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Information Fusion based on Bayesian Networks
for Hazard Analysis in Machine Tool
Environments
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Abstract—Modern sliding table saws are equipped
with several passive safety devices. However, alone
in Germany several hundred severe injuries or limb
amputations occur each year due disregarding safety
regulations and demounting of passive safety devices.
Thus an active safety system is developed in order to
protect the machine user. For this purpose, a multi
sensor system for hazard analysis based on infrared
and capacitive sensors is applied. When a danger-
ous situation is recognized by the developed sensors,
the system triggers a rapid saw blade braking device.
The hazard analysis is carried out by means of an
information fusion of the sensor signals based on a
Bayesian network. For the fusion process the mea-
surement values of the sensors have to preprocessed
appropriately. The system is implemented in C and
LabView and runs in real-time. Validation tests have
shown the very reliable function of the developed haz-
ard analysis.

Bayesian network, measurement fusion, infrared sen-
sor, capacitive sensor, hazard analysis

1 Introduction

Serious accidents such as amputations of fingers can be
caused by sliding table saws (see Figure 1) and other ma-
chine tools. The reasons for these accidents are mostly
inattention and disregarding of safety regulations. Al-
though it is the law, passive accident protection systems
like the push stick are often not used. To avoid these
accidents an active safety system is developed. The goals
of such a system are recognizing a dangerous situation
and if necessary reacting appropriate on the situation by
means of warning lights or a rapid braking system. A
description of the braking system is beyond the scope of
this paper. These goals are met by a multi-sensor system
mainly consisting of infrared-sensors, capacitive sensors,
a camera with an appropriate image processing and an
information fusion of the sensor signals.

The paper is organized as follows. First of all the em-
ployed sensor systems are described. In Section 2 a brief
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Figure 1: Picture of a sliding table saw.

introduction to the applied sensor system is given. Af-
terwards the preprocessing of the sensor signals is pre-
sented. In Section 4 the applied Bayesian network for the
information fusion is discussed. Following, the results are
shown and the conclusions are briefly drawn.

2 Sensor Systems

The first step of an active safety system for sliding table
saws are a non-contact sensor systems. The sensor sys-
tems have to work contactless, because the machine user
should not recognize that he is kept under surveillance
by the safety system. Furthermore, he is also not inter-
fered with any kind of safety devices, which can impede
working. Under these conditions, possible sensor princi-
ples are investigated and applied. The different applied
sensors for finger detection are shown in this section.

2.1 Thermopile Infrared(IR)- Sensor Sys-
tem

Infrared radiation exists in the electromagnetic spectrum
at a wavelength that is longer than visible light. Ob-
jects that generate heat also generate infrared radiation
and those objects include the human body (wavelength
around 9.4 um). Infrared in this range will not pass
through many types of material that pass visible light
such as ordinary window glass and plastic. However it
will pass through, with some attenuation, material that
is opaque to visible light such as silicon. An unprocessed
silicon wafer makes a good IR window in a dust-proof
enclosure for use in dusty environments. Detectors that
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measure infrared radiation by means of the change of tem-
perature of an absorbing material are classified as ther-
mal detectors. One type of infrared detectors is presented
here. Thermopile sensors are based on the thermoelectric
effect [2] and consists of multiple thermal elements, which
are arranged in a row in order to boost the measurement
effect. The output voltage of the applied sensor is in the
p-voltage range. Thus, the output has to be amplified
carefully, because noise or disturbing voltages are also
amplified. Hence, the amplifier circuit has to be shielded
and analog low-pass filters are utilized.

2.2 Capacitive Sensor Systems

Another principle for non-contact sensing is to utilize the
dielectric properties of human tissue. Human tissue con-
sists mostly of water and one feature of it is the high
value of the dielectric constant €, [3]. Therefore, electri-
cal fields can be influenced significantly by human tissue.
On the other side, wood or even drenched wood have
shown approximately a four time lower value of the di-
electric constant in empirical tests compared to human
tissue. Furthermore, metal also influences significantly
the electrical field. However, this issue can be handled
by additional types of sensors. Two types of capacitive
sensors are applied and presented in the following.
Capacitive measurement: A ready-to-use integrated cir-
cuit for capacitive measurement is available from Analog
Devices [8]. An appropriate sensor construction was de-
veloped in order to measure the capacity between the
table and a specific small part of the saw guard. When
the elevation changes of the saw guard are known, human
tissue can be detected.

