

Abstract—We present a 3-competitive online algorithm for

determining when to restripe a file for the case when the optimum
stripe depth can take one of two possible values, depending on the
application's behavior. We show that a good restriping strategy is
to restripe a file when the cost incurred by delaying the restriping
process equals the cost of restriping itself. We present an intuitive
proof that the cost of this online algorithm is at most 3 times the
cost of the optimum offline algorithm.

Index Terms—disk striping, restriping, storage systems.

I. INTRODUCTION
The scientific challenges of today and tomorrow call for

modern high-performance computer systems that can achieve
multi-teraflops performance when executing highly complex
algorithms on very large datasets. As such, many parallel
processing systems and local memories with expansive disk
storage and very high speed networking have been or are being
built. Nevertheless, storage device performance remains an
important obstacle to the full utilization of these computing
systems, as it has not kept pace with the improvements in other
system components, causing a growing imbalance between the
computational power and the I/O capabilities of modern
high-performance systems.

Furthermore, rapid improvements in applications and
algorithms, and the continuing shift from centralized to
distributed computing have led to a new generation of parallel
applications, which need massive amounts of data storage and
have time-varying input/output demands; these applications
stress I/O systems even further.

Striping data across large arrays of disks has been proposed
as a technique for improving I/O performance [3], [4], [15].
Disk arrays promise high-performance I/O by exploiting the
bandwidth of several disks to service a single logical request or
multiple independent requests in parallel. Given current
projections of commercial disk technology evolution and the
increasing number of large computational systems with
petabyte-size archives, disk subsystems comprising hundreds
of disk drives may soon be commonplace.

Manuscript received March 22, 2007. This research was supported in part by

the Chilean National Commission for Science and Technology Research
(CONICYT) through FONDECYT project 1050949. Mario R. Medina is with
the Depto. de Ingeniería Eléctrica, Facultad de Ingeniería, Universidad de
Concepción, Concepción, Chile. Phone: (56)-(41)-2203506; FAX:
(56)-(41)-2246999; e-mail: mariomedina@udec.cl.

Several key research issues on disk striping still remain to be
explored; for example, the development of analytical models
for disk restriping, that is, the re-writing of a striped file with a
different stripe depth to improve I/O performance, and the
analysis of techniques for trading disk storage for bandwidth by
redundantly storing multiple, striped copies of files, each
striped in a different way for efficient access.

2 Blocks
Depth
Stripe

Stripe Width (4 Disks)

File
Block

0
1

9
8 10

3

11

2 4
5

12
13 15

14
7
6

Disk 2 Disk 3 Disk 4Disk 1
Figure 1: disk striping parameters

Figure 1 illustrates disk striping and its parameters. In this
example, a 16-block file is striped across 4 disks, so that the
first stripe unit (two file blocks) goes to the first disk, the
second stripe unit goes to the second disk, and the nth stripe unit
goes to the (n mod m +1)th disk, where m is the stripe width, in
this case, 4 disks. The stripe unit size is usually called the stripe
depth.

Parallel file system performance studies [6], [15] tell us of
the importance of matching file system policies to application
I/O access patterns. Likewise, several I/O characterization
studies [10][17] have shown that many I/O intensive parallel
applications exhibit complex, dynamic and often irregular I/O
access patterns, rather than the regular, sequential patterns for
which most file systems are optimized.

Developers wishing to improve application performance are
often forced to tune the size, order and frequency of I/O
requests to match the idiosyncrasies of a specific input/output
system. No only does this place a substantial cognitive burden
on the developers, but such optimizations are system-specific
and may be inappropriate for other systems or other
input/output configurations. It seems that a more promising
approach would be for the parallel file system to adapt to the
behavior of applications.

File systems that tune and reconfigure themselves are both
feasible and increasingly necessary. The increasing complexity
of I/O systems, combined with the decreasing fraction of users

A 3-Competitive Algorithm for On-line File
Restriping Decisions

Mario R. Medina

IAENG International Journal of Computer Science, 35:1, IJCS_35_1_08
__

(Advance online publication: 19 February 2008)

willing or able to tune such systems themselves, has made
evident the need for self-tuning file systems.

