
 
 

 

 

  
Abstract—This paper presents a multi step-size monic 

normalization equation-error linear filter. We then extend the 
idea to nonlinear adaptive filter and derive a multi step-size monic 
normalization equation-error bilinear filter (MSS MNEEBF). The 
algorithms enjoy fast convergence behavior and can remove 
biased estimates associated with conventional equation-error 
adaptive filters. Simulation results validate the usefulness of our 
algorithms. 
 

Index Terms—Bias-Removal Algorithms, Bilinear Adaptive 
Filters , Equation-Error Adaptive Filters, Nonlinear Adaptive 
Filters 

 

I. INTRODUCTION 
Finite impulse response (FIR) least mean square (LMS) 

adaptive filter has been very popular due to its simplicity and 
good convergence characteristics. For applications such as 
acoustic echo cancellation which requires filters with thousands 
of coefficients to model the impulse response of echo path, 
time-domain FIR LMS may not be the proper solution. Infinite 
impulse response (IIR) adaptive filter has the potential to be a 
good alternative. The input-output relationship for a linear 
system is given as 
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where without loss of generality it is assumed that 0 1a = . 

There are two approaches to adaptive IIR filtering: 
output-error and equation-error formulations. The output-error 
approach uses the past samples of the output of the adaptive 
filter to obtain the filter’s current output. The equation-error 
approach uses the past samples of the desired response signal 
directly to compute the adaptive filter output. Because of the 
feedback structure, output-error IIR needs stability monitoring 
to assure it would not diverge. Also, its error surface is 
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multimodal and therefore the output-error algorithm may 
converge to the local minimum.  

The equation-error approach is very simple to design and 
implement. It does not need stability check. The error surface is 
unimodal. However, it results in biased system estimates in the 
presence of noisy observations. Consequently, such 
equation-error algorithms are useful only in applications in 
which the measurement noise is fairly small. 

Early equation-error IIR algorithms tried to remove the bias 
through additional filtering or noise suppression schemes [1]. 
Some alternatives such as the unit-norm constraint approach [2], 
[3] and monic normalization method [4] have been proposed to 
produce unbiased parameter estimates in the presence of noise. 
The basic idea behind the monic normalization equation-error 
filter (MNEE) is to set the first denominator coefficient of a 
rational system to unity, which is implemented by having all its 
denominator coefficients normalized by the first coefficient 
after each iteration. However, the MNEE presented in [4] had to 
use a very small value for step-size parameter, therefore, it takes 
very long to converge even for filters with just two feed-forward 
and two feedback coefficients. 

While linear filters have been very useful in a large variety of 
applications and are conceptually and implementationally very 
simple, there are applications in which they will not perform 
well at all. A very common system model that has been 
employed with relatively good success in nonlinear filtering 
applications is the Volterra system model [5], [6]. The main 
problem associated with such filters is the extremely large 
number of coefficients that is usually required to properly model 
the nonlinear system under consideration. Just as linear IIR 
filters can model many linear systems with great parsimony than 
FIR filters, there are a large number of nonlinear systems that 
can be approximated by nonlinear feedback models using a 
relatively small number of parameters. In such situations, one 
can expect that the corresponding adaptive filters can be 
implemented with good computational efficiency. Bilinear 
filters are among the simplest of recursive nonlinear systems [5].  
The input-output relationship for a bilinear system is given as 
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Just as linear IIR filters, it is assumed that 0 1a = . 
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In this paper, we first introduce a multi step-size (MSS) 
monic normalization equation-error linear filter (MSS-MNEE). 
The proposed method has the comparable bias removal 
capability as that of the MNEE while converges very fast. In 
addition, we extend the idea to nonlinear filters with feedback 
and propose a multi step-size monic normalization 
equation-error bilinear filter (MSS-MNEEBF).  

