf nodes. Again,
Slender nodes refer to nodes in which the MBRs have at least
one very narrow side (even zero) in some dimension(s).

In order to investigate the existence of slender nodes in
R*-tree used in business data, using the LINEITEM table in
TPC-H benchmark [2], an R*-tree was constructed and all of
the areas (or volumes) of the leaf nodes are computed. In total,
200,000 tuples are generated in this table, with 16 attributes.

(Advance online publication: 17 November 2007)

TAENG International Journal of Computer Science, 34:2, IJCS 34 2 06

Six attributes, SHIPDATE (date), QUANTITY (floating),
DISCOUNT (floating), SHIPMODE (character string),
SHIP-INSTRUCT (character string), and RETURNFLAG
(character string), are selected as index attributes because they
are often used as query attributes in the queries of the
benchmark. The page size of our system is 4KB and each leaf
node can contain at most 77 tuples. The R*-tree has four levels
with 4,649 leaf nodes. We observe that, 2,930 of these 4,649
leaf nodes have 0-area, which is over 60%! In addition, there
are many leaf nodes still have only very small areas. An
example of the distribution of the leaf nodes is shown in Figure
3.

$ —

—

Figure 3. Distribution of the leaf nodes of the R*-tree used in business data.

2) Present clustering criterion

Since the clustering criterion is so important with respect to
the clustering pattern of tuples among the leaf nodes of the
R*-tree and the present study attempts to introduce a new
clustering criterion, let us briefly recall the present clustering
criterion of the R*-tree as follows.

A new tuple will be inserted in the node (subtree) at the
current level with

1) (for leaf level only) the least enlargement of the
overlapping area, if a tie occurs then

2) the least enlargement of the MBR area, if a tie occurs
again then

3) the least MBR area.

This criterion means that, if the new tuple reaches the leaf
level, for the newly incoming tuple, an attempt is made to enter
every node, and the enlargement of the overlapping area in each
case among the leaf nodes is calculated. And, the node with the
least enlargement of the overlapping area is chosen to contain
the newly incoming tuple. Then, if several nodes have the least
enlargement, the enlargement of the MBR area in each case is
calculated, and the node with the least enlargement of the MBR
area is chosen. If another tie occurs, then the node with the
smallest MBR area is chosen. If a tie occurs again, then one of
the nodes with the smallest MBR area is chosen arbitrarily. For
the non-leaf level, the enlargement of the overlapping area
among the nodes is not calculated and only the
above-mentioned 2) and 3) mentioned above in the criterion are

used.
3) Existence of slender nodes is positive feedback

In this subsection, we will confirm that the existence of
slender leaf nodes is a “positive feedback”. That is, once some
slender leaf nodes exist, the number of slender nodes will
increase as the new tuples are inserted, which greatly
deteriorates the search performance.

Let us consider the insertion algorithm of the R*-tree, using
the example depicted in Figure 4(a). Node A is a slender node
and point p is to be newly inserted. Point p should be inserted
into Node B because it is much nearer than to Node 4. However,
according to the insert algorithm of the R*-tree, in this case p
will be inserted into Node 4 because the area increment of
doing so is smaller than that for inserting p into Node B. Even if
the enlargement of the overlapping area among the nodes at this
level is considered, Node 4 tends to be chosen. After p is
inserted into Node A, Node 4 becomes very long, which may
deteriorate the problem of the slender node.

Figure 4(b) shows another example. There are two MBRs
that are shaped as line segments 4 and B. p is a new tuple to be
inserted. Where should p be inserted? Intuitively, p should be
inserted into Node B. However, p may also be inserted into
Node 4, although this enlarges the overlap (between Nodes 4
and B) and leads to a long node A. This is because the insertion
algorithm of the R*-tree cannot determine which node, 4 or B,
should be selected because both the overlapping area increment
and the area increment for selecting 4 and selecting B are 0. As
aresult, either Node 4 or Node B may be selected as the default
without consideration of the actual overlap. In addition, when a
new point (tuple) with the same y-axis coordinate as p is
inserted, the same process is repeated, and the new point is also
inserted into the default node.

A A
Node B
Node A Node A Node B
p

v

(@ (b)

Figure 4. Insertion in the case that slender nodes exist.