Stray field measurement: Capacitors possess one main
field and corresponding stray fields. These two types of
field can be influenced. However, influences on the main
field causes a greater effect and can be measured easily.
The range of the stray field is low (less than 0.5 ¢m in the
applied version) and the measurement effect is marginal.
So an amplitude attenuation measurement is employed,
because changes of the stray field caused by e. g. hu-
man tissue cause also a small change of the applied volt-
age across the capacitor. These changes are measured
and amplified for near range hand detection. The sen-
sor is implemented into some safety segments of the saw
guard, see Figure 2. One drawback of this setup is the
dependency of motion of the sensor’s sensitive wires due
to changes of the electrical field configuration in conse-
quence of the variation of the sensor geometry. However,
this effect is corrected by means of a potentiomete.

2.3 Camera and Image Processing

The camera observes the left side of the saw guard (see
Figure 3) and the entire image processing system shall
find reliably the human hand. A detailed description of
each image processing step would go beyond the scope
of this paper. Thus, the steps are only itemized. More

details can be found in [6, 7]. The first step of the image
processing is a motion detection, because only moving
hands could cause a dangerous situation. The next step
is a feature extraction based on edges and color. After-
wards a probabilistic hand model is applied to classify the
hand and to initialize an active contour algorithm. The
final steps are the hand tracking and the calculation of
dynamic parameters (hand velocity, direction, position).
By means of these parameters the hand can be detected
reliably and the potential danger can be estimated. Un-
fortunately, the computational effort of the image pro-
cessing is enormous and it runs not in real time on the
available hardware. Therefore, its influence on the hand
detection and the information fusion is simulated here.

Figure 2: Modified saw guard

2.4 Modified Saw Guard

In Figure 2 the modified saw guard is shown. Each safety
segment includes a capacitive sensor and a potentiometer.
This segments are necessary to inhibit lateral movements
into the saw blade. Also the extension of the saw guard
can be seen. The extension is equipped with a capacitive
and a thermopile sensor and is used for a primary hand
detection and warning the machine user.

Potentiometer

Capacitive sensor

Camera area

Thermopile Sensor

Figure 3: Sensor mounting and dangerous areas (red:
high danger, yellow: mediumdanger)

Figure 3 displays the top view of the saw guard and the
machine table. Also the sensor locations are marked. The
yellow and red areas in the picture assign different dan-
gerous zones for human hands. When a hand is detected
in the yellow area, the user will be warned. This area is
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a medium danger zone. The red area is the high danger
zone. When a hand enters this area, the saw blade is
stopped immediately.

3 Preprocessing of Sensor Signals

Before the output signals from the sensors can be used
for an information fusion with a Bayesian network, they
have to become preprocessed. In doing so the signals are
first scaled so that the range of values is limited to [0, 1].
The 0 shall be output, if no object is found in the area
of the sensor and the 1 shall be used, if the sensor signal
achieves or exceeds a characteristical value for a detection
of a hand. To make the information of the sensors more
reliable known disturbances are compensated.

The output signal u, () from the thermopile sensors are
constant as long as there is no change of temperature
in their detection area. To transform the output signal
for this situation to zero, the initial value w,, (0) is sub-
tracted. If an object enters the detection area, there is a
change of temperature and the output signal of the ther-
mopile sensors rises. To get a value of 1 if a temperature
similar to the one made by a hand is measured, the signal
is divided by 4, ,. The value of 4, , is determined with a
typical value for a detected hand in the monitored area.