 

II. MNEE WITH MULTI- STEP SIZE 
The problem of multi step-size monic normalization 

equation-error linear filtering may be formulated as follows. 
Given a desired response signal ( )d n and an input signal ( )x n , 
we want to estimate ( )d n  adaptively as  
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The objective of the adaptive filter is to update the 
coefficients at each time so that a convex function of the 
estimation error 

ˆ( ) ( ) ( )n d n d nα = −  (4) 

is minimized or at least reduced. For simplicity of presentation, 
vector representation will be employed. Define the K-element 
feed-forward input vector ( )X n and L+1-element feedback 
input vector ( )D n , respectively, as  

( ) [ ( ), ( 1), , ( )]TX n x n x n x n K= − − , (5a) 

and 

( ) [ ( ), ( 1), , ( )]TD n d n d n d n L= − − , (5b) 

where the superscript T denotes transportation. Also the 
corresponding feed-forward and feedback coefficient vectors 
are defined, respectively, as 
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and  
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The problem consider in this section is that of finding a 
gradient descent solution for the coefficients of the adaptive 
filter which attempts to reduce the squared error cost function 
given by 

( ) ( )2 2ˆ( ) ( ) ( ) ( )gJ n d n d n e n= − = , (7) 

where  

ˆ ˆ( ) ( ) ( ) ( ) ( )T T
ge n A n D n B n X n= −  (8) 

is the generalized equation error. Note that ( )ge n reduces to the 

conventional equation error ( )ee n  when 0ˆ ( )=1a n . 

Because ( )X n  and ( )D n  do not depend on ˆ( )B n  and ˆ( )A n , 
it is straightforward to write update equations 

ˆ ˆ( 1) ( ) ( ) ( )b gB n B n e n X nμ+ = + , (9a) 

ˆ ˆ( 1) ( ) ( ) ( )a gA n A n e n D nμ+ = − , (9b) 

where aμ  and bμ  are convergence parameters that control the 
rate at which the adaptive filter converges. The monic 
normalization proposed in [4] is to normalize ˆ( 1)A n +  as  
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so that we can maintain 0ˆ ( )=1a n  at all times. The filter output is 
then produced as 
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And the a-posterior error signal is  
ˆ( ) ( ) ( )e n d n d n= − . (11) 

The MNEE algorithm proposed in [4] is capable of reducing 
the biased coefficients estimates. However, the analysis 
provided by Kim is based on the usage of very small step-size. 
As a result, this fairly small step-size utilized in the simulations 
made the filters converge extremely slow even for the very 
simple case that =1K   and =2L . Obviously, such slow 
convergence rate is simply not acceptable in most applications. 
In order to solve the slow convergence problem while 
maintaining the bias removal capability, we propose a multi 
step-size (MSS) scheme in the paper.  

Without loss of generality, we just present a two step-size 
scheme in the paper. The idea is to utilize two values of step-size 
in response to mean squared error indication function defined as 
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where N is a memory factor. The MSS scheme selects bigger 
step size when ( , )n Nε  is greater than some pre-chosen 
threshold, and uses smaller step size otherwise. The analysis of 
stationary points made in [4] can be applied to MSS-MNEE 
since our method also utilizes a small step size later in the 
process. 
 

III. MSS-MNEEBF 
In this section, we derive the LMS adaptive bilinear filter 

using multi step-size monic normalization procedure.   Follow 
our work in section 2, now for a desired response signal 

( )d n and an input signal ( )x n , we want to estimate ( )d n  
adaptively as  
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Define input vectors ( )X n , ( )D n as (5a) and (5b) and define 
Q(n) as  

( ) [ ( ) ( 1), ( ) ( 2), , ( ) ( ),
            , , ( ) ( 1), , ( ) ( )]T

Q n x n d n x n d n x n d n L
x n K d n x n K d n L

= − − −

− − − −
 (14) 

Define the corresponding coefficient vectors ˆ ( )B n  and ˆ( )A n  

as in (6a) and (6b), and define ˆ ( )C n  as 

0,1 0,2 ,
ˆ ˆ ˆ ˆ( ) [ ( ), ( ), , ( )]T
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Define the generalized equation error   
ˆ ˆˆ( ) ( ) ( ) ( ) ( ) ( ) ( )T T T

ge n A n D n B n X n C n Q n= − −  (16) 

The update equations for ˆ( )B n  and ˆ( )A n  are as that in (9a) and 
(9b), respectively, and  

ˆ ˆ( 1) ( ) ( ) ( )c gC n C n e n Q nμ+ = + . (17) 

The monic normalization is to normalize ˆ( 1)A n +  as 
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The filter output is then produced as 
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The a-posterior error signal is  
ˆ( ) ( ) ( )e n d n d n= − . (20) 

Utilizing the idea of MSS scheme proposed in section 2 to the 
equation-error bilinear filter, we have a multi step-size monic 
normalization equation-error bilinear filter which is capable of 
reducing the biased estimates and has fast convergence 
performance. 

