
 
 

 

  
Abstract— This work provides the specification of a PHY and 

MAC layers simulator that allows to evaluate the IEEE 802.11e 
service quality. A detailed state transition diagram is presented 
along with a description of the related attributes and methods, an 
identification of the associated events and input variables, and a 
description of functions for events. For validation purposes, 
results of the goodput as a function of the signal to interference 
noise ratio were obtained with an error margin lower than 10%. 
Higher values are found for the goodput for background and 
video services, mainly because the frames transmitted in these 
services are longer than the voice application ones. However, the 
number of supported users is higher for voice. This simulator will 
allow for tuning-up several parameters like the ones related to 
how to use BlockACK, normal ACK, and NO ACK policies. 
 

Index Terms— QoS, simulation, IEEE 802.11e, optimization. 

I. INTRODUCTION 
In recent years, an amazingly rapid evolution in wireless 

local area networks (WLANs) as occurred. Due to the low cost, 
and easiness of deployment, IEEE 802.11 WLANs have been 
used so widely that they become the dominating WLAN 
technology. This is mainly because the technology is reaching 
an unprecedented maturity in regard to providing higher bit 
rates as the time goes by; however, it could not fulfil the 
increasing demand for quality-of-service (QoS) support from 
the increasingly popular multimedia applications yet. 

To overcome this limitation, the IEEE 802.11e standard [1] 
is specified aiming to support QoS by providing differentiated 
classes of service in the medium access control (MAC) layer 
and to enhance the ability of the physical layer so that they can 
deliver time-critical multimedia traffic, in addition to 
traditional data packets. 

This work addresses the service quality in IEEE 802.11 
WLANs. We produced a simulator that enables simulations 
that analyse the performance and allows the improvement of 
IEEE 802.11e mechanisms, such as arbitrary inter frame 
spacing, differentiated backoff procedure, and the transmission 
opportunities for each service class, as well as experiments on 
acknowledgment policies. Besides these features, it was build 
accounting for inter-working with Worldwide Interoperability 
for Microwave Access (WiMAX) and High Speed Downlink 
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Packet Access (HSDPA) simulators by means of improved 
scheduling algorithms and CRRM techniques. Scenarios that 
focus the interoperability among several wireless networks like 
Wireless-Fidelity (Wi-Fi), WiMAX, HSDPA, and Digital 
Video Broadcasting Handheld (DVB-H) are a final goal. 

The structure of this paper is as follows. In Section II, an 
overview of the IEEE 802.11e standard is addressed. In Section 
III, the hybrid coordination function is presented and details are 
given on the enhanced distributed channel access. Section IV 
includes the presentation of the state transition diagram, its 
variables, entities, events, and functions. In Section V, details 
are given on the physical layer of the IEEE 802.11a standard, 
the one considered in this work. Section VI presents the 
validation of our simulator after joining together PHY plus 
MAC functionalities in the same tool. This validation is 
performed based on extensive simulation results obtained. 
Section VII includes the hypothesis for system and scenarios, 
including details on traffic parameters. Section VIII presents 
simulation results for packet delay, goodput, and channel 
utilization. Conclusions are presented in Section IX as well as 
suggestion for future work. 

II. IEEE 802.11E 
The IEEE 802.11 architecture consists of several 

components that interact to provide a WLAN that supports 
station mobility transparently to upper layers. The basic service 
set (BSS) is the basic building block of an IEEE 802.11 LAN. 
Figure 1 presents two BSSs, each of which has two wireless 
stations that are members of the BSS. Instead of existing 
independently, a BSS may also form a component of an 
extended form of network that is built with multiple BSSs. The 
architectural component used to interconnect BSSs is the 
distribution system (DS). IEEE 802.11 logically separates the 
wireless medium (WM) from the distribution system medium 
(DSM). Each logical medium is used for different purposes, by 
a different component of the architecture. An access point (AP) 
is a station (STA) that provides access to the DS by providing 
DS services in addition to acting as a STA Data move between 
a BSS and the DS via an AP, Figure 1. 

The IEEE 802.11 quality of service (QoS) facility provides 
medium access control (MAC) enhancements to support local 
area network (LAN) applications with QoS requirements. The 
QoS enhancements are available to QoS stations (QSTAs) 
associated with a QoS access point (QAP) in a QBSS. 
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Fig. 1 - Non-roaming reference model. 

 
The so-called enhanced distributed channel access (EDCA) 

mechanism delivers traffic based on differentiating user 
priorities (UPs), Figure 2. This differentiation is achieved by 
varying the following different UP values:  

• Amount of time a STA senses the channel to be idle 
before backoff or transmission, or 

• The length of the contention window to be used for the 
backoff, or 

• The duration a STA may transmit after it acquires the 
channel. 

The so-called hybrid coordination function (HCF) controlled 
channel access (HCCA) mechanism allows for the reservation 
of transmission opportunities (TXOPs) with the hybrid 
coordinator (HC), Figure 2.  

 

Distributed Coordination Function (DCF)

     Point 
Coordination 
  Function 
    (PCF)

     HCF
Contention
  Access 
  (EDCA)

     HCF
Controlled
  Access 
  (HCCA)

Hybrid Coordination Function (HCF)

 MAC 
Extent

    Required for
Contention Free 

  Services for non-
QoS STA; optional 

othewise

    Required for
Prioritized 

  QoS Services
Required for
Parametrized 
QoS Services

Used for
Contention 
Services: basis for
PCF and HCF

 
Fig. 2 - MAC architecture. 

 
Details on the CSMA/CA protocol, and inter-frame spaces 

(IFS) are presented in [1]. The backoff time and the backoff 
procedure are addressed in [1] and [2], as well as the 
description of the details on the network allocation vector 
(NAV), and the use of RTS/CTS with fragmentation. The 
fragmentation is the process of partitioning a MAC service data 
unit (MSDU) or a MAC management protocol data unit 
(MMPDU) into smaller MAC level frames, MAC protocol data 
units (MPDUs).  

