
 
 

 

  
Abstract—We present a 3-competitive online algorithm for 

determining when to restripe a file for the case when the optimum 
stripe depth can take one of two possible values, depending on the 
application's behavior. We show that a good restriping strategy is 
to restripe a file when the cost incurred by delaying the restriping 
process equals the cost of restriping itself. We present an intuitive 
proof that the cost of this online algorithm is at most 3 times the 
cost of the optimum offline algorithm. 
 

Index Terms—disk striping, restriping, storage systems.  
 

I. INTRODUCTION 
The scientific challenges of today and tomorrow call for 

modern high-performance computer systems that can achieve 
multi-teraflops performance when executing highly complex 
algorithms on very large datasets. As such, many parallel 
processing systems and local memories with expansive disk 
storage and very high speed networking have been or are being 
built. Nevertheless, storage device performance remains an 
important obstacle to the full utilization of these computing 
systems, as it has not kept pace with the improvements in other 
system components, causing a growing imbalance between the 
computational power and the I/O capabilities of modern 
high-performance systems. 

Furthermore, rapid improvements in applications and 
algorithms, and the continuing shift from centralized to 
distributed computing have led to a new generation of parallel 
applications, which need massive amounts of data storage and 
have time-varying input/output demands; these applications 
stress I/O systems even further. 

Striping data across large arrays of disks has been proposed 
as a technique for improving I/O performance [3], [4], [15]. 
Disk arrays promise high-performance I/O by exploiting the 
bandwidth of several disks to service a single logical request or 
multiple independent requests in parallel. Given current 
projections of commercial disk technology evolution and the 
increasing number of large computational systems with 
petabyte-size archives, disk subsystems comprising hundreds 
of disk drives may soon be commonplace. 
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Several key research issues on disk striping still remain to be 
explored; for example, the development of analytical models 
for disk restriping, that is, the re-writing of a striped file with a 
different stripe depth to improve I/O performance, and the 
analysis of techniques for trading disk storage for bandwidth by 
redundantly storing multiple, striped copies of files, each 
striped in a different way for efficient access. 
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Figure 1: disk striping parameters 

Figure 1 illustrates disk striping and its parameters. In this 
example, a 16-block file is striped across 4 disks, so that the 
first stripe unit (two file blocks) goes to the first disk, the 
second stripe unit goes to the second disk, and the nth stripe unit 
goes to the (n mod m +1)th disk, where m is the stripe width, in 
this case, 4 disks. The stripe unit size is usually called the stripe 
depth. 

Parallel file system performance studies [6], [15] tell us of 
the importance of matching file system policies to application 
I/O access patterns. Likewise, several I/O characterization 
studies [10][17] have shown that many I/O intensive parallel 
applications exhibit complex, dynamic and often irregular I/O 
access patterns, rather than the regular, sequential patterns for 
which most file systems are optimized. 

Developers wishing to improve application performance are 
often forced to tune the size, order and frequency of I/O 
requests to match the idiosyncrasies of a specific input/output 
system. No only does this place a substantial cognitive burden 
on the developers, but such optimizations are system-specific 
and may be inappropriate for other systems or other 
input/output configurations. It seems that a more promising 
approach would be for the parallel file system to adapt to the 
behavior of applications.  

File systems that tune and reconfigure themselves are both 
feasible and increasingly necessary. The increasing complexity 
of I/O systems, combined with the decreasing fraction of users 
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willing or able to tune such systems themselves, has made 
evident the need for self-tuning file systems. 

An adaptive file system for parallel input/output must 
monitor both application I/O requests and I/O and file system 
performance so as to determine if a change to the tunable file 
system parameters would result in an overall performance 
benefit. Most file systems parameters are set at file system 
creation time, but some striping file systems allow dynamically 
setting stripe depth and/or width per file [5], [15]. Many 
general-purpose file systems utilize small stripe depths whereas 
many scientific applications perform piecewise sequential 
accesses to large files using large request sizes. Consequently, 
increasing the stripe depth for those files can result in 
significant execution time savings in the long run. 

This paper is organized as follows: in the next section, we 
discuss file restriping and identify its relevant parameters. Next, 
we present related work pertaining to optimal stripe depth 
determination and dynamic adaptive file systems. Then, we 
discuss competitive online algorithms for file restriping and 
finally we derive a 3-competitive online algorithm for the 
2-stripe-depth problem, giving an intuitive proof of its 
correctness. 