In this way, newly incoming tuples tend to be inserted into
existing slender nodes. The repeated insertion of such tuples
leads to the overflow of slender nodes, and the slender nodes
are split repeatedly. As a result,

1) many slender nodes are generated,

2) the space utilization of such nodes is greatly degraded, and
the total number of nodes in the R*-tree tends to increase,

3) slender nodes tend to become long (there is a low band on
the number of tuples in each leaf node),

4) overlapping among the leaf nodes is significant.

(Advance online publication: 17 November 2007)

TAENG International Journal of Computer Science, 34:2, IJCS 34 2 06

B. Problems Caused by Slender Nodes

The existence of slender nodes leads to some problems with
both R*-tree construction and queries.

As discussed in Section 3.1.3, the existence of slender nodes
is positive feedback, which means that, once slender nodes
occur, such nodes are repeatedly produced. This greatly
degrades the clustering pattern of tuples in the leaf nodes of the
R*-tree, which greatly influences the search performance.

In all of the range search algorithms, it is necessary to decide
whether one node MBR and the query range intersect. The
existing methods involve calculating the overlap volume
between the node MBRs and the query range. If one of the node
MBRs has the volume of zero, then the overlap volume
between the node MBR and the query range is zero and the
node and the query range are considered not to intersect, even
if the reality is otherwise, which may lead to an incorrect query
result. In addition, the range query performance of the R*-tree
with imbalanced clustering depends to a large extend on the
attributes used in the actual queries.

Let us consider an example. The length of data range in the
“Sales” dimension is very large (e.g., 5,000,000) while that in
the “Year” dimension is very small (e.g., only 14 from 1990 to
2003). According to our investigations, the MBR of each leaf
node cover almost the entire data range of the “Year”
dimension. This incurs fatal deterioration of the range query
performance. If only the “Sales” dimension is specified as the
query attribute, then the query can restrict the nodes to be
accessed, and so the query is evaluated more efficiently. On the
other hand, if only the “Year” attribute is specified in the range
query condition, for example, “Year = 1993”, almost all of the
nodes of the index have to be accessed in order to evaluate the
queries.

Fortunately, we found that the clustering pattern of the tuples
among the R*-tree leaf nodes can be controlled, which will be
discussed in the next section.

IV. PROPOSALS FOR THE APPLICATION OF THE R*-TREE TO
BUSINESS DATA

Our proposals include a hybrid clustering criterion using a
modified area calculation and an extended normalization
scheme.

A. A Hybrid Clustering Criterion

Generally speaking, the present clustering criterion (as
mentioned above) of the R*-tree is based on area, including the
overlap area enlargement, the MBR area enlargement, and the
MBR area, which leads to many slender nodes and significant
overlap among the leaf nodes. In this section, we explain how
to deal with the problem of slender nodes by using a hybrid
clustering criterion.

1) Modifying the area calculation.

Why can a proper subtree or leaf node not be found for
newly incoming tuples? The answer is that the enlargements
both in the overlap area and in the MBR area are zero for 0-area
nodes. Thus, comparison can not be made reasonably.

In order to avoid this situation, we modified the arca

calculation. When the area of a rectangle (a node MBR or the
overlap region of two node MBRs) is calculated, then all of the
zero-sides (i.e., the side length is zero), if exist, of this rectangle
are set to a trivial non-zero positive value (e.g., 10* in our
experiments).

The original area calculation of rectangle R is:

d
Area(R) = HS,»,
i=1
where S; is the side length of R in dimension i. and d is
dimensionality of the index space.
In the present study, this equation is modified as:

d
Area'(R) = HS,-',
i=1
. trivial —value
S.

1

5, =0,

otherwise,

1

where the trivial-value is set to 10, This trivial value must be
less than the unit in this attribute in order to avoid confusing. At
the same time, the trivial-value should not be too small, in order
to prevent the situation in which the calculation result cannot be
expressed. These two conditions are not difficult to guarantee
in actual applications. In this way, most non-comparable
situations caused by 0-area nodes can be avoided. Note that,
this modification only changes the clustering pattern of tuples
among the leaf nodes and has no effect on the correctness of the
query result.

2) Introducing a distance-criterion.

As mentioned below, a distance-based clustering criterion is
introduced to the existing area-based criterion.