III. HYBRID COORDINATION FUNCTION (HCF)                   
ENHANCED DISTRIBUTED CHANNEL ACCESS (EDCA) 

The QoS facility includes an additional coordination 
function called HCF that is only usable in QoS network 
(QBSS) configurations. The HCF shall be implemented in all 
QSTAs.  

The EDCA mechanism provides differentiated, distributed 
access to the WM for QSTAs using eight different UPs. The 
EDCA mechanism defines four access categories (ACs) that 
provide support for the delivery of traffic with UPs at the 

QSTAs, Figure 3. The AC is derived from the UPs, as 
presented in Table I. For each AC, an enhanced variant of the 
DCF, called an enhanced distributed channel access function 
(EDCAF), contends for TXOPs using a set of EDCA 
parameters from the EDCA Parameter Set element or from the 
default values for the parameters when no EDCA Parameter Set 
element is received from the QAP of the QBSS with which the 
QSTA is associated. 

 

Table I - UP mapping between user priorities and ACs. 

Priority 
UP (Same as 
802.1D user 

priority) 

802.1D 
Designation AC Designation

1 BK AC_BK Background
2 — AC_BK Background
0 BE AC_BE Best Effort
3 EE AC_BE Best Effort
4 CL AC_VI Video 
5 VI AC_VI Video 
6 VO AC_VO Voice 

 Lowest 

 

 

 

 

 Highest   7 NC AC_VO Voice 

 
 

 
Fig. 3 – Access categories in EDCA [3]. 

 
The TXOP limit duration values are advertised by the QAP 

in the EDCA Parameter Set information element in Beacon and 
Probe Response frames transmitted by the QAP. Non-AP 
QSTAs shall ensure that the duration of TXOPs obtained by 
using the EDCA rules do not exceed the TXOP limit. The 
duration of a TXOP is the duration during which the TXOP 
holder maintains uninterrupted control of the medium, and it 
includes the time required to transmit frames sent as an 
immediate response to the TXOP holder’s transmissions.  

1) Obtaining an EDCA TXOP 
Each channel access timer shall maintain a backoff function 

(timer), which has a value measured in backoff slots. The 
duration AIFS[AC] is a duration derived from the value 
AIFSN[AC] by the relation  

   AIFS[AC] = AIFSN[AC] × aSlotTime + aSIFSTime 
The value of AIFSN[AC] shall be greater than or equal to 2 

for non-AP QSTAs and is advertised by the QAP in the EDCA 
Parameter Set information element in Beacon and Probe 
Response frames transmitted by the QAP. The value of 
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AIFSN[AC] shall be greater than or equal to 1 for QAPs. An 
EDCA TXOP is granted to an EDCAF when the EDCAF 
determines that it shall initiate the transmission of a frame 
exchange sequence. Transmission initiation shall be 
determined according to the following rules:  
― On specific slot boundaries, each EDCAF shall make a 

determination to perform one and only one of the following 
functions [1]:  

• Start the transmission of a frame exchange sequence for 
that access function; 

• Decrement the backoff timer for that access function; 
• Invoke the backoff procedure due to an internal collision; 
• Do nothing for that access function. 
― At each of the above-mentioned specific slot boundaries 

[1], each EDCAF shall start a transmission sequence if  
• There is a frame available for transmission at that 

EDCAF; 
• The backoff timer for that EDCAF has a value of zero;  
• Initiation of a transmission sequence is not allowed to 

commence at this time for an EDCAF of higher UP.  

2) Multiple frame transmission in an EDCA TXOP 
Multiple frames may be transmitted in an acquired EDCA 

TXOP if there are more than one frame pending in the AC for 
which the channel has been acquired. However, those frames 
that are pending in other ACs shall not be transmitted in this 
EDCA TXOP. If a QSTA has in its transmit queue an 
additional frame of the same AC (as the one just transmitted) 
and the duration of transmission of that frame plus any 
expected acknowledgment for that frame is less than the 
remaining medium occupancy timer value, then the QSTA may 
start transmission of that frame after the completion of the 
immediately preceding frame exchange sequence plus a SIFS.  

All other ACs at the QSTA shall treat the medium as busy 
until the expiration of the NAV set by the frame that resulted in 
a transmission failure, just as they would if they had received 
that transmission from another QSTA.  

3) EDCA backoff procedure 
Each EDCAF shall maintain a state variable CW[AC], which 

shall be initialized to the value of the parameter CWmin[AC].  
The backoff procedure shall be invoked for an EDCAF when 

any of the following events occurs:  
• A frame with that AC is requested to be transmitted, the 

medium is busy as indicated by either physical or virtual 
CS, and the backoff is zero for that AC; 

• The final transmission by the TXOP holder initiated 
during the TXOP for that AC was successful; 

• The transmission of a frame of that AC fails, indicated by 
a failure to receive a CTS, to receive an ACK, or to 
receive a BlockAck; 

• The transmission attempt collides internally with another 
EDCAF of an AC that has higher priority, i.e., if two or 
more EDCAFs in the same QSTA are granted a TXOP 
simultaneously.  

The backoff timer is set to an integer value chosen randomly 
with a uniform distribution taking values in the range 
[0,CW[AC]] inclusive. All backoff slots occur following an 

AIFS[AC] period during which the medium is determined to be 
idle.  

IV. STATE TRANSITION DIAGRAM 
The state transition diagram used to build the simulator is 

presented in Figure 4. Table II presents the actions related with 
each event. 

Table II - UP Event actions. 

ACTIONS 
1 State = LISTEN_DIFS. 

Save:  
Time creation packet. 
Length packet. 
Fragmentation (if it is required). 
Know destination. 
Know type of packet. 
Buffer [AC] !=NULL. 

Schedule: 
STOP_LTN_DIFS (clock + AIFS). 

2 Schedule: 
STOP_TX (clock + packet_length). 

See the TXOPLimit to send if there is any packet more. 
Backoff_condition=1 for STA in LISTEN_DIFS. 
State = TX. 

3 Schedule: 
STOP_RX_ACK (clock + ACK). 

State = LISTEN_SIFS. 
4 State = WAIT_ACK. 
5 Erase the packet. 

State = IDLE. 
Save: 

Increment number of packets transmitted. 
Delay of the transmission. 