An adaptive file system for parallel input/output must
monitor both application I/O requests and I/O and file system
performance so as to determine if a change to the tunable file
system parameters would result in an overall performance
benefit. Most file systems parameters are set at file system
creation time, but some striping file systems allow dynamically
setting stripe depth and/or width per file [5], [15]. Many
general-purpose file systems utilize small stripe depths whereas
many scientific applications perform piecewise sequential
accesses to large files using large request sizes. Consequently,
increasing the stripe depth for those files can result in
significant execution time savings in the long run.

This paper is organized as follows: in the next section, we
discuss file restriping and identify its relevant parameters. Next,
we present related work pertaining to optimal stripe depth
determination and dynamic adaptive file systems. Then, we
discuss competitive online algorithms for file restriping and
finally we derive a 3-competitive online algorithm for the
2-stripe-depth problem, giving an intuitive proof of its
correctness.

II. FILE RESTRIPING
An application's input/output behavior is determined by the

I/O requests it performs. Hence, we can write the total time tI/O
spent by an application performing input/output operations as:

∑ ∑=
Type requests

reqOI qtt)(/

That is to say, it is equal to the sum over all I/O requests of all
types of the time spent performing an I/O request in a striped
file system with stripe depth q. This response time treq()
depends on the stripe depth q and on parameters that are
application-dependent, such as the average request size, the
request type (READ(), WRITE(), LSEEK(), etc.), the average
request rate λ and the I/O access pattern type (sequential,
strided, random, etc.)

Given a file striped across several disks, it may be desirable
for performance reasons to restripe the file, that is, to store the
file across the disks using a different stripe depth. Restriping a
file, then, involves reading the file stored using a given stripe
depth q1 and writing it back to disk using a different stripe
depth q2, the idea being that future I/O accesses to the file will
benefit from the restriping and that the restriping cost can be
justified by the future time savings due to this performance
improvement. Restriping a file is an expensive operation,
which is best performed between application runs, so as not to
excessively disturb the system.

If a new stripe depth q2 that improves I/O performance has
been found, we must determine if the benefits of restriping the
file outweigh the costs associated with the restriping itself.
Given tI/O (q1) and tI/O(q2), that is, the total time spent by an
application performing input/output operations on a file striped
with stripe depths q1 and q2, respectively, and tRESTRIPE(q1, q2),
the time to restripe a file from stripe depth q1 to stripe depth q2,

it is usually the case that:
))()((),(2/1/21 qtqtqqt OIOIRESTRIPE −>

In other words, the cost of restriping a file is generally high, a
situation that precludes it being done frequently and/or for
every file. However, if we assume that the file will be accessed
k times by an application with the same access patterns, and if k
is large enough, then the costs of restriping can be amortized
across all k accesses.

We define the breakeven point kbe as the number of times a
particular file must be accessed in a similar manner by a given
application to make restriping cost-effective, from a
performance point of view. An approximate value for this
break-even point kbe can be obtained by solving:

be
OIOI

RESTRIPE k
qtqt

qqt
<

−)()(
),(

2/1/

21

Making file restriping decisions requires evaluating all the
terms in this equation. The total I/O times for both stripe depths
can be estimated by using an analytical model of disk access
times such as the one presented in [15]. Estimating the
restriping tRESTRIPE(q1, q2) depends on the algorithm used to
restripe the actual data.

III. RELATED WORK
Previous studies have sought to characterize an optimal

striping unit, that is, the amount of logically contiguous data to
be stored on each disk. In [3], Chen and Patterson simulated
data striping across small disk arrays with synchronized
spindles subject to a single class workload and random access
patterns, showing that the choice of striping unit size is critical
to the I/O system's performance, and that the optimum striping
unit size depends significantly on only two parameters:
workload concurrency and I/O system behavior. The number of
outstanding requests determines workload concurrency in the
disk system at any given time, and I/O system behavior is
determined by the positioning time and data transfer rate of the
disks. Their results also showed that the optimum striping unit
size is not affected by the request size distribution of the
workload.