1) For the leaf level, compare the enlargements of overlap
areas using the modified calculation. If a tie occurs, then

2) Compare the enlargements of MBR areas using the
modified calculation. If a tie occurs, then

3) Choose the nearest subtree (a leaf node for the leaf level).

Next, let us examine how to calculate the distance from one
point to a rectangle region in a d-dimensional space.

For a point p= (py,-**, py) and a rectangle R. Let the points s=
(s1,°++,84) and t = (#1,++,2,) be the two vertices of the node MBR
with the minimum coordinates and maximum coordinates in
each axis, respectively. The distance from p to R, dist(p, R), can
be given by

d 2
Z|pi _’”i| 5
i=1

Si Pi <5,
5i=94 Di >,
D; otherwise.

B. Extended Normalization

Normalization is a common way to deal with big difference
among the data range in different dimensions. In the existing
normalization, the attribute data are scaled so as to fall within a

(Advance online publication: 17 November 2007)

TAENG International Journal of Computer Science, 34:2, IJCS 34 2 06

small range of [-1.0, 1.0] or [0.0, 1.0] in each index dimension
[4,7]. However, the existing normalization is too stiff. That is,
all of the index attributes are dealt with in the same way. In the
present study, extended normalization is used to control the
clustering pattern. In the extended normalization, the values of
each attribute are normalized independently, that is, different
attributes many be normalized to different ranges.

Let us assume that the index attributes are (A, Ao, ..., Ay),
the original data ranges of which are R(A,), R(A,), ..., R(Ay),
respectively. Using the extended normalization, the data values
of A; (1<i<k) are normalized to [0, ¢;], where c; reflects the
degree of importance of A; The degrees of importance of
attributes can be decided by users according to, for example,
the frequency of the attributes occurring in the actual queries.

Thus, each tuple in the original index space is mapped to
the normalized index space. In addtion, the point (tuple)
(ay,ay,...,3;) in the original index space is mapped to

- - -1
(Gl h Xl a~l XCp, e Sk "k Xcl],

R(4)) T R(42) " R(Ap)

where /; (1<i<k) refers to the minimum value of A;. Here, ¢;
(1<i<k) is also called the control coefficient of A;. Thus, the
normalized distance Ndist(pl,p2) between two points
pi(ay,...,ap) and p,(by,...,by) can be calculated as

k

2
Ndist(py, p2) = Z(% x Ci]
. 1

i=1

While the existing normalization relocates virtually the data
range of each dimension to [0.0, 1.0] or [-1.0, 1.0], the extended
normalization relocates the data range of the A; (1<i<k)
dimension to [0,c¢;]. The existing normalization is a special case
of the extended normalization when ¢~= 1 for 1 <i <k. The
clustering pattern of the tuples among the leaf nodes will
change along with the variation of the control coefficients. The
basic idea is that by selecting appropriate control coefficients
for each dimension, to control the clustering pattern of the
tuples among the leaf nodes and then improve the query
performance of the often-used queries. If the index attributes
with larger control coefficients are used as query attributes, the
number of index nodes to be accessed for this query becomes
smaller. This consideration leads to the idea that providing
larger control coefficients to more important attributes may
improve the query performance of the often-used queries. A
simple idea to determine the degree of importance of an
attribute is based on its occurrence frequency in the actual
queries. The more frequently an attribute is used, the greater its
degree of importance. The control coefficients of the attributes
used in the index construction are roughly proportional to their
degrees of importance. Note that, (1) if some attribute needs to
be emphasized further, then its degree of importance is not
necessarily proportional to the frequence of its occurrence, and
(2), importantly, it is not necessary to create a new data set for
the extended normalization, which can be realized when the
data are inserted into the index.

The main purpose of the present study is to decrease the
overlap among leaf nodes and control the clustering pattern of
the tuples in order to improve the query performance of the
important queries. At the same time, the number of slender
nodes is greatly decreased and the total space utilization of
nodes can also be improved.

V. EXPERIMENTS

Using the TPC-H benchmark data [2] and Zipf distributed
data (the Zipf constant is 1.5 like the works [19,20]), we
performed various experiments to show the degree to which the
query performance can be improved using our proposals.