6 State = WAIT. 
Increase the number of collisions. 
Backoff_condition = 1; 

7 Schedule: 
STOP_LTN_DIFS (clock + AIFS). 

State = LISTEN_DIFS. 
8 Refresh NAV. 

State = WAIT. 
Deschedule: 

STOP_LTN_D. 
Schedule: 

STOP_RX (clock + NAV). 
9 State = BACKOFF_TIMER. 

If (backoff_condition == 1) 
Generate backoff. 
Decrement backoff_value each time slot. 

Else 
Decrement backoff_value each time slot. 

10 Suspend backoff procedure. 
Refresh NAV. 
State = WAIT. 
Schedule: 

STOP_RX (clock + NAV). 
11 Schedule: 

STOP_RX (clock + RX). 
State = RX. 

12 Schedule: 
START_TX (clock + SIFS). 

State = LISTEN_SIFS. 
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13 Save:  
Time creation packet. 
Length packet. 
Fragmentation (if it is required). 
Know destination. 
Know type of packet. 

Buffer [AC] !=NULL 
Backoff_condition = 1. 
State = WAIT. 

14 Schedule: 
STOP_TX (clock + packet_length). 

See the TXOPLimit to send if there is any packet more. 
Backoff_condition=1 for STA in LISTEN_DIFS. 
State = TX. 

15 State = IDLE. 
16 Schedule: 

STOP_LTN_DIFS (clock + AIFS). 
State = LISTEN_DIFS. 

17 Schedule: 
STOP_LTN_DIFS (clock + AIFS). 

State = LISTEN_DIFS. 
18 State = IDLE 
19 Schedule: 

STOP_LTN_DIFS (clock + AIFS). 
State = LISTEN DIFS 

20 Schedule: 
STOP_RX (clock + packet_length). 

State = RX 
21 Schedule: 

STOP_RX (clock + packet_length). 
State = RX 

22 State = LISTEN_SIFS. 
Schedule: 

START_TX (clock + SIFS) 
23 State = TX 

Schedule: 
STOP_TX (clock + packet_length). 

24 State = RX 
Schedule: 

STOP_RX (clock + packet_length). 
25 Decrement backoff_value 

If (backoff_value == 0) 
Schedule: 

START_TX (clock). 
Else 

Schedule: 
TIME (clock + SIFS). 

26 Decrement backoff_value 
 
 

 

 
Fig. 4 - State transition diagram (the incoming arrow for the Backoff_Timer state means a transition from and to the same state). 

IAENG International Journal of Computer Science, 35:1, IJCS_35_1_22
______________________________________________________________________________________

(Advance online publication: 19 February 2008)



 
 

 

 
The following events cause transition/change of the machine 

state: 
NEW_PCK_BK  a new packet of BK is generated; 
NEW_PCK_BE  a new packet of BE is generated; 
NEW_PCK_VI  a new packet of VI is generated; 
NEW_PCK_VO  a new packet of VO is generated; 
STOP_LTN_D end of the AIFS period for sensing the 

medium; 
STOP_LTN_S  end of the SIFS period for sensing the 

medium; 
TIME_SLOT  the STA decrements the backoff_value; 
START_TX   the station starts to transmit; 
STOP_TX  stop of the transmission; 
START_RX  start of the reception; 
STOP_RX  stop of the reception; 

 START_TX_ACK start the transmission of an 
acknowledgement; 

STOP_TX_ACK stop the transmission of an 
acknowledgement; 

ACK_OK  the acknowledgement was received; 
ACK_NOK  the acknowledgement was not received. 

A detailed description of the characterisation of possible 
states for the “machines” nodes, the simulation entities, the 
simulation variables, and the functions for events is given in 
[4]. The characterization of possible states for the “machines” 
nodes is the following [4]: 
Machine 

States  
Idle: buffer is empty; 
Wait: backoff counter is frozen; 
Listen DIFS: waiting AIFS; 
Backoff Timer: decreasing the backoff timer; 
TX: transmitting packet; 
Listen SIFS: waiting SIFS; 
RX: receiving a packet; 
Wait ACK: waiting an acknowledgement; 
TX ACK: transmitting an acknowledgement. 

Queues 
Empty: buffer is empty; 
Not empty: can have p packets waiting to be transmitted. 

Medium states 
Free: medium is free, no one is transmitting; 
Not free: medium not free, there is someone transmitting 
and someone receiving. 

States for the packet 
Payload; 
time of generation; 
backoff condition: can be either 0, 1 or 2; 
origin; 
destination; 
backoff value; 
Ncollision: number of collisions the packet has suffered; 
packet_type: type of packet, can be of BK, BE, VI and 

VO; 
frag: it is a list that takes several fragments; 
rts_first: serves to know if it is the first fragment to be sent 

or not. 

There are the following entities in the simulations[4]: 
Entities: 

Machine: the objects of these class are the AP and the nodes 
o attributes 

 buffer[4]: contains the packets for each access 
category; 

 colisions[4]: contains the collisions of each 
access category; 

 location: contains the 2D position; 
 tx_power: indicates the power when the machine is 

transmitting; 
 tx_node: indicates if the machine is transmitting or 

not; 
 stae[4]: contains the state of each access category; 
 delay[4]: contains the delays for each access 

category; 
 num_packets[4]: contains the number of packets 

transmitted of each access category: 
 TXOP_limit: the time that the machine shall not 

pass before listen an AIFS; 
 SBlock_ACK: if the machine has the Block Ack 

policy with another machin;e 
 VBlock_ACK: the value of the Block ACK’s buffer; 
 RBlock _ACK: the receiver Block ACK’s buffer; 
 packet_loss[4]; 
 retransmissions[4]. 

o methods  
 AddFragment(Possible_packets p,       
fragment f): adds a fragment to a packet in one of 
the queues; 

 AddPacket(PacketWiFi p): adds a packet to one 
of the queues; 

 AddPacketADDBAReq(PacketWiFi p): adds a 
ADDBA Request packet to one of the queues; 

 AddPacketADDBARes(PacketWiFi p): adds a 
ADDBA Response packet to one of the queues; 