In [14], Shenoy and Vin presented an analytical model for
determining the optimum stripe depth for storing variable bit
rate continuous media across disk arrays, and introduced a
scheme for disk array partitioning so as to minimize the load
imbalance between disks.

Of special interest is the work on Disk Cooling done by
Scheuermann, Weikum and Zabback. In [18] they studied the
problems of dynamically allocating space across a disk array
when a new file is created, and of when and how to reorganize
the existing files to make space for a new one. The authors
proposed heuristic algorithms that provide a good compromise
between maximizing the I/O performance of the disk array and
minimizing the work spent in partial disk reorganizations.
Their test bed is an experimental file system called FIVE that
allows the stripe unit size to be chosen individually for each file
or even portions of a file [19]. Other references describe an
adaptive method for data allocation and dynamic load

IAENG International Journal of Computer Science, 35:1, IJCS_35_1_08
__

(Advance online publication: 19 February 2008)

balancing in disk arrays that works by migrating file extents
from heavily-accessed (“hot”) disks to less loaded (“cooler”)
disks [11], [12]. The temperature of a disk extent is given as the
ratio between the access frequency and the size of the disk
extent.

Many parallel file systems allow users some measure of
control over their policies, so that knowledgeable users can
tailor file system behavior to suit their application. GPFS [13]
allows modifications to the file system to be made online, so
that disks can be added, deleted or replaced. Rebalancing the
file system would then redistribute existing files across the
current disk set, thus effectively changing the number of disks
across which files are striped. When there are multiple copies
of a file, the rebalancing procedure attempts to keep the
replication status of the file system's data and metadata blocks.
Nevertheless, the striping unit size is set only at file system
creation time.

In [8], Matthews et al. showed how adaptive algorithms can
be used with a log-structured file system to provide high
performance across a wide range of workloads. Trace-driven
simulations were used to show that, by using self-tuning
principles, LFS can provide high write performance across a
broader range of workloads. Also, an adaptive garbage
collection mechanism that chooses between two cleaning
algorithms depending on observed usage patterns is presented.

Madhyastha, Elford and Reed [7] presented an automatic
technique for selecting and refining file system policies based
on application access patterns and the execution environment.
An automatic I/O access pattern classification framework
allows an adaptive user-level parallel file system (PPFS) to
select appropriate caching and prefetching policies, while
performance sensors provide feedback that is used to tune
policy parameters.

Among research file systems, PPFS II is a portable parallel
file system with real-time control and adaptive policy control
capabilities developed by the Pablo Group [15]. PPFS II is
based upon the Autopilot real-time adaptive resource control
library and the Nexus/Globus distributed computing
infrastructure [9]. Autopilot provides PPFS II with a flexible
set of performance sensors, decision procedures, and policy
actuators to realize adaptive control of applications and
resource management policies on both parallel and wide area
distributed systems. PPFS II gives the user a large measure of
control over the file system's behavior via the tuning of several
parameters such as client cache sizes, cache block sizes,
replacement policies, etc. PPFS II also allows self-tuning by
incorporating a fuzzy-logic rulebase for adaptive striping of
files across multiple disks. This rulebase is integrated into
Autopilot, an adaptive control framework used to control the
I/O system parameters of the PPFS II parallel file system.

The ZFS file system [5] created by Sun for its Solaris 10
operating system promises self-healing and self-managing
capabilities through mechanisms such as dynamic striping,
automatic block size selection and automatic filename-based
performance tuning. It is currently being ported to the Linux,
Mac OS X and Dragonfly BSD operating systems.