II. FILE RESTRIPING 
An application's input/output behavior is determined by the 

I/O requests it performs. Hence, we can write the total time tI/O 
spent by an application performing input/output operations as: 

∑ ∑=
Type requests

reqOI qtt )(/   

That is to say, it is equal to the sum over all I/O requests of all 
types of the time spent performing an I/O request in a striped 
file system with stripe depth q. This response time treq() 
depends on the stripe depth q and on parameters that are 
application-dependent, such as the average request size, the 
request type (READ(), WRITE(), LSEEK(), etc.), the average 
request rate λ and the I/O access pattern type (sequential, 
strided, random, etc.) 

Given a file striped across several disks, it may be desirable 
for performance reasons to restripe the file, that is, to store the 
file across the disks using a different stripe depth. Restriping a 
file, then, involves reading the file stored using a given stripe 
depth q1 and writing it back to disk using a different stripe 
depth q2, the idea being that future I/O accesses to the file will 
benefit from the restriping and that the restriping cost can be 
justified by the future time savings due to this performance 
improvement. Restriping a file is an expensive operation, 
which is best performed between application runs, so as not to 
excessively disturb the system. 

If a new stripe depth q2 that improves I/O performance has 
been found, we must determine if the benefits of restriping the 
file outweigh the costs associated with the restriping itself. 
Given tI/O (q1) and tI/O(q2), that is, the total time spent by an 
application performing input/output operations on a file striped 
with stripe depths q1 and q2, respectively, and tRESTRIPE(q1, q2), 
the time to restripe a file from stripe depth q1 to stripe depth q2, 

it is usually the case that: 
))()((),( 2/1/21 qtqtqqt OIOIRESTRIPE −>  

In other words, the cost of restriping a file is generally high, a 
situation that precludes it being done frequently and/or for 
every file. However, if we assume that the file will be accessed 
k times by an application with the same access patterns, and if k 
is large enough, then the costs of restriping can be amortized 
across all k accesses. 

We define the breakeven point kbe as the number of times a 
particular file must be accessed in a similar manner by a given 
application to make restriping cost-effective, from a 
performance point of view. An approximate value for this 
break-even point kbe can be obtained by solving: 

be
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RESTRIPE k
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Making file restriping decisions requires evaluating all the 
terms in this equation. The total I/O times for both stripe depths 
can be estimated by using an analytical model of disk access 
times such as the one presented in [15]. Estimating the 
restriping tRESTRIPE(q1, q2) depends on the algorithm used to 
restripe the actual data.  

III. RELATED WORK 
Previous studies have sought to characterize an optimal 

striping unit, that is, the amount of logically contiguous data to 
be stored on each disk. In [3], Chen and Patterson simulated 
data striping across small disk arrays with synchronized 
spindles subject to a single class workload and random access 
patterns, showing that the choice of striping unit size is critical 
to the I/O system's performance, and that the optimum striping 
unit size depends significantly on only two parameters: 
workload concurrency and I/O system behavior. The number of 
outstanding requests determines workload concurrency in the 
disk system at any given time, and I/O system behavior is 
determined by the positioning time and data transfer rate of the 
disks. Their results also showed that the optimum striping unit 
size is not affected by the request size distribution of the 
workload. 

In [14], Shenoy and Vin presented an analytical model for 
determining the optimum stripe depth for storing variable bit 
rate continuous media across disk arrays, and introduced a 
scheme for disk array partitioning so as to minimize the load 
imbalance between disks. 

Of special interest is the work on Disk Cooling done by 
Scheuermann, Weikum and Zabback. In [18] they studied the 
problems of dynamically allocating space across a disk array 
when a new file is created, and of when and how to reorganize 
the existing files to make space for a new one. The authors 
proposed heuristic algorithms that provide a good compromise 
between maximizing the I/O performance of the disk array and 
minimizing the work spent in partial disk reorganizations. 
Their test bed is an experimental file system called FIVE that 
allows the stripe unit size to be chosen individually for each file 
or even portions of a file [19]. Other references describe an 
adaptive method for data allocation and dynamic load 
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balancing in disk arrays that works by migrating file extents 
from heavily-accessed (“hot”) disks to less loaded (“cooler”) 
disks [11], [12]. The temperature of a disk extent is given as the 
ratio between the access frequency and the size of the disk 
extent. 