 AddPacketRES(PacketWiFi p): adds a Response 
packet to one of the queues; 

 ChangeSBlock(Possible_packets p, int d, 
StateBlock s): changes the state of SBlock_ACK 
buffer with a destination; 

 ChangeVBlock(Possible_packets p, int d, 
double v): changes the value of VBlock_ACK 
buffer with a destination; 

 DecVBlock(Possible_packets p, int d): 
decrements the value of VBlock_ACK buffer with a 
destination; 

 Del_Frags(Possible_packets p, int d, int 
o, vector<Machine> *m): erases all the 
fragments sent by Block ACL policy to a 
destination; 

 RemoveFirstPacketLost(Possible_packets 
p): removes a packet when the L_COL is reached 
from the queue p; 

 RemovePacket(Possible_packets p): removes 
the packet from the queue p; 
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 RemovePacketsBlockSent(Possible_packet
s p, int d): removes the packets sent by Block 
ACK policy to a destination; 

 RemovesPacketsEmpty(Possible_packets p, 
int d, double c, bool a): removes empty 
packets to a destination and update the delays; 

 ResetTXOP_limit(): changes the value of the 
TXOP_limit to 0; 

 SetState(Possible_packets p, State s): 
sets the state of the buffer p to state s; 

 SetTXOP_limit(double x, Possible_ 
packets p): changes the TXOP_limit to a value ; 

 Buffers_size(Possible_packets p): returns 
the size of the buffer p; 

 Buffers_size(): returns the number of packets in 
all buffers; 

 DataPackets_to_i(Possible_packets p, 
int o, int d): counts the data packets to a 
destination; 

 DataPackets_to_i(Possible_packets p, 
int o, int d): counts the data packets to a 
destination; 

 Packets_to_i(Possible_packets p, int 
o,int d): counts the total packets to a destination; 

 GetTXOP_limit(): returns the value of the 
TXOP_limit; 

 GetVBlock(Possible_packets p, int d): 
returns the value of the VBlock_ACK buffer to a 
destination; 

 GetFirstPacketLost(Possible_packets p): 
gets a packet which has waited the response during 
the ACK Time_out from the queue p; 

 GetLastPacket(Possible_packets p): returns 
the last packet sent from the queue p; 

 GetNextPacket(Possible_packets p): returns 
the next packet to send from the queue p; 

 ADDBAReqPackets_to_i(Possible_packets 
p, int o, int d): returns a boolean if there is a 
ADDBA Request packet in the buffer p; 

 CheckPacketEmpty(Possible_packets p, 
int d): returns a boolean if there is a empty packet 
in the buffer p; 

 PacketsNotSent(Possible_packets p): 
returns a boolean if there is packets not sent in the 
buffer p; 

 GetState(Possible_packets p): returns the 
state of the buffer p; 

 GetSBlock(Possible_packets p, int d): 
returns the state of the buffer p to the destination d. 

 

Packet: the objects of this class are the packets that fill in the 
buffer 
o attributes 

 payload; 
 time_gen: when it was created; 
 backoff_condition: 0 do not generate backoff, 1 

generate backoff, 2 decrement backoff down to 0; 
 origin: the originator of the traffic; 

 destination: to whom it is to be transmitted; 
 backoff_value: number of slots to be 

decremented; 
 Ncolision: number of collisions the packet has 

suffered; 
 packet_type: it can be of VO (voice), VI (video), 

BE (best effort) and BK(background); 
 frag: queue of fragments of the packet; 
 rts_first: used to check if the fragment is the first 

or not. 
o methods 

 AddFrag(Possible_packets p, fragment 
f):adds a fragment to the packet; 

 ChSentFalse(bool x): changes the variable send 
of the last fragment sent to false; 

 ChangeSend(): changes the variable send of the 
first fragment not sent to true; 

 DelFrag(): erases the last fragment sent of the 
packet; 

 IncNcollisions(): increments the number of 
collisions the packet suffered; 

 SetBackoffcondition(int x): changes the 
variable backoff_condition of the packet; 

 FragsNotSent(): returns the number of the 
fragments not sent in the packet; 

 GetBackoffcondition(): returns the variable 
backoff_condition of the packet; 

 GetBackoffvalue(): returns the variable 
backoff_value of the packet; 

 GetDestination(): returns the variable 
destination of the packet; 

 GetPayloadNextFrag(): returns the variable 
payload of the first fragment to send; 

 GetPayloadLastFrag(): returns the variable 
payload of the last fragment sent; 

 GetPayloadSecFrag(): returns the variable 
payload of the second fragment to send; 

 GetNcolision(): returns the number of collisions 
of the packet; 

 GetModulationLastFrag(): returns the variable 
modulation of the last fragment sent; 

 SetModulationNextFrag(double x): changes 
the variable modulation of the fragment x; 

 SetrxDataNextFrag(double x): changes the 
variable rxData_Pr_db of the fragment to x; 

 SetSNRNextFrag(double x): changes the 
variable SINR_db of the fragment to x; 

 GetSNRLastFrag(): returns the variable SINR_db 
of the last fragment sent; 

 GetTimeGen(): returns the variable time_gen of 
the packet; 

 GetBlockLastFrag(): returns the variable Block 
of the last fragment sent; 

 GetRTSPacket(): returns the variable rts_first of 
the packet; 

 GetTypeLastFrag(): returns the variable type of 
the last fragment sent; 
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 GetTypeNextFrag(): returns the variable type of 
the first fragment to send; 

 GetTypePacket(): returns the variable send of the 
fragment to false; 

 ChSentFalse(bool x): changes the variable 
packet_type of the packet. 

 

Event: the objects of this class are the events, they are stored 
in a list 
o attributes 

 event_time: period at which the period is going to 
take place; 

 t_event: type of event already presented before; 
 origin: the originator of the event; 
 destination: the destination of the event p for 

which AC the event is for. 
o methods 

 set_event: sets the event attributes to the new 
ones. 

 

Channel: only one object of this class is created. It stores the 
data that has to be passed trough events 
o attributes 

 transmitters: number of transmitters at that 
moment; 

 aux_col: when a collision occurs this variable is set 
to true; 

 n_collisions: total collisions suffered; 
 clock. 