For our research, we are using the Parallel Virtual File
System 2 (PVFS2) developed at Clemson University. PVFS2 is
an open-source file system that allows both serial and parallel
applications to store and retrieve file data distributed across a
set of I/O servers utilizing traditional UNIX file semantics.
PVFS focuses on file partitioning for concurrency control and
allows applications to define striping parameters individually
for each file. In other work, we have extended PVFS2 by
adding to it file restriping capabilities.

IV. COMPETITIVE ONLINE ALGORITHMS FOR FILE RESTRIPING
In this section, we present a competitive online algorithm for

determining when to restripe a file F for the case when the
optimum stripe depth qopt can take one of two possible values,
depending on the application's behavior.

Sleator and Tarjan introduced competitive analysis, a
technique for comparing online algorithms, in [16]. An online
algorithm, as opposed to an offline algorithm, is designed to
receive its input data as the computation proceeds. Competitive
analysis evaluates online algorithms by comparing the
performance of an online algorithm to that of the best-known
offline algorithm [1][2][16].

In this study, we will limit the analysis to the case in which
an application A is executed k times, and each execution
accesses file F several times. We will represent these multiple
executions of application A by the sequence α = e1, . . ., ek. We
will consider for this analysis that file restriping is performed
between application executions.

Let O be an online algorithm that transforms the execution
sequence α = e1, . . ., ek into a new sequence α’ = g1, . . ., gl
,where k ≤ l, based only on the sequence of application
executions seen so far, that is, on the sequence e1, . . ., ek. For
this purpose of this analysis, we will assume that, after every
application execution, it is possible to estimate an optimum
stripe depth qopt for file F. Furthermore, we assume that
CostRESTRIPE(q, qopt), that is, the cost of restriping file F from its
current stripe depth q to the optimum stripe depth qopt can be
estimated as well.

Sequence α’ is generated by inserting RESTRIPE(qm-1, qm)
operations into the sequence α, where qm-1 is the current stripe
depth, and qm is the new stripe depth to be used. Thus, every
element gi of the sequence α’ is either an application execution
or a restriping operation. Also, we note that removing the
restriping operations from the sequence α’ gets us the original
sequence α back.

For any operation gj in the transformed sequence α’, we say
that the stripe depth qi is active at gj if the closest restriping
operation preceding gj in the sequence α’ is of the form
RESTRIPE(qi-1, qi), or if i is 1 and there is no RESTRIPE()
operation preceding gj.

We define Cost α O as the cost of processing sequence α using
the online algorithm O. However, given that the result of this
processing is, by definition, the sequence α’, we can write the
cost Cost α O as the sum of the costs C(gi) of the l operations g1,
. . ., gl that comprise α’. That is to say,

IAENG International Journal of Computer Science, 35:1, IJCS_35_1_08
__

(Advance online publication: 19 February 2008)

∑
=

=
l

j
j

O gCCost
1

)(α

As was mentioned before, the j-th operation gj can be either
an application execution or a restriping operation. In the first
case, the cost C(gj) is equal to the cost of executing application
A using whatever stripe depth is active at the time. Else, the cost
C(gj) is equal to CostRESTRIPE (qi-1, qi), where qi is the stripe
depth active at gj.

Finally, let O* be an optimum online algorithm. Then, for
any sequence α and for any online algorithm O, it must hold
that Cost α O* ≤ Cost α O.

We say an online algorithm O is c-competitive if its
worst-case behavior can be bound to the cost of the optimum
online algorithm by a factor of c. More formally, O is c
-competitive if and only if, for any sequence α, there exist
constants c and d such that Cost α O ≤ cCost α O* + d. The
adaptive restriping challenge, then, is to find an online
c-competitive algorithm for file restriping.

V. A 3-COMPETITIVE ONLINE ALGORITHM FOR THE
2-STRIPE-DEPTH PROBLEM

Let us assume that, depending on the application's inputs and
the execution environment, application A can present only two
behaviors, which are best serviced by stripe depths q1 and q2.
We assume there is at least one application execution e such
that Cost(e, q1) < Cost(e, q2) and, likewise, that there is at least
one application execution e’ such that Cost(e’, q1) > Cost(e’,
q2). Otherwise, there would be at most one RESTRIPE()
operation in the α’sequence and the adaptive problem is trivial.