— Usg (0)

uIR

(1)

IR

To prevent values higher than 1 and lower than 0 these
values are cut. The final formula for the pre-processing
of the thermopile sensors is

The capacitive sensor in the medium danger zone is at-
tached to the extension of the saw guard, which is ad-
justable in height. The used sensor works similar to a
parallel-plate capacitor. One plate is the sensor and the
other plate is the work bench of the saw. As you can see
in formula (3) the capacity for a parallel-plate capacitor
depends on the distance d between the two plates.

A
C=¢p- e (3)

Because the capacity depends on the height a simple sub-
traction of an initial value is not possible. Instead of
this, a characteristic curve for the capacities in different
heights is to be made. With the help of a set of pairs
of variates a cubic spline interpolation is done. By sub-
tracting the interpolant S(h) for the actual height h from
the measured value of the capacitive sensor ucqp(t), the

required 0 is archived. The method how a cubic spline
interpolation can be built is explained in [1].

W tteap(t) = tcap(t) — S(h) 4)

Also the normalization of a hand detection to the value
of 1 is more difficult than for the thermopile sensors. It is
not possible to determine a constant divisor for the nor-
malization, because the percentage of the volume which
the hand takes between the sensor and the work bench
is dependent on their distance. Therefore a straight line
is defined, with which the value of 1 is achieved for a
hand between the sensor and the work bench indepen-
dent of the saw guard height. The pre-processing for the
capacitive sensor in the danger zone joins to:

U Ueap(t) = (Ucap(t) — S(h)) - (h —3) (5)

Afterwards again the values higher than 1 are set to 1
and the ones lower than 0 are set to 0.

The compensation of the capacitive sensors mounted in
the safety segments is complex, because the measured ca-
pacity of the sensors is dependent on the position of the
segment. To compensate the influence of the setting of
the safety segment, the height of the saw guard as well as
the angle oft the safety segments are necessary. A poten-
tiometer is added to each safety segment to measure the
angle. The best possibility to compensate the influences
is a two-dimensional characteristic map.

3.1 Characteristic Maps for Sensor Signal
Correction

For the setting of a two-dimensional characteristic map
a set of value triples consisting of a measured capacity c,
the height h and the value of the potentiometer r(¢p) is
required. The two variables r and h have to be lined up
on straight lines as shown in Figure 4.

ha
—H———+—+—H |
. T’fﬂH‘l ‘rk-&-‘l, 1
e hn+} 1 \
| 1‘ ‘1 ‘1611‘ 1 ) (r,h)
T A
o e —
R Wlm
v
Figure 4: Alignment of the variables for the two-

dimensional characteristic map

For each safety segment the compensation with the help
of the two-dimensional characteristic map is done sep-
arately. Because of this for all six safety segments the
capacity ¢ has to be measured for different heights and
different angles without an object in their detection area.
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To compute the compensation value for a specific height h
and a specific angle for the safety segment ¢ first of all the
nearest available reference values from the characteristic
map are needed.

hn S h < thrl (6)
Tm,n S r< 7ﬂm—‘rl,n (7)
Thntl ST < Thtlntl (8)

With the help of the so specified parameter the interpo-
lation value F'(h,r) can be calculated.

F(h,r) =(1—a1) - (1=0): f(hn,Tm.n)
+ (1 —az) b f(hnt1,7kn+1)
+ar-(1=0) f(hn,"mt1.n)
+ag b f(hnt1, her1ns1) 9)

The distances that are required for the calculation are:

T —Tmmn

= 10
“ T"m+1,n — Tm,n ( )
ag = "= Tkn+tl (11)

Tk+1,n+1 — Tkn+1

h—hy,

b=—— " 12
thrl - hn ( )

The complete two-dimensional characteristic map of the
2nd safety segment on the left side is shown in Figure 5
exemplarily.

Figure 5: Two-dimensional characteristic map of the 2nd
safety segment on the left side

With the subtraction of the interpolated value F'(h,r)
from the measured sensor signal w4, (t) the compensated
sensor signal ;.. (t) is achieved.