 

Output: one object of this class is created per simulation. It 
stores the main outputs of the simulation. As a simulation 
runs for some time, these outputs are stored in a vector. At 
the end the simulations the averages are calculated 
o attributes 

 delay_total_BK; 
 delay_total_BE; 
 delay_total_VI; 
 delay_total_VO; 
 delay_average_BK; 
 delay_average_BE; 
 delay_average_VI; 
 delay_average_VO; 
 colisions_total; 
 colisions_rate; 
 packets_total_BK; 
 packets_total_BE; 
 packets_total_VI; 
 packets_total_VO; 
 chann_utilization; 
 thr_total; 
 thr_per_sec. 

 

Lista: a object of this class (one list)  is created to store the 
events. 
o attributes 

 lis: contains al the events; 
 inter: iterator of the list. 

o methods 

 del_event_after: erases all the events after some 
time; 

 Get_next_event(): returns the first event in the 
list; 

 see_event_machine(): checks if a given event is 
in the list. 

 

Random_generator: the objects of this class serve the of 
generate a random number with uniform distribution 
Distributions: the objects of this class generate random 
numbers with a given distribution 

 

Simulation variables - the main simulation variables are the 
following:  

event_list: is the list in which all the events are sorted by 
time; 
stations: a vector which contains all the stations; 
output: where the main outputs are saved. 

 

Input variables - the input variables are the following.  
MT: total number of stations; 
SIMULATION_TIME 100000: simulation lifetime in ms; 
DATA_RATE 20000000.0: data rate in bits; 
PAYLOAD_BK 12000: payload of the BK packets; 
PAYLOAD_VO 1280: payload of the VO packets; 
PAYLOAD_VI 10240: payload of the VI packets; 
PAYLOAD_BE 12000: payload of the BE packets; 
FACTOR 1000.0: factor used for changing units of time to 
ms; 
DIFS 0.034: DIFS size in ms; 
SIFS 0.016: SIFS in ms; 
INTER_ARRIVAL_BK 12.5: interarrival time for BK 
packets in ms; 
INTER_ARRIVAL_VO 20: interarrival time for VO 
packets in ms; 
INTER_ARRIVAL_VI 10: interarrival time for VI 
packets in ms; 
INTER_ARRIVAL_BE 2: interarrival time for BE 
packets in ms; 
SLOT 0.009: SLOT time in ms; 
ACK_SIZE 112: acknowledgement size in bits; 
DEGREES_FREEDOM 2: number of simulations that 
will be taken with different random seeds; 
RTS_TH 3000: RTS threshold, to use a RTS procedure; 
RTS_SIZE 160: RTS size in bits; 
CTS_SIZE 112: CTS size in bits; 
CW_MIN 31: CWmin; 
L_COL 8: collisions limit; 
TXOP_BK 0: TXOP size for the BK traffic, being 0 means 
that only one MSDU can be transmitted in a TXOP; 
TXOP_BE  0: TXOP size for the BK traffic; 
TXOP_VI 3.008: TXOP size for the VI traffic in ms; 
TXOP_VO 1.05: TXOP size for the VO traffic in ms. 

Functions for events 
Our simulator was build in standard C++. The definition of 

the functions used to initialize the traffic, to generate the 
backoff, and the AIFS, and of the functions that deal with the 
events (that change the state of the machines as well) is the 
following: 
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 Initialize(list_events, ed, stations, 
fs): this function serves to add machines and 
schedule the traffic for them(ed is an event and fs is 
a object for writing); 

 AIFS(Possible_packets p): generates the AIFS 
for a given AC; 

 Generate_backoff(int colisoes): generates 
the backoff for a given AC; 

 New_pck_bk(list_events, ed, stations, 
chan, fs): this function adds packets to a given 
buffer (BK). The fragmentation of the MSDU into 
several MPDU (if required) is performed here. Also 
a new arrival is scheduled here; 

 Stop_ltn_d(list_events, ed, stations, 
chan, fs): the packet in a given buffer of one given 
machine is made available and the payload 
compared with the RTSLimit to answer if the packet 
will be sent with RTS/CTS method or not. With this 
function the simulator verifies the 
backoff_condition, and determines if the machine 
has to send the packet normally, to generate a 
backoff, or to continue decreasing the 
backoff_value; 

 Time_slot(list_events, ed, stations, 
chan, fs): this function will be applied to 
machines that are in the Backoff_Timer state. When 
the machine invokes the backoff procedure, all the 
machines that are in Backoff_Timer state are going 
to schedule an event time_slot to decrease the 
backoff_value by one unit. When the backoff_value 
reaches zero then the machine will start the 
transmission; 

 Start_TX(list_events, ed, stations, 
chan, fs): first of all, it is checked if there is an 
internal collision, if there is none, the machine will 
obtain a TXOP. Then, if there is enough time to send 
the packet the transmission will start. The other 
machines will update their NAVs, for this MPDU 
plus another, if there is one, and if it is possible to 
send (according to the TXOP  limit policy); 

 Start_RX(list_events, ed, stations, 
chan, fs): the buffer of the machine which is 
going to receive is set to RX state; 

 Stop_TX(list_events, ed, stations, chan, 
fs): the buffer of the machine which is transmitting 
is set to LISTEN_SIFS state; 

 Stop_RX(list_events, ed, stations, chan, 
fs): this function detects if there is a collision. If the 
transmission is successful then the receiver will send 
an ACK to confirm the data. If a collision is detected 
then the receiver will not send the ACK. Then, after 
an ACKTimeout time, the sender will invoke the 
backoff procedure; 

 Stop_ltn_S(list_events, ed, stations, 
chan, fs): it sets the state of the transmitter 
machine to WAIT_ACK; 

 RES_ok(list_events, ed, stations, chan, 
fs): if the machine receives an ACK then checks if 

there are more MPDUs or MSDUs to transmit, and if 
the TXOP will allow sending them; 

 RES_nok(list_events, ed, stations, chan, 
fs): it will perform the procedures inherent to a 
retransmission. 