Let CostRESTRIPE(q1, q2) be the cost of restriping a file from
stripe depth q1 to stripe depth q2, and CostRESTRIPE(q2, q1) the
cost of restriping the file from stripe depth q2 to stripe depth q1.

Let CostRESTRIPE be the sum of both, that is to say, CostRESTRIPE =
CostRESTRIPE(q1, q2) + CostRESTRIPE(q2, q1).

Then, we propose a 3-competitive online algorithm that acts
as follows:

Algorithm
Assuming that stripe depth q1 is active, and the k-th

execution of algorithm A has just ended, file F should be
restriped with stripe depth q2 if there exists a j ≤ k such that
Cost((ej, . . ., ek), q2) + CostRESTRIPE ≤ Cost((ej, . . ., ek), q1)

In other words, a competitive online algorithm for the

adaptive restriping problem would restripe the file whenever
the additional cost incurred by choosing a non-optimal stripe
depth is greater or equal to the sum of the restriping costs
CostRESTRIPE(q1, q2) + CostRESTRIPE(q2, q1).

To characterize a competitive algorithm P as being
c-competitive, we must study the algorithm's worst-case
behavior. In this particular case, we have that the performance
of algorithm P is linked to how well it can track application A,
which can switch between two behaviors. The worst-case
scenario for algorithm P occurs when the application switches
constantly between these two behaviors, forcing P to restripe

the file F many times. In the following paragraphs, we will
study the costs associated with these multiple restripings in
more detail.

Let P be any online algorithm and Q be its “adversary”, that
is, an algorithm that can control the behavior of application A.
Algorithm Q observes P and tries to devise a worst-case
sequence α on which P performs worse than Q. For example, if
P uses stripe depth q1 exclusively, Q would devise a sequence
of application executions that is very costly when q1 is active
and cheap when q2 is active.

Hence, any competitive algorithm will be forced to switch
between stripe depths so as to minimize the costs of performing
the α sequence. But, if P changes stripe depths too often, the
restriping costs will dominate, while the adversary Q can keep
one stripe depth active, avoid the restriping costs and easily
minimize the total costs.

The proposed online algorithm will restripe the file
whenever it accumulates CostRESTRIPE(q1, q2) more in cost than
its adversary algorithm. Choosing any value other than
CostRESTRIPE(q1, q2) results in worse performance. Also, the
performance of this algorithm is no more than 3 times the
performance of the best offline algorithm. The following
paragraphs present an intuitive proof of these statements.

Let's suppose that application A changes its behavior at time
t0. This change is detected and acted upon by the online
algorithm P at time tDELAY. We will call CostDELAY the cost
incurred by the algorithm during this interval. Now, we will
compare the performance of the online algorithm with the best
known offline algorithm, for the two possible cases: when
CostDELAY < CostRESTRIPE and CostDELAY > CostRESTRIPE.

In the first case, let's assume that the current executions of
application A benefit from using stripe depth q1, which is the
stripe depth chosen by online algorithm P. When the
application behavior changes, making a restripe operation
necessary, algorithm P will incur in the additional cost
CostDELAY, and then perform the restripe operation at a cost of
CostRESTRIPE(q1, q2). The worst-case scenario calls for the
application behavior to change then back to using stripe depth
q1 so as to force another restripe operation. Algorithm P will
again incur in an additional cost CostDELAY, and then perform
the restripe to stripe depth q1 at a cost of CostRESTRIPE(q2, q1).