Dataset and index attributes of TPC-H Benchmark data:
The Lineitem table of the TPC-H benchmark, which has 16
attributes of various data types including floating, integer, date,
string, and Boolean, is used. The table used in our experiments
has 200,000 tuples. Six of the total 16 attributes are chosen as
index attributes, including SHIPDATE (date), QUANTITY
(floating), DISCOUNT (floating), SHIPMODE (character
string), SHIPINSTRUCT (character string), and
RETURNFLAG (character string), because they are often used
as query attributes in the queries of the benchmark.

Dataset with Zipf distribution: we created a dataset having
200,000 points with Zipf distribution in a six-dimensional
space. The Zipf constant is 1.5 like the work [19, 20]. The Zipf
distributed data are often used in OLAP researches.

Queries on the TPC-H benchmark data: The query ranges
of QUANTITY (floating) and DISCOUNT (floating) are both
changed from 10% to 100% of their entire data ranges. As for
the date attribute of SHIPDATE (date), the query range is the
period of one year and it is selected randomly for each query.
One value is chosen randomly in each of the other three
attributes (string), because the numbers of possibly different
values are only 3, 4, and 7, respectively.

Queries on the Zipf data: the queries on the six-dimensional
Zipf data are relatively simple. All of the dimensions are
handled equally. For the sake of simplicity without loss of
generality, all of the query ranges are cubes. That is, for each
query, the query lengths are the same in all query dimensions.
And the side-length changes from 10% to 100%.

Each query with the query range of the same size is repeated
100 times for different locations (randomly), and the average
numbers of accessed nodes are presented. The average number
of node accesses is a common criterion for evaluating query
performance [6]. The page size in our system is 4KB and all the
index structures are built based on “one node one page”.

A. Effect of the Hybrid Clustering Criterion

In order to investigate the effect of the new clustering
criterion on the R*-tree itself, the total numbers of nodes in
R*-trees with different clustering criteria are presented in Table
1, where M refers to the upper bound on the number of tuples
contained in each leaf node.

(Advance online publication: 17 November 2007)

TAENG International Journal of Computer Science, 34:2, IJCS 34 2 06

Table 1. R*-tree with different clustering criteria.

Original Hybrid criterion
criterion

M 77 77

Height 4 4

Nodes (TPC-H) 4892 3783

Nodes (Zipf) 4364 3513

From Table 1, we can observe that the hybrid clustering
criterion makes the R*-tree more compact for both TPC-data
and Zipf data..

Table 2-1 presents a comparison of the number of different
accessed nodes for TPC-H data. The query range refers to the
side length of the query range in the two floating attributes, i.e.,
QUANTITY and DISCOUNT. Table 2-2 is a similar
comparison using Zipf data.

Tables 2-1 and 2-2 show that the hybrid clustering criterion
can greatly improve the query performance both for TPC-H
data and the Zipf data. We also considered the fact that, for the
TPC-H data, the number of accessed nodes does not always
increase as the query range grows because that the query ranges
in the other four index attributes change randomly at the same
time.

Table 2-1. Number of accessed nodes using TPC-H data.

Query Original R*-tree with
range R*-tree hybrid criterion
10% 369 95

20% 648 126

30% 603 131

40% 388 137

50% 683 237

60% 489 248

70% 708 231

80% 691 275

90% 571 357

100% 764 358

Table 2-2. Number of accessed nodes using Zipf data.

Query Original R*-tree with
range R*-tree hybrid criterion
10% 25 21

20% 162 134

30% 299 153

40% 413 192

50% 612 326

60% 926 413

70% 1320 922

80% 2468 1501

90% 3096 2195

100% 4364 3513

B. Effect of Extended Normalization

Using the above-mentioned TPC-H table and Zipf
distributed data, the effect of the extended normalization is
investigated. We can not exhaust all possible patterns of range

queries using six index attributes and so select range queries
using two or three index attributes. Two groups of range
queries are tested as examples.

Table 3 shows the attributes and their corresponding
dimensions for TPC-H data. Tables 4 and 5 are the two groups
of queries.

Table 4 is Query Group A, consisting of five range queries,
each of which has two or three query attributes. Table 5 shows
Query group B, consisting of four range queries. Unlike Query
Group A, each query in Query Group B has the same number of
query attributes. The degree of importance given to each
attribute is based on the number of its occurrences in the
queries.

Table 3. Attributes and their dimensions
(for TPC-H data).