VI. PHYSICAL LAYER  
The physical layer specification used in this work is the IEEE 

802.11a standard [3], [5] that defines an Orthogonal Frequency 
Division Multiplexing (OFDM) based PHY layer that operates 
in the 5 GHz frequency band, being able to achieve bit-rates as 
high as 54 Mbps. It defines 8 non-overlapping channels of 20 
MHz each across the low and middle 5 GHz bands (5.15-5.35 
GHz) and four extra channels across the high 5 GHz band 
(5.725-5.825 GHz). Each of these channels is divided into 52 
sub-carriers, with each sub-carrier being approximately 300 
kHz wide. In each channel 48 sub-carriers are used for data 
transmission, while the remaining 4 sub-carriers are used as 
pilots for coherent detection. A high data rate is achieved by 
combining 48 lower bit-rate data streams transmitted in 
parallel, each modulating a different sub-carrier. The parallel 
transmission of 52 modulation symbols, one in each 
sub-carrier, forms an OFDM symbol. These are created by an 
Inverse Fast Fourier Transform (IFFT), which combines the 
sub-carriers before transmission.  

IEEE 802.11a specifies 8 different transmission modes, 
obtained with different combinations of modulation and 
convolutional code rate. Each transmission mode corresponds 
to a different bit-rate. Within an OFDM symbol the same 
transmission mode is used in all data sub-carriers. The IEEE 
802.11a transmission modes are listed in Table III, together 
with the respective number of bytes transmitted in one OFDM 
symbol (Bytes-per-Symbol, BpS). The convolutional encoder 
always encodes data with code rate 1/2. The 3/4 and 2/3 codes 
are derived from the original 1/2 code by a technique called 
puncturing. Puncturing is a procedure for omitting some of the 
encoded bits in the transmitter, and inserting a dummy “zero” 
metric into the convolutional decoder at the receiver, in place of 
the omitted bits. This technique is a simpler and more efficient 
way of generating a higher code rate.  

Table III - IEEE 802.11a PHY modes. 

Mode Modulation Code Rate Bit-rate BpS 
1  BPSK  1/2  6 Mbps  3  
2  BPSK  3/4  9 Mbps  4.5  
3  QPSK  1/2  12 Mbps 6  
4  QPSK  3/4  18 Mbps 9  
5  16-QAM  1/2  24 Mbps 12  
6  16-QAM  3/4  36 Mbps 18  
7  64-QAM  2/3  48 Mbps 24  
8  64-QAM  3/4  54 Mbps 27  

 
In indoor radio environments, signals coming from multiple 

indirect paths added to the direct path induce delay spread. This 
may be large enough to cause Inter-Symbol Interference (ISI) if 
high rates are used. OFDM counters this effect within each 
sub-carrier by transmitting data in parallel using lower-rate 
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sub-carriers. However, ISI can be further reduced with the 
introduction of a guard interval in the beginning of each OFDM 
symbol. A guard interval longer than the maximum channel 
excess delay ensures that ISI is eliminated. With a guard 
interval of length Tg, a new block duration is obtained as          
T’b = Tg+Tb. In IEEE 802.11a, Tg = Tb/4 = 800 ns, which means 
that T’b = 4ns. 

The cyclic prefix has two drawbacks worth to be mentioned. 
One of them is the overhead transmitted over the radio channel, 
which reduces the maximum data rate achievable on top of 
OFDM. The other one is that the cyclic prefix of duration Tg 
leads to a power loss, as the receiver only uses the energy 
received during time Tb, discarding the energy that corresponds 
to Tg. A power loss αg must thus be taken into account,  
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T
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Consequently, the ratio between the effective average 

symbol energy and the noise power spectral density, av

o

E
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, is 

related to the SINR in the following way:  
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where s

0

E
N

 is the ratio between the raw average symbol energy 

(i.e., including the energy of the cyclic prefix) and the noise 
power spectral density.  

The PPDU frame format is depicted in Figure 5. It consists of 
a PLCP preamble of 12 OFDM symbols, followed by the PLCP 
SIGNAL field and a variable size DATA field.  

RATE
4 bits

Reserved
1 bit

LENGTH
12 bits

Parity
1 bit

Tail
6 bits

SERVICE
16 bits PSDU Tail

6 bits
Pad
 bits

DATASIGNAL
1 OFDM symbol

PLCP preamble
12 OFDM symbols

PLCP Header

 

Fig. 5: Format of the IEEE 802.11a PPDU. 
 
The preamble field is composed of 10 repetitions of a “short 

training sequence” (used for automatic gain control, diversity 
selection, timing acquisition, and coarse frequency acquisition 
in the receiver) and two repetitions of a “long training 
sequence” (used for channel estimation and fine frequency 
acquisition in the receiver), preceded by a guard interval. The 
PLCP header is composed of the SIGNAL field and the 
SERVICE field. The former constitutes an OFDM symbol and 
is transmitted with the lowest rate (BPSK-1/2), being 
composed of the payload RATE indicator, a reserved bit, the 
payload LENGTH, an even parity bit and six “zero” tail bits. 
The SERVICE field belongs to the DATA part and comprises 
seven “zero bits” used to synchronise the descrambler, 
followed by 9 bits reserved for future use. The DATA field also 
comprises the PSDU followed by 6 “zero” tail bits and a 
number of pad bits so that the total length of the DATA part 
corresponds to an integer number of OFDM symbols. The 
DATA part is encoded with the RATE specified in the 
SIGNAL field.  

Link Adaptation 
Link-adaptation can be based on several techniques:  

1. Adaptation of frame size; 
2. Automatic Repeat Request (ARQ); 
3. Forward Error Correction (FEC); 
4. Selection of coded modulation schemes with different 
bandwidth efficiency (bits/symbol) and thus different 
physical bit-rate. This technique is usually called 
rate-adaptation.  

All these techniques incur on an overhead penalty, which 
must be weighted against the overall goodput and energy 
efficiency that can be achieved. There are several proposals of 
link-adaptation schemes presented in [6], [7], [8], [9]. 