An offline algorithm Q can balance the cost of not restriping
(CostDELAY), which we have assumed is less than the cost of
restriping from stripe depth q1 to q2 and back (CostRESTRIPE),
and decide against restriping. Hence, the performance penalty
of the best offline algorithm is CostDELAY.

q

q

1

2

Application
P
Q

Cost
1,2 PCost

Cost
2,1PCost

Figure 2:Online and offline algorithm behavior, CostDELAY
< CostRESTRIPE

IAENG International Journal of Computer Science, 35:1, IJCS_35_1_08
__

(Advance online publication: 19 February 2008)

In the second case, we assume CostDELAY > CostRESTRIPE.
Again, let's assume that the current executions of application A
benefit from using stripe depth q1, which is the stripe depth
chosen by online algorithm P. When the behavior of
application A changes so as to make a restripe operation
necessary, algorithm P will incur in the additional cost
CostDELAY, and then perform the restripe operation at a cost of
CostRESTRIPE(q1, q2). The worst-case behavior corresponds to
the application immediately changing its behavior again, back
to using stripe depth q1. Online algorithm P again incurs in the
additional cost CostDELAY, and then performs the restripe
operation back to stripe depth q1 at a cost of CostRESTRIPE(q2,
q1).

An offline algorithm Q can balance the cost of not restriping
(CostDELAY), which we have assumed is greater than the cost of
restriping from stripe depth q1 to q2 and back (CostRESTRIPE),
and decide to restripe the file twice. But, as the offline
algorithm has complete advance knowledge of the application,
it can restripe the file the instant the application behavior
changes. Hence, there is no delay cost and the performance
penalty of the best offline algorithm is just CostRESTRIPE.

Figure 3 illustrates the behavior of the online and offline
algorithms when CostDELAY > CostRESTRIPE.

q

q

1

2

Application
P
Q

PCost

Cost1,2 Cost2,1

CostP

Figure 3:Online and offline algorithm behavior, CostDELAY
> CostRESTRIPE

From the figure, we see that the performance penalties of
these algorithms when CostDELAY > CostRESTRIPE are:

DELAYRESTRIPEDELAYONLINE

RESTRIPEOFFLINE

CostCostCostCost
CostCost

32 <+=
=

In summary, we have two cases:

DELAYONLINERESTRIPEDELAY

RESTRIPEONLINERESTRIPEDELAY

CostCostCostCost
CostCostCostCost

3:
3:

<>
<<

If we choose CostDELAY to be equal to CostRESTRIPE, we have
that, for both these cases the following equation holds:

OFFLINEONLINEOFFLINE CostCostCost 3<<
Choosing CostDELAY to be equal to CostRESTRIPE means that

the online algorithm P should restripe file F as soon as the cost
of not restriping when the behavior of application A changes is
equal to the cost of restriping CostRESTRIPE = CostRESTRIPE(q1, q2)
+ CostRESTRIPE(q2, q1). If this condition is met, then the online
algorithm described is 3-competitive.

VI. CONCLUSIONS
In summary, we have presented a online restriping algorithm

for an adaptive file system. This algorithm delays the restriping

process until the delay cost is equal to the cost of restriping
itself. We have shown an intuitive proof that this algorithm’s
cost is at most 3 times the cost of the best offline algorithm.
Future work will explore issues related to how to efficiently
restripe a file, the development of analytical file restriping
models and will tackle issues related to redundant file striping.

REFERENCES
[1] Y. Bartal, A. Fiat, Y. Rabani,”Competitive algorithms for distributed data

management,” 24th ACM Symposium on Theory of Computing
(STOC'92), Victoria, Canada, May 1992, pp. 39-50.

[2] D. L. Black, D. D. Sleator, Competitive algorithms for replication and
migration problems, Technical Report CMS-CS-89-201, School of
Computer Science, Carnegie-Mellon University, Pittsburgh, PA, 1989.

[3] P. M. Chen, D. A. Patterson, “Maximizing performance in a striped disk
array,” 17th Intl. Symposium on Computer Architecture (ISCA'90),
Seattle, WA, Jun. 1990, pp. 322-331.