Many parallel file systems allow users some measure of 
control over their policies, so that knowledgeable users can 
tailor file system behavior to suit their application. GPFS [13] 
allows modifications to the file system to be made online, so 
that disks can be added, deleted or replaced. Rebalancing the 
file system would then redistribute existing files across the 
current disk set, thus effectively changing the number of disks 
across which files are striped. When there are multiple copies 
of a file, the rebalancing procedure attempts to keep the 
replication status of the file system's data and metadata blocks. 
Nevertheless, the striping unit size is set only at file system 
creation time. 

In [8], Matthews et al. showed how adaptive algorithms can 
be used with a log-structured file system to provide high 
performance across a wide range of workloads. Trace-driven 
simulations were used to show that, by using self-tuning 
principles, LFS can provide high write performance across a 
broader range of workloads. Also, an adaptive garbage 
collection mechanism that chooses between two cleaning 
algorithms depending on observed usage patterns is presented. 

Madhyastha, Elford and Reed [7] presented an automatic 
technique for selecting and refining file system policies based 
on application access patterns and the execution environment. 
An automatic I/O access pattern classification framework 
allows an adaptive user-level parallel file system (PPFS) to 
select appropriate caching and prefetching policies, while 
performance sensors provide feedback that is used to tune 
policy parameters. 

Among research file systems, PPFS II is a portable parallel 
file system with real-time control and adaptive policy control 
capabilities developed by the Pablo Group [15]. PPFS II is 
based upon the Autopilot real-time adaptive resource control 
library and the Nexus/Globus distributed computing 
infrastructure [9]. Autopilot provides PPFS II with a flexible 
set of performance sensors, decision procedures, and policy 
actuators to realize adaptive control of applications and 
resource management policies on both parallel and wide area 
distributed systems. PPFS II gives the user a large measure of 
control over the file system's behavior via the tuning of several 
parameters such as client cache sizes, cache block sizes, 
replacement policies, etc. PPFS II also allows self-tuning by 
incorporating a fuzzy-logic rulebase for adaptive striping of 
files across multiple disks. This rulebase is integrated into 
Autopilot, an adaptive control framework used to control the 
I/O system parameters of the PPFS II parallel file system. 

The ZFS file system [5] created by Sun for its Solaris 10 
operating system promises self-healing and self-managing 
capabilities through mechanisms such as dynamic striping, 
automatic block size selection and automatic filename-based 
performance tuning. It is currently being ported to the Linux, 
Mac OS X and Dragonfly BSD operating systems. 

For our research, we are using the Parallel Virtual File 
System 2 (PVFS2) developed at Clemson University. PVFS2 is 
an open-source file system that allows both serial and parallel 
applications to store and retrieve file data distributed across a 
set of I/O servers utilizing traditional UNIX file semantics. 
PVFS focuses on file partitioning for concurrency control and 
allows applications to define striping parameters individually 
for each file. In other work, we have extended PVFS2 by 
adding to it file restriping capabilities. 

IV. COMPETITIVE ONLINE ALGORITHMS FOR FILE RESTRIPING 
In this section, we present a competitive online algorithm for 

determining when to restripe a file F for the case when the 
optimum stripe depth qopt can take one of two possible values, 
depending on the application's behavior.  

Sleator and Tarjan introduced competitive analysis, a 
technique for comparing online algorithms, in [16]. An online 
algorithm, as opposed to an offline algorithm, is designed to 
receive its input data as the computation proceeds. Competitive 
analysis evaluates online algorithms by comparing the 
performance of an online algorithm to that of the best-known 
offline algorithm [1][2][16]. 

In this study, we will limit the analysis to the case in which 
an application A is executed k times, and each execution 
accesses file F several times. We will represent these multiple 
executions of application A by the sequence α = e1, . . ., ek. We 
will consider for this analysis that file restriping is performed 
between application executions. 

Let O be an online algorithm that transforms the execution 
sequence α = e1, . . ., ek into a new sequence α’ = g1, . . ., gl 
,where k ≤ l, based only on the sequence of application 
executions seen so far, that is, on the sequence e1, . . ., ek. For 
this purpose of this analysis, we will assume that, after every 
application execution, it is possible to estimate an optimum 
stripe depth qopt for file F. Furthermore, we assume that 
CostRESTRIPE(q, qopt), that is, the cost of restriping file F from its 
current stripe depth q to the optimum stripe depth qopt can be 
estimated as well. 