Another rate-adaptation mechanism for IEEE 802.11a is 
proposed in [10], and further developed in [11]. In this 
algorithm, the sender chooses the bit-rate that achieves the 
highest goodput taking into account the channel state 
information (CSI) estimate and the number of transmission 
attempts. A PHY mode threshold table is calculated based on a 
conditional probability density function that models channel 
status variation. This rate-adaptation mechanism is compared 
with ARF by means of computer simulation, demonstrating its 
better performance. The algorithm considers no CSI feedback 
protocol. Instead the sender estimates the path loss at the 
receiver based on the received power of frames that come from 
the receiver (e.g., ACK and CTS frames) and the transmission 
power indication in the PPDU. Thus it is assumed that the path 
loss is the same in both directions, which may not be true due to 
multipath effects. The sender also estimates the noise at the 
receiver based on local noise power, which does not take into 
account the differences in terms of the experienced 
interference.  

A requirement for the effectiveness of link-adaptation is to 
have a good estimate of the channel status. This can be 
accomplished with different techniques. In [6] and [12] the 
estimate of the packet error probability is obtained from the 
ratio between the number of failed transmissions and the total 
number of transmission attempts. The disadvantage of such 
approach is that it usually takes a significant number of 
transmission attempts to infer a good packet error probability 
estimate. When the channel is subject to fading effects, the 
reception quality may change faster than link-adaptation.  

The Auto Rate Fallback (ARF) algorithm presented in [13] 
also bases its decisions on the number of missing 
acknowledgements. However, it is simpler as it does not seek to 
obtain an accurate packet error probability estimate. Instead, it 
lowers or raises the bit-rate based on a small number of losses 
or successful transmissions (2 or 10, respectively).  

Another technique is based on the estimation of the received 
power and SINR experienced at the receiver [14], [15]. Such 
approaches are assumed in the link-adaptation techniques 
presented in [9], [10], [16], [11], where it is shown that 
link-adaptation based on SINR estimates is more efficient than 
ARF. However, they assume perfect estimates, which are 
usually difficult to obtain. In fact, the tolerance on the received 
power estimate considered in [17] ranges from ±5 dB to ±8 dB. 

IAENG International Journal of Computer Science, 35:1, IJCS_35_1_22
______________________________________________________________________________________

(Advance online publication: 19 February 2008)



 
 

 

In the techniques proposed in [10] and [11], the error could 
even be magnified by the fact that the estimates assume that the 
path loss is symmetric and the noise experienced by the 
receiver is the same as that experienced by the sender.  

In our simulations, we implement a procedure very similar to 
the one from [10]. We estimate the received power and SINR 
experienced at the receiver, based on the last reception of that 
machine. In this algorithm, the sender chooses the bit-rate that 
achieves the highest goodput taking into account the SINR 
estimate. A PHY mode threshold table (presented in next 
Section) is computed based on the simulations carried out. 
More details on the implementation of the physical layer in the 
simulator can be found in [18]. 

VII. VALIDATION OF PHY PLUS MAC 
According to the IEEE 802.11 standard, the length of a MAC 

service data unit (MSDU) must be less than or equal to 2304 
octets. The length of a MSDU shall be an equal even number of 
octets for all fragments except the last one of a fragment burst, 
which may be smaller. In this Section, we assume that the 
MSDUs to be transmitted are all 2304-octet long. Each MSDU 
might be either fragmented or not fragmented up to 10 
equal-size MPDUs. The PHY and MAC characteristics of 
IEEE 802.11a OFDM are presented in Table IV.  

Table IV: IEEE 802.11a OFDM PHY Characteristics. 

Slot time 0.009 ms 
ACK size 112 bit 
SIFS 0.016 ms 
DIFS 0.015 ms 
RTS threshold 3000 bit 
RTS size 160 bit 
CTS size 112 bit 
CWmin 31 slots 
CWmax 1023 
Collisions threshold 7 
Fragmentation threshold 8000 
Simulation time 10000 ms 

 

Figure 6 presents results of goodput performance for 
different PHY modes without fragmentation while Figure 7 
presents results with fragmentation. As expected, the highest 
rate PHY modes show better goodput performance for the 
highest SINR range, while the lowest rate PHY modes have 
improved goodput performance in the lowest SINR range.  
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Fig. 6: Goodput versus SINR for the 8 different transmission 

modes without fragmentation. 
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Fig. 7: Goodput versus SINR for the 8 different transmission 

modes with fragmentation. 
 
One interesting observation is that the goodput performance 

of PHY mode 3 (QPSK modulation with rate ½ coding) is 
always higher than of PHY mode 2 (BPSK modulation with 
rate ¾ coding) under all SINR conditions. Although QPSK has 
worse error performance than BSPK, the worse performance of 
the ¾ rate convolutional code (compared to the ½ rate 
convolutional code) has a more dominating effect. Therefore, 
without the appropriate power control schemes, PHY mode 2 
may not be a good choice if PHY mode 3 is present. From 
Figures 6 and 7 we can conclude that, for the same PHY mode, 
fragmentation decreases the maximum goodput due to the 
overheads; however, it improves the goodput performance at 
certain SINR range. The optimal combination of the PHY mode 
to achieve the highest goodput for different SINR conditions is 
presented in Figures 8 and 9, without and with fragmentation, 
respectively. 
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Fig. 8: Goodput versus SINR without fragmentation when an 

optimal transmission mode selection is used. 
 
In this work, the values used for transmission mode selection 

are extracted from Figure 8. If we call SMTk to the SINR 
threshold for mode k, the transmission mode m is selected as 
follows 

m=8  if SINR_max ≥ SMT8 
m=7  if SMT8>SINR_max ≥ SMT7 

m=6  if SMT7>SINR_max ≥ SMT6 

m=5  if SMT6>SINR_max ≥ SMT5 

m=4  if SMT5>SINR_max ≥ SMT4 

m=3  if SMT4>SINR_max ≥ SMT3 

m=1  otherwise. 
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Fig. 9: Goodput versus SINR with fragmentation when an 

optimal transmission mode selection is used. 
 
After selecting the transmission mode, the sender always 

uses the maximum transmission power. The PHY mode 
distribution in the square coverage zone is presented in Table 
V. PHY mode 2 does not have any percentage since the 
goodput performance of PHY mode 3 is always better than of 
PHY mode 2 under all SINR conditions. 