Ul (1) = ttam (t) = F(h,7) (13)

But the resulting compensation is still not good enough
for the later use as information for a security system. The

problem is, that the values of r(¢) for the case that the
safety segments are in contact to the work bench differ for
different heights. The measured capacity wqm(t) again
changes a lot, if the safety segment loses contact to the
work bench. Thus two adjacent reference heights have
completely different interpolation values f(h,r) for the
same values of the potentiometers r(y). This is visible
at the steep shoulders in Figure 5. To solve this problem
some extensions have to be done.

The designation of the reference heights and the calcula-
tion of the distance b stays unaltered.

B < h < hpyy (14)
h— hy,

b= —— " 15

hn+1 - hn ( )

But before the adjacent referent points for the value of
the potentiometer is appointed, the value gets adjusted.
Therefore the difference of two reference values r¢, . .
and 7¢, . 1, for which the reference capacities exhibit
their maxima, is calculated.

T‘fm,azyn = a’rg In?X{f(hn, T)} (16)
Tfmaemt1 = arg max{f(hn41,7)} (17)
A?“fmaw = Tfmazgn — ,rfmaz,n+1 (18)

To get two adjusted values 74, and rp,,, for the further
interpolation process the difference Ary . is one time
added prorated and one time subtracted prorated to the
measured value of the potentiometer.

(19)
(20)

Th r(¢) +Arg,... b

= r(p) = Arg,,, - (1-0)

n

Thy41

The designation of the adjacent reference values and the
calculation for the missing distances are done as follows.

T'm,n <7rp, < Tm+1,n (21)

Thntl < Thypr < Thktlntl (22)

a = Th, — Tmmn (23)
"m+1,n — Tm,n

ay = Thngr 7 Thintl (24)

Tk+1,n+1 — Tk,n+1

And the final formula for the computation of the inter-
polation value lasts unchanged.

F*(h,r) =(1 —ay1) - (1= b) - f(hns Tomn)
+ (1 - a2) . b : f(thrlaTk,nJrl)
+ ap - (]- - b) . f(hnvrm+1,n)

+ag b f(hnt1, hkr1ns1) (25)
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By subtracting the new extended two-dimensional inter-
polant F*(h,r) from the sensor signal wm(t) a value
approximately 0 is achieved for the case that no object
is in the monitored area of the capacitive sensors in the
safety segments.

U (£) = Uiam (8) = £ (h,r) (26)

To get the value of 1 for a hand detection the compen-
sated signal is divided by a constant divisor 4. Again all
values outside the range of [0,1] are cut.

0 for

Utam () < F*(h,7)
F*(fL,T) < Upam(t)
S (F*(h,r) + '&lam)
uéam(t) >

(F*(h7 T) + alam)

Uam (t)= (27)

1 for

3.2 Discretization of Corrected Sensor In-
formation

Having all sensor signals transformed into the range of
[0,1], they get discretized. It is also possible to work
with continuous variables in Bayesian networks, but it
saves computing time by using only discrete variables.
Therefore the signals shall be discretized into three states.
They are called ”"no object” (nothing), ”cold object”
(cold) and ”warm object” (warm) for the thermopile sen-
sors and "no object” (nothing), ”object with small ¢,”
(small €,) and ”object with big €,” (big €,.).

The discretization shall not be done in the classical way
so that every value is part of one state by expelling all
other states. Instead of this a ”probability function” v (z)
similar to the membership function p(z) of the fuzzy logic
is introduced. The ”probability function” ), (z) gives a
probability for the state ax to be true for a specific sen-
sor value z. The big difference to the fuzzy membership
functions p(z) is, that all probabilities for every sensor
value sum up to 1.

Yo, (33) + Yq, (.’L‘) + ., =1

As a basis for the ”"probability function” a bell-shaped
curve g(z) is used.