[4] P. M. Chen, E. K. Lee, “Striping in a RAID Level 5 disk array,” Intl.
Conference on Measurement and Modeling of Computing Systems
(SIGMETRICS'95), Ottawa, Canada, May 1995, pp. 136-145.

[5] V. Henson, M. Ahrens, J. Bonwick, “Automatic performance tuning in the
Zettabyte file system,” 1st. Workshop on Algorithms and Architectures
for Self-Managing Systems (SELF-MANAGE03), San Diego, CA, 2003.

[6] T. M. Madhyastha, D. A. Reed, “Intelligent, adaptive file system policy
selection,” 6th Symposium on the Frontiers of Massively Parallel
Computation (Frontiers'96), Annapolis, MD, Oct. 1996, pp. 172-179.

[7] T. M. Madhyastha, C. L. Elford, D. A. Reed, “Optimizing input/output
using adaptive file system policies,” 5th NASA Goddard Conference on
Mass Storage Systems and Technologies, College Park, MD, Sep. 1996,
pp. 493-514.

[8] J. N. Matthews, D. Roselli, A. M. Costello, R. Y. Wang, T. E. Anderson,
“Improving the performance of log-structured file systems with adaptive
methods,” 6th ACM Symposium on Operating System Principles
(SOSP'97), St. Malo, France, Oct. 1997.

[9] R. L. Ribler, H. Simitci, D. A. Reed, “The Autopilot performance-
directed adaptive control system,” Future Generation Computer Systems,
18(1), 2001, pp. 175-187.

[10] E. Rosti, G. Serazzi, E. Smirni, M. S. Squillante, “Models of parallel
applications with large computation and I/O requirements,” IEEE
Transactions on Software Engineering, 28(3), Mar. 2002, pp. 286-307.

[11] P. Scheuermann, G. Weikum, P. Zabback, “Adaptive load balancing in
disk arrays, ” 4th Intl. Conference on Foundations of Data Organization
and Algorithms (FODO'93), Chicago, IL, Oct. 1993, pp. 345-360.

[12] P. Scheuermann, G. Weikum, P. Zabback, “Disk cooling in parallel disk
systems,” Data Engineering Bulletin, 17(3), 1994, pp. 29-40.

[13] F. Schmuck, R. Haskin, “GPFS: A shared-disk file system for large
computing clusters,” 1st. Conference on File and Storage Technologies
(FAST’02), Monterey, CA, Jan. 2002, pp. 231-244.

[14] P. J. Shenoy, H. M. Vin, Efficient Striping Techniques for Variable Bit
Rate Continuous Media File Servers, Technical Report
UM-CS-1998-053, University of Massachusetts at Amherst, Amherst,
MA, 1998.

[15] H. Simitci, D. A. Reed, “Adaptive disk striping for parallel input/output,”
7th NASA Goddard Conference on Mass Storage Systems and
Technologies, San Diego, CA, Mar. 1999, pp. 88-102.

[16] D. D. Sleator, R. E. Tarjan, “Amortized efficiency of list update and
paging rules,” Comm. ACM, 28(2), Feb. 1985, pp. 202-208.

[17] E. Smirni, D. A. Reed, “Workload characterization of input/output
intensive parallel applications,” 9th Intl. Conference on Computer
Performance Evaluation, St. Malo, France, Jun. 1997, pp. 169-180.

[18] G. Weikum, P. Zabback, P. Scheuermann, “Dynamic file allocation in
disk arrays,” Intl. Conference on Management of Data (SIGMOD'91),
Denver, CO, May 1991, pp. 406-415.

[19] G. Weikum, P. Zabback, “Tuning of striping units in disk-array-based file
systems”, 2nd. Intl. Workshop on Research Issues on Data Engineering:
Transaction and Query Processing (RIDE-TQP'92), Tempe, AZ, Feb.
1992, pp. 80-87.

IAENG International Journal of Computer Science, 35:1, IJCS_35_1_08
__

(Advance online publication: 19 February 2008)