 

IV. SIMULATION RESULTS 
In this section, we compare the performance of our filters to 

that of the conventional equation-error filters with monic 
normalization scheme. The experiment results are ensemble 
average of 10 independent runs. For the purpose of smoothing 
the curves, the demonstrated learning curves are averaged over 
1000 points. 

A. Example 1: Linear System 
The problem considered is that of estimating the parameters 

of a linear system governed by the equation 
( ) 0.847 ( ) 0.423 ( 1) ( 1) 0.5 ( 2)y n x n x n y n y n= − − + − − − .(21) 

The excitation signal ( )x n  is white Gaussian with zero mean 
and unit variance. This setup makes ( )y n  with a power close to 
unit. A white Gaussian noise which is independent to input 
signal and has variance 0.1 is added to the system. This setup 

was first used in [4]. We compared the proposed MSS-MNEE to 
the MNEE introduced in [4]. MNEE uses fixed step-size of 
0.001. The MSS-MNEE selects the step-size from two values, 
0.001 and 0.01, depends on the indication function 

( , )n Nε defined in (12). The threshold employed in the 
experiment is 0.13. We have used the squared norm of the 
coefficient error vectors to evaluate the performance of the 
algorithms. The norm is defined as  
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Figure 1 shows the evolution of  ( )LV n . It is noted that our 
MSS-MNEE exhibits faster convergence behavior than the 
MNEE. Both algorithms have very close steady state 
performance which matches our analysis. 

B. Example 2: Linear System 
Consider another linear system governed by 

( ) 4.1 ( ) 2.06 ( 1) 0.8 ( 1) 0.12 ( 2)y n x n x n y n y n= − − + − − −  (23) 

Signal ( )x n  is white Gaussian with zero mean and variance 
0.055. The additive noise is white Gaussian with variance 0.1. 
We have used the same setup for the step sizes as in Example 1. 
The threshold employed is 0.3. Figure 2 shows the evolution of 

( )LV n . Again, our MSS-MNEE outperforms the MNEE with 
faster convergence behavior. 

C. Example 3: Bilinear System 
Consider a bilinear system governed by 

( ) ( ) ( 1) ( 2) 0.5 ( 1) 0.5 ( 2)
          0.3 ( ) ( 1) 0.1 ( ) ( 2)
          0.2 ( 1) ( 1) 0.2 ( 1) ( 2)
         0.1 ( 2) ( 1) 0.3 ( 2) ( 2)

y n x n x n x n y n y n
x n y n x n y n
x n y n x n y n

x n y n x n y n

= + − + − + − − −
+ − + −
− − − − − −
+ − − + − −

 (24) 

Signal ( )x n  is white Gaussian with zero mean and variance 0.17. 
The additive noise is white Gaussian with variance 0.1. We have 
compared the MSS-MNEEBF to the MNEEBF with the same 
setup for the step sizes as in Example 1. The threshold employed 
is 0.3. Figure 3 shows the evolution of corresponding squared 
norm of the coefficient error vectors. The proposed 
MSS-MNEEBF clearly outperforms the MNEEBF with much 
faster convergence behavior. 

V. CONCLUSIONS 
This paper presented a multi step-size monic normalization 

equation-error linear filter. The algorithm enjoys fast 
convergence behavior and has the capability of removing biased 
estimates due to noisy observations. We also extended the idea 
to equation-error bilinear filter. Simulation results validated the 
usefulness of our algorithms.  
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Figure 1.   Plots of the normalized squared parameter errors of Example 1  

 
Figure 2.   Plots of the normalized squared parameter errors of Example 2  

 
Figure 3.   Plots of the normalized squared parameter errors of Example 3 
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