(28)

N _(e=m)?
g (@)=

(29)

The position of the maximum can be defined with m and
the position of the inflection points is also arbitrary with
m =+ o. For the discretisation first of all two limits {; and
lo are selected to define the three states out of the range
[0,1]. Afterwards the transitions between the three states
become fuzzy with the help of the bell-shaped curve. The
function value of the fuzzy membership function p(z) at
the limits [; and Iy is set to 0.5. Therefore the position
of the maxima have to be defined.

mie =2 £+/—202 - In(g*(z))

(30)

Out of the two limits {; and o we get the four maxima
My, 15 My, 55 My, and my, ,. The membership functions
for the discretisation of the sensor signals u(t) with the
basis of the bell-shaped curve g(z) and the limits I; and
lo are defined as follows:

1 foru<my,
Haq (u): _ (””7"”1,1)2 (31)
e 202 foru>my,
(w=myy 5)?
e 20° foru<my,
Has ()= 1 formy,, <u<my,, (32)
(w=myy )2
e 22 foru>my,,
(m—wzl2,2)2
e 202 oru<m
pay (1) = ! (33

1 foru>my,,

In Figure 6 three membership functions p,, are shown.
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Figure 6: Membership functions y;;, (u) for discretization

To convert the membership functions p,, into ”proba-
bility functions” v, (u) the sum X (u) over all functions
shall be exact 1. Therefore the difference AX(u) of X(u)
and 1 is calculated.

A¥(u) = X(u)—1
= flay (W) + fay (W) + fag(u) — 1

This difference is then subtracted from the membership
function with the highest probability.

(34)

o (@)~ AS(@W) for u<

()= { 1en (4 forush @)
La, (1) for u<ly

Yar, (W) = ¢ pra,(u) — AX(u) for Iy <u<ly  (36)
s (1) for u> 1
() for u<i

Yy (u) = { o () — AS() for us (37)

The resulting ”Probability functions” ,, (u) are illus-
trated in Figure 7.
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Figure 7: ”‘Probability functions”’ v, (u) for the dis-

cretization of the sensor signals u(t)

4 Applying Bayesian Networks for Haz-
ard Analysis

In this section the design of the information fusion by
means of a Bayesian network is explained. The goal of
the fusion is to detect a hazard. The Bayesian network
shall decide by means of the preprocessed sensor signals
if there is a hazard for a hand and if necessary cause an
emergency break of the saw. Furthermore there shall be
a warning if a hand is in danger, so that the user is alert
at an early stage. Afterwards the implementation in C
and the integration into NI LabView is explained. Also
some results and the validation are shown.

4.1 Design of Bayesian Networks

A Bayesian network consists of a set of variables and a
set of directed edges between the variables. Each variable
has a finite set of mutually exclusive states. The variables
are represented as nodes A,B,... in a directed acyclic
graph (DAG). The links between the nodes are describing
the dependencies between the variables. For each link a
conditional probability table P(A|By, ..., By) is added. A
detailed explanation of Bayesian networks can be found
in [4, 5].

As basic structure of the design for the net the defined
danger zones and the position of the different sensors
(shown in Figure 3) is used. A big advantage of the
Bayesian network is the modularity. So the design of the
net for different parts can be done separately and merged
together afterwards. First of all the part for the yellow
zone in Figure 3 is drafted. The graph for this part is
displayed in Figure 8.

For each sensor an information node (blue) has been cre-
ated which is linked to one of the two hypothesis nodes
(green). The variables represented by the hypothesis
nodes consist of four states. They are called: nothing,
wood, metal and hand. The information variables of the
nodes "cap yellow” and ”ir yellow” have the three states

Figure 8: Nodes and directed links for the yellow dan-
ger zone (cap denotes capacitve sensor and ir is infrared
sensor)

explained earlier (Section 3.2), while the variable of the
node "material identify” consist of the two states metal
and no metal. After defining the DAG and the different
states for all variables, the conditional probability tables
have to be specified. For the definition of the conditional
probability table of a node every possible combination of
states from all parent nodes has been examined. For ev-
ery possible combination a value for the probability has
to be defined. The conditional probability table for the
node ”yellow zone back” consists of four columns for the
four possible states and 4 -2 -3 = 24 rows for the dif-
ferent combinations of the states from the three parent
nodes ”yellow zone front”, ”material identify” and ”cap
yellow”.