Sequence α’ is generated by inserting RESTRIPE(qm-1, qm) 
operations into the sequence α, where qm-1 is the current stripe 
depth, and qm is the new stripe depth to be used. Thus, every 
element gi of the sequence α’ is either an application execution 
or a restriping operation. Also, we note that removing the 
restriping operations from the sequence α’ gets us the original 
sequence α back. 

For any operation gj in the transformed sequence α’, we say 
that the stripe depth qi is active at gj if the closest restriping 
operation preceding gj in the sequence α’ is of the form 
RESTRIPE(qi-1, qi), or if i is 1 and there is no RESTRIPE() 
operation preceding gj. 

We define Cost α O as the cost of processing sequence α using 
the online algorithm O. However, given that the result of this 
processing is, by definition, the sequence α’, we can write the 
cost Cost α O as the sum of the costs C(gi) of the l operations g1, 
. . ., gl that comprise α’. That is to say, 
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As was mentioned before, the j-th operation gj can be either 
an application execution or a restriping operation. In the first 
case, the cost C(gj) is equal to the cost of executing application 
A using whatever stripe depth is active at the time. Else, the cost 
C(gj) is equal to CostRESTRIPE (qi-1, qi), where qi is the stripe 
depth active at gj. 

Finally, let O* be an optimum online algorithm. Then, for 
any sequence α and for any online algorithm O, it must hold 
that Cost α O* ≤ Cost α O. 

We say an online algorithm O is c-competitive if its 
worst-case behavior can be bound to the cost of the optimum 
online algorithm by a factor of c. More formally, O is c 
-competitive if and only if, for any sequence α, there exist 
constants c and d such that Cost α O ≤ cCost α O* + d. The 
adaptive restriping challenge, then, is to find an online 
c-competitive algorithm for file restriping. 

V. A 3-COMPETITIVE ONLINE ALGORITHM FOR THE 
2-STRIPE-DEPTH PROBLEM 

Let us assume that, depending on the application's inputs and 
the execution environment, application A can present only two 
behaviors, which are best serviced by stripe depths q1 and q2. 
We assume there is at least one application execution e such 
that Cost(e, q1) < Cost(e, q2) and, likewise, that there is at least 
one application execution e’ such that Cost(e’, q1) > Cost(e’, 
q2). Otherwise, there would be at most one RESTRIPE() 
operation in the α’sequence and the adaptive problem is trivial. 

Let CostRESTRIPE(q1, q2) be the cost of restriping a file from 
stripe depth q1 to stripe depth q2, and CostRESTRIPE(q2, q1) the 
cost of restriping the file from stripe depth q2 to stripe depth q1. 

Let CostRESTRIPE be the sum of both, that is to say, CostRESTRIPE = 
CostRESTRIPE(q1, q2) + CostRESTRIPE(q2, q1). 

Then, we propose a 3-competitive online algorithm that acts 
as follows: 

Algorithm 
Assuming that stripe depth q1 is active, and the k-th 

execution of algorithm A has just ended, file F should be 
restriped with stripe depth q2 if there exists a j ≤ k such that 
Cost((ej, . . ., ek), q2) + CostRESTRIPE ≤ Cost((ej, . . ., ek), q1) 
 
In other words, a competitive online algorithm for the 

adaptive restriping problem would restripe the file whenever 
the additional cost incurred by choosing a non-optimal stripe 
depth is greater or equal to the sum of the restriping costs 
CostRESTRIPE(q1, q2) + CostRESTRIPE(q2, q1). 

To characterize a competitive algorithm P as being 
c-competitive, we must study the algorithm's worst-case 
behavior. In this particular case, we have that the performance 
of algorithm P is linked to how well it can track application A, 
which can switch between two behaviors. The worst-case 
scenario for algorithm P occurs when the application switches 
constantly between these two behaviors, forcing P to restripe 

the file F many times. In the following paragraphs, we will 
study the costs associated with these multiple restripings in 
more detail. 

Let P be any online algorithm and Q be its “adversary”, that 
is, an algorithm that can control the behavior of application A. 
Algorithm Q observes P and tries to devise a worst-case 
sequence α on which P performs worse than Q. For example, if 
P uses stripe depth q1 exclusively, Q would devise a sequence 
of application executions that is very costly when q1 is active 
and cheap when q2 is active. 

Hence, any competitive algorithm will be forced to switch 
between stripe depths so as to minimize the costs of performing 
the α sequence. But, if P changes stripe depths too often, the 
restriping costs will dominate, while the adversary Q can keep 
one stripe depth active, avoid the restriping costs and easily 
minimize the total costs. 