Attributes Dimensions
SHIPDATE Al
QUANTITY A2
SHIPMODE A3
SHIPINSTRUCT A4
DISCOUNT A5
RETURNFLAG A6

Table 4. Query group A

Al A2 A3 A4 A5 A6
Query-1 o o o
Query-2 o 0o
Query-3 o o o
Query-4 o
Query-5 o o
Importance 3 3 2 2 1 1
Degree

Table 5: Query group B.

Al A2 A3 A4 A5 A6
Query-1 o o o
Query-2 o o o
Query-3 o o
Query-4 o o o
Importance 3 3 2 2 1 1
Degree

The performance comparison on TPC-H data is shown in
Tables 6-1, and 7-1. The same comparison using Zipf data is
shown in Tables 6-2 and 7-2. “without hybrid criterion” in
these tables indicates that the R*-tree is built using the extended
normalization, but not the hybrid clustering criterion, and “with
hybrid criterion” indicates that the R*-tree is built using both
the extended normalization and the hybrid clustering criterion.
The query range in each of the float dimensions is 10% of the
entire data range and only one value is selected for each of the
string dimensions.

These results show that, except Query-1 in the group A and
Query-3 in the group B for TPC-H data, Query-1,3 in the group

(Advance online publication: 17 November 2007)

TAENG International Journal of Computer Science, 34:2, IJCS 34 2 06

A and Query-3 in the group B for Zipf data, all queries perform
better using our proposals. In addition, the total performance of
both Query Group A and Query Group B has been clearly
improved.

Table 6-1. Performance comparison of group A
(TPC-H data).

Original R*-tree using
R*-tree extended normalization
Without hybrid With hybrid
criterion criterion
Query-1 392 802 668
Query-2 2701 2532 1997
Query-3 2866 1049 870
Query-4 2638 2415 2063
Query-5 4176 2566 2318
Total 12773 9364 7916

Table 6-2. Performance comparison of group A

(Zipf data).
Original R*-tree using
R*-tree extended normalization
Without hybrid With hybrid
criterion criterion

Query-1 58 103 84
Query-2 847 616 276
Query-3 625 802 767
Query-4 763 518 381
Query-5 1018 901 794
Total 3311 2940 2302

Table 7-1: Performance comparison of group B.

TPC-H data)
Original R*-tree using
R*-tree extended normalization
Without hybrid With hybrid
criterion criterion
Query-1 | 3950 1209 959
Query-2 | 2266 869 861
Query-3 | 391 1004 590
Query4 | 469 977 535
Total 7076 4059 2945

Table 7-2: Performance comparison of group B.

(Zipf data)
Original R*-tree using
R*-tree extended normalization
Without hybrid With hybrid
criterion criterion

Query-1 | 732 625 506
Query2 | 673 721 634
Query-3 | 695 753 712
Query-4 | 778 615 508
Total 2878 2714 2360

VI. CONCLUSIONS

In the field of OLAP, it is important to process various types
of range queries on business data. The R*-tree is one of the
successful multidimensional index structures. In the present
paper, we attempted to enhance the R*-tree in order to evaluate
range queries on OLAP data more efficiently. Our proposals
include a hybrid clustering criterion using a modified area
calculation and an extended normalization scheme. The
experiment results of the present study indicate that our
proposals are very efficient.

ACKNOWLEDGEMENT

This research is partially supported by Japan Society for the
Promotion of Science, Grant-in-Aid for Scientific Research
15650017 and 16200005. The authors also would like to thank
Mr. Zhibin Wang, who conducted part of the experiments.

REFERENCES

[1] C. Chung, S. Chun, J. Lee, and S. Lee (2001). Dynamic Update Cube for
Range-Sum Queries. Proc. VLDB Intl. Conf.,

[2] Council (1999). TPC benchmark H standard specification (decision
support) " Attp://www.tpc.org/tpch/

[3] D. Papadias, N. Mamoulis, and V. Delis (1998).

Algorithms for Querying by Spatial Structure. Proc. VLDB Intl. Conf.

[4] H. Horinokuchi, and A. Makinouchi (1999). Normalized R*-tree for
Spatiotemporal Databases and Its Performance Tests.

IPSJ Journal, Vol. 40, No. 3.

[5] H. P. Kriegel, T. Brinkhoff, and R. Schneider (1993). Efficient Spatial
Query Processing in Geographic Database Systems.