The design for the red danger zone is divided into two
parts. One for the left side and one for the right side. This
has been done, because the sensor fusion for each side
shall be done separately. Because both sides of the red
danger zone are identical, a net for one side was created
and the design was then also used for the other side. The
graph for the left side is illustrated in Figure 9.

safety safety safety
1 3

segment
left W left

Figure 9: Nodes and directed links of the left side from
the red danger zone

The net consists of four information nodes to represent
the four sensors in this area. To estimate the position
of the hand the left side of the red danger zone is di-
vided into three subareas, one for each area defined by
the extend of the safety segment. For every subarea a
hypothesis node is defined. Again for every link a condi-
tional probability table has to be added.

As explained above, the net for the left side with its con-
ditional probability tables can also be used for the right
side. Now the three nets are merged with two links, one
from the node ”yellow zone back” to the node "safety
segment 1 left” and one to the ”safety segment 1 right”.
The connected nets are shown in Figure 10.
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Figure 10: Graph for the information fusion of the yellow
and red danger zones

With the connection of the subnets the conditional prob-
ability tables of the nodes ”safety segment 1 left” and
"safety segment 1 right” have to be updated, because
they got one more parent node. The tables now consist
of 4 columns for the different states of the node and 36
rows for all possible combinations of the states from the
parent nodes.

So far the design for the Bayesian networks is made with-
out considering that the sensors are distributed over a
length of 40 cm. Because of this a hand is never detected
from all sensors at the same time, but with a delay of sev-
eral milliseconds. Therefore a calculated maximum for
the state hand in one of the hypothesis nodes is stored
for a specified time. By saving the maximum the detec-
tion of a hand is used for the fusion even if the hand has
already left the monitored area of a sensor. The storage
time is chosen so long, that a very slow motion of a hand
can still be detected reliably.

In a next step the information from the image processing
is integrated into the network. The camera keeps the area
on the left side of the yellow danger zone under surveil-
lance. So it is possible to move ones hand through the
video controlled area into the yellow danger zone or im-
mediately into the red danger zone. To consider this, the
new hypothesis node for the camera is connected to the
nodes "yellow zone front” and "safety segment 1 left”.
The fraction of the graph with the integration of the in-
formation of the video surveillance is shown in Figure 11.

The added time delay between the hypothesis nodes can
be seen as well. The time delays between the node ” cam-
era surveillance” and its children nodes are computed
with the help of the information from the image pro-
cessing. The information of a hand detection in the area
of the video surveillance is not forwarded to the nodes
7yellow zone front” and ”safety segment 1 left” imme-
diately after the detection, but only after the computed
time delay.

The Bayesian network for information fusion is defined
completely now. With the help of the preprocessed sensor

Figure 11: Fraction of the graph with the integration of
the video surveillance

signals the probability for a hand at different positions on
the work bench of the sliding table saw can be calculated.
Now only an interpretation of the results to operate the
warning light and the emergency break have to be added.

Therefore two additional nodes (”warning” and ”stop”)
are added to the graph. These nodes are not part of the
Bayesian network. The node ”warning”’ represents the
decision if the hand is in danger and the user shall be
warned by lightening warning lights. The node ”stop”
stands for activation of the emergency stop. The node
"warning” or ”stop” gets active, if the probability for
the state hand of one of the adjacent nodes exceeds the
value of 0.5 for a warning and 0.4 for the emergency stop.
The adjacent nodes for the ”warning” are as you can
see in Figure 12 ”yellow zone back”, "safety segment 1
left”, "safety segment 1 right”, ”safety segment 2 left”
and 7safety segment 2 right”. The adjacent nodes for
the node "stop” are ”safety segment 3 left” and ”safety
segment 3 right”.

Figure 12: Bayesian network for the information fusion
with the nodes for the warning lights

4.2 Software Implementation

The Bayesian network designed in the previous section is
implemented in a C function, so that this function can be
called from a LabView VI. The whole information about
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the nodes, their directed links and the conditional prob-
ability tables are stored in this function. As parameter
with the calling from the LabView VI the current sensor
signals are passed into the function. The results of the
function are the probabilities for all nodes and the deci-
sion if the warning lights shall be turned on or the saw
has to be stopped. The information can then be displayed
with the help of the LabView VI. Also the actuators at
the sliding table saw are driven from the VI.