The proposed online algorithm will restripe the file 
whenever it accumulates CostRESTRIPE(q1, q2) more in cost than 
its adversary algorithm. Choosing any value other than 
CostRESTRIPE(q1, q2) results in worse performance. Also, the 
performance of this algorithm is no more than 3 times the 
performance of the best offline algorithm. The following 
paragraphs present an intuitive proof of these statements. 

Let's suppose that application A changes its behavior at time 
t0. This change is detected and acted upon by the online 
algorithm P at time tDELAY. We will call CostDELAY the cost 
incurred by the algorithm during this interval. Now, we will 
compare the performance of the online algorithm with the best 
known offline algorithm, for the two possible cases: when 
CostDELAY < CostRESTRIPE and CostDELAY > CostRESTRIPE. 

In the first case, let's assume that the current executions of 
application A benefit from using stripe depth q1, which is the 
stripe depth chosen by online algorithm P. When the 
application behavior changes, making a restripe operation 
necessary, algorithm P will incur in the additional cost 
CostDELAY, and then perform the restripe operation at a cost of 
CostRESTRIPE(q1, q2). The worst-case scenario calls for the 
application behavior to change then back to using stripe depth 
q1 so as to force another restripe operation. Algorithm P will 
again incur in an additional cost CostDELAY, and then perform 
the restripe to stripe depth q1 at a cost of CostRESTRIPE(q2, q1).  

An offline algorithm Q can balance the cost of not restriping 
(CostDELAY), which we have assumed is less than the cost of 
restriping from stripe depth q1 to q2 and back (CostRESTRIPE), 
and decide against restriping. Hence, the performance penalty 
of the best offline algorithm is CostDELAY. 
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Figure 2:Online and offline algorithm behavior, CostDELAY 
< CostRESTRIPE 
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In the second case, we assume CostDELAY > CostRESTRIPE. 
Again, let's assume that the current executions of application A 
benefit from using stripe depth q1, which is the stripe depth 
chosen by online algorithm P. When the behavior of 
application A changes so as to make a restripe operation 
necessary, algorithm P will incur in the additional cost 
CostDELAY, and then perform the restripe operation at a cost of 
CostRESTRIPE(q1, q2). The worst-case behavior corresponds to 
the application immediately changing its behavior again, back 
to using stripe depth q1. Online algorithm P again incurs in the 
additional cost CostDELAY, and then performs the restripe 
operation back to stripe depth q1 at a cost of CostRESTRIPE(q2, 
q1).  

An offline algorithm Q can balance the cost of not restriping 
(CostDELAY), which we have assumed is greater than the cost of 
restriping from stripe depth q1 to q2 and back (CostRESTRIPE), 
and decide to restripe the file twice. But, as the offline 
algorithm has complete advance knowledge of the application, 
it can restripe the file the instant the application behavior 
changes. Hence, there is no delay cost and the performance 
penalty of the best offline algorithm is just CostRESTRIPE. 

Figure 3 illustrates the behavior of the online and offline 
algorithms when CostDELAY > CostRESTRIPE. 
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Figure 3:Online and offline algorithm behavior, CostDELAY 
> CostRESTRIPE 

From the figure, we see that the performance penalties of 
these algorithms when CostDELAY > CostRESTRIPE are: 
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If we choose CostDELAY to be equal to CostRESTRIPE, we have 
that, for both these cases the following equation holds: 

OFFLINEONLINEOFFLINE CostCostCost 3<<  
Choosing CostDELAY to be equal to CostRESTRIPE means that 

the online algorithm P should restripe file F as soon as the cost 
of not restriping when the behavior of application A changes is 
equal to the cost of restriping CostRESTRIPE = CostRESTRIPE(q1, q2) 
+ CostRESTRIPE(q2, q1). If this condition is met, then the online 
algorithm described is 3-competitive. 

VI. CONCLUSIONS 
In summary, we have presented a online restriping algorithm 

for an adaptive file system. This algorithm delays the restriping 

process until the delay cost is equal to the cost of restriping 
itself. We have shown an intuitive proof that this algorithm’s 
cost is at most 3 times the cost of the best offline algorithm. 
Future work will explore issues related to how to efficiently 
restripe a file, the development of analytical file restriping 
models and will tackle issues related to redundant file striping. 
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