[6] H. V. Jagadish, N.Koudas, and D. Srivastava (2000). On Effective
Multi-Dimensional Indexing for Strings. Proc. ACM SIGMOD Intl.
Conf.

[7] J. Han and M. Kamber (2001). Data Mining—Concepts and Techniques.
Morgan Kaufmann press.

[8] M. Jurgens, and H.-J. Lenz (1998). The Ra*-tree: An Improved R-tree
with Materialized Data for Supporting Range Queries on OLAP-Data.
Proc. DEXA Workshop.

[9] N. Beckmann, and H. Kriegel (1990). The R*-tree: An Efficient and
Robust Access Method for Points and Rectangles. Proc. ACM SIGMOD
Intl. Conf.

[10] N.Roussopoulos, S.K and F. Vincent (1995). Nearest neighbor Query.
Proc. ACM SIGMOD Intl. Conf.

[11] N. Roussopoulos, Y. K and M. Roussopoulos (1997). Cubetree:
Organizaiton of and Bulk Incremental Updates on the Data Cube. Proc.
ACM SIGMOD Intl. Conf.

[12] R. Agrawal, A. Gupta, and S. Sarawagi (1997).
ModelingMultidimesnional Databases. Proc. Intl. Conf. on Data
Engineering (ICDE).

[13] S. Hon, B. Song, and S. Lee (2001). Efficient Execution of
Range-Aggregate Queries in Data Warehouse Environments. Proc. the
20th Intl. Conf. on conceptual modeling.

[14] S. Hong, B. Song and S. Lee (2001). Efficient Execution of
Range-Aggregate Queries in Data Warehouse Environments, Proc. 20th
international Conference on CONCEPTUAL MODELING (ER 2001).

[15] V. Markl, F. Ramsak, and R. Bayer (1999a). Improving OLAP
Performance by Multidimensional Hierarchical Clustering. Proc. IDEAS
Intl. Synposium.

[16] V. Markl, M. Zirkel, and R. Bayer (1999b). Processing Operations
with Restrictions in Relational Database Management Systems without
external Sorting. Proc. Intl. Conf. on Data Engineering.

[17] Y. Feng, A. Makinouchi, and H. Ryu (2004). Improving Query
Performance on OLAP-Data Using Enhanced Multidimensional Indices.
Proc. ICEIS Intl. Conf.

[18] Y. Kotidis, and N. Roussopoulos (1998). An Alternative Storage
Organization for ROLAP Aggregate Views Based on Cubetrees. Proc.
ACM SIGMOD Intl. Conf.

(Advance online publication: 17 November 2007)

TAENG International Journal of Computer Science, 34:2, IJCS 34 2 06

[19] S. Hong, B. Song, and S. Lee (2001). Efficient Execution of Range
Aggregate Queries in Data Warehouse Environments. Proc. Intl. Conf. on
the Entity Relationship Approach (ER).

[20] C. Zhang, J. Naughton, et. al.: On Supporting Containment Queries in
Relational Database Management Systems. Proc. ACM SIGMOD Intl.
Conf.

Yaokai Feng received the B.S. and M.S. degrees in Computer
Science in 1986 and 1992, respectively. Since he received Ph.D
degree in Information Science from Kyushu University, Japan,
in 2003, he has been with in the same university as an assistant
professor. He is a member of IPSJ, IEEE, ACM and an editorial
board member of IAENG International Journal of Computer
Science.

Akifumi Makinouchi received his B.E. degree from Kyoto
University, Japan, in 1967, Docteur-ingereur degree from
Univrcite de Grenoble, France, in 1979, and D.E. degree from
Kyoto University, Japan, 1988. Since 1990, he has been with
the Graduate School of Information Science and Electrical
Engineering, Kyushu University, Japan, where he is a professor.
He is a member of IPSJ, ACM, and IEEE and fellow of IEICE.

Kunihiko Kanako received his Ph.D. degree form Kyushu
University. Since 1996, he has been with the Graduate School
of Information Science and Electrical Engineering, Kyushu
University, Japan, where he is an associate professor. His
research interests include spatial databases, and biomedical
databases. He is a member of IPSJ, IEICE, ACM, and IEEE

(Advance online publication: 17 November 2007)