5 Results and Validation

To validate the capability of the designed Bayesian net-
work for the information fusion of the sensor signals, more
than 2000 tests have been carried out on a test bench at
the Institute of Industrial Information Technology, Uni-
versitdt Karlsruhe (TH). Passing these tests, four differ-
ent cases have been distinguished. If a hand is moving
through the yellow and red dangerous zones toward the
saw blade and the system is detecting the hand properly
and stopping the saw blade it’s called ”true positive”. If
the system is not able to detect the hand it’s called ”false
negative”. The other scenario for tests is that no hand is
in danger, but the sliding table saw is in regular use. In
this case the system can realize that no danger is present
("true negative”) or it can detect a hand by mistake and
activate the emergency break (”false positive”).

To verify the cases "true positive” and ”false negative” a
hand was moved on the working bench on different ways
towards the saw blade. The conducted tests are explained
in Table 1 with their frequency of occurrence for the two
cases.

description of the test tr-u? fals?
positive | negative
h h h the yell
. and through the yellow < 99% < 1%
into the red danger zone
hand direct into the > 97% < 3%
red danger zone
one finger direct into the > 06% < 4%
red danger zone
hand on wood through the yel- < 98% < 2%
low into the red danger zone
hand on metal through the yel- < 99% < 1%
low into the red danger zone
hand in a glove through
the yellow into the red ~ 40% | =~ 60%
danger zone

Table 1: Scenarios for the cases ”true positive” and ”false
negative” and their frequency of occurrence

Table 1 demonstrates that the information fusion works
reliable. The only case a hand is not detected is, if the
user wears a protection glove. But there is no chance for
the fusion, because non of the used sensors is providing

an output signal different to the one stirred up by a peace
of wood.

The results for the test scenarios with which the regular
working process at a sliding table saw is simulated are
given in Table 2.

description of the test trut‘e fa-ISfe
negative | positive

Wood through the yellow > 095% | < 0.5%
into the red danger zone
r'netal through the yellow < 995% | < 0.5%
into the red danger zone

compos.lte material through the < 995% | < 0.5%

yellow into the red danger zone

warm wood through the yellow < 929 < 8%
into the red danger zone

warm metal through the yellow ~ 40% | =~ 60%
into the red danger zone
hand moving next to the
safety segments parallel > 99,5% | < 0,5%

to the red danger zone

Table 2: Scenarios for the cases ”true negative” and ” false
positive” and their frequency of occurrence

With the test from Table 2 it is proved that the saw is
working normally if there is no accute danger for a hand.
Even if a hand is moving next to the safety segments
parallel to the red danger zone, there is no wrong hand
detection and the sliding table saw is working regularly.
The only problem is warm metal, but in this situation it
is the same problem as above, that no utilized sensor can
distinguish between a warm metal and a hand.

6 Conclusions

The goal of this paper was the conception of a Bayesian
network for an information fusion for hazard analysis in
machine tool environments. If the hand of a user is in
danger warning lights shall be turned on and if the hand
is still moving towards the saw blade an emergency stop
shall be initiated.

The signals of the used sensors are first preprocessed to
compensate interferences and to transform their signals
into the range of [0,1]. The compensation is done with
the help of a spline interpolation and an extended two-
dimensional characteristic map.

Afterwards the preprocessed signals are fused with the
help of a Bayesian network. Thereby the hypotheses
nodes represent different positions on the work bench
of the sliding table saw. The sensor signals are repre-
sented by information nodes which are connected to the
hypotheses nodes of the area they monitor. In regard of
the spread positions of the sensors a delay between the
hypotheses nodes was added. In the end the information

(Advance online publication: 19 February 2008)
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fusion was validated for all possible scenarios. A reliable
function of the hazard analysis is therefore proved.
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