Table V - IEEE 802.11a PHY modes. 

Mode  Bit-rate  Distribution [%] 
1  6 Mbps  28.22 
2  9 Mbps  - 
3  12 Mbps 21.51  
4  18 Mbps 18.10 
5  24 Mbps 9.27  
6  36 Mbps 10.08  
7  48 Mbps 1.83  
8  54 Mbps 10.99 

 
The bird’s-eye view of cell area is presented in Figure 10. 

 
Fig. 10 – Bird’s view of cell area. 

VIII. SYSTEM, SCENARIO AND ASSUMPTIONS 
Lets consider a cellular WiFi system where each cell has a 

set N+1 IEEE 802.11e stations communicating through the 
same wireless channel. While station 0 is the Access Point or 
QoS Access Points (QAP), the other N wireless terminals or 
QoS stations (QSTA). The propagation time is assumed to be 
absorbed by some mechanisms of the IEEE 802.11. Each 
station has four buffers whose size depends on the kind of 

service being dealt in order to guarantee a given value for the 
goodput (payload of the packet).  

Simulations have to be undertaken in order to get the best 
buffer size to be used. One of the approaches is to consider the 
buffer with infinite size. This buffer will be filled with a MAC 
Service Data Unit (MSDU) generator that characterises the 
service being dealt in the given buffer. If the MSDU is bigger 
than a fragmentation threshold, it will be fragmented. In order 
to cope with service quality the packet transmission follows the 
Enhanced Distributed Channel Access (EDCA) IEEE 802.11e 
MAC procedure. Due to collisions or interference a packet may 
not be correctly received. The number of collisions is 
represented by a global variable that checks whether there is 
more than one user transmitting simultaneously. The 
interference issues are addressed by using a radio propagation 
model. Each packet exits the buffer only after the reception of 
an acknowledgement, or if it has suffered more than a collision 
threshold.  

In this first phase the users are assumed to be static, and are 
distributed uniformly in a square area of 2500 square meter.  

The topology to be implemented consists of several wireless 
stations and an Access Point (AP). Three types of traffic 
sources were chosen, namely high priority voice, medium 
priority video and low priority FTP data. The traffic sources 
parameters are shown in Table VI. In this Table the Access 
Categories (AC) are also presented of each type of traffic. 

 
Table VI – Traffic Parameters [3]. 

 Voice Video Background (FTP) 
AC VO VI BK 
Packet size 1280 bit 10240 bit 18430 bit 
Packet interval 20 ms 10 ms 12.5 ms  

IX. SIMULATION RESULTS 
Our simulations consider one access point with several client 

machines. Results include packet delay, goodput, in bit per 
second, and channel utilization. A performance measure 
combining throughput and delay into single function will be 
proposed in a near future.  

Results considering MAC and PHY layers are obtained, for 
each parameter, as the average of 20 simulations (each with 
different random seeds). Results with MAC layer alone are 
presented in [19].  

Packet delay is the period of time between the moment at 
which the packet arrives to the buffer and the moment at which 
the packet is successfully transmitted. The results for stand 
alone voice (VO) uplink and downlink traffic, background 
(BK) and video (VI) are presented in Figure 11. 

In terms of grade of service, from [20] the voice application 
supports delays up to 30 ms, the video application supports 
delays up to 300 ms, while the delay for the background 
applications can be up to 500 ms. Hence, our QAP supports up  
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Fig. 11 - Delay as a function of the number of nodes for VO, 

VI, and BK applications. 
 

to 40 voice users, 18 video users, and 11 background users with 
an appropriate degree of QoS. The system is limited by the 
downlink connection. 

Another performance measure is the maximum goodput 
achievable for a given channel capacity. It is certain that a 
fraction of the channel capacity is used up in form of overhead, 
acknowledgments, retransmission, token delay, etc.  

Channel capacity is the maximum possible data rate, i.e., the 
signalling rate on the physical channel. It is also known as the 
data rate or transmission rate, assumed to be variable, between 
6 and 54 Mb/s. Goodput is the amount of “user data” that is 
carried by the wireless network. The results for goodput as 
function of the number of stations are presented in Figures 12 
and 13. The maximum achieved goodput is 16 Mb/s.  
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Fig. 12 - Goodput as a function of the number of nodes for VI, 

and BK applications. 
 

Figure 13 presents the goodput for VO applications in both 
directions. When the number of stations is higher than 40 the 
goodput decreases; this is due to small CW size. The goodput in 
the downlink is equal to 64kb/s up to 38 stations. For more than 
38 stations, the collisions start to occur very often and the 
goodput of each station decreases. 

Due to the scarcity of wireless bandwidth, we also studied 
the medium utilization, and we computed the average data rate 
for the client stations. Since the distribution of users in the 
square is uniform, it is easy to compute the probability of a 
given transmission mode, being easy to compute the average 
data rate. 
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Fig. 13 - Goodput as a function of the number of nodes for VO, 

downlink and uplink directions. 
 

The channel utilization is the ratio of goodput over the 
average data rate, and is presented in Figure 14 (as a function of 
the number of stations). The highest obtained value for 
utilization is around 80%, and is obtained for VI. The lowest 
one is obtained for VO traffic. This occurs because the packet 
size is much higher for VI than for VO. 
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Fig. 14 - Channel utilization, as a function of the number of 

nodes, for VO, VI, and BK applications. 

X. CONCLUSIONS AND FUTURE WORK 
Our IEEE 802.11e event driven simulator is a tool that 

allows for tuning-up several parameters like the ones related to 
how to use block acknowledgement, normal acknowledgement, 
and no acknowledgement policies. Policies that provide access 
to the medium, that ensure some degree of service, based on the 
channel SINR, delays, and bit error rate can be tested. 

In the simulations, higher values of goodput are found for the 
VI and BK applications, mainly because the frames transmitted 
in these services are longer than the ones for the voice 
application but also the application data rate is higher. As a 
consequence, the number of supported stations of VI and BK is 
lower than the number of supported VO stations.  

It should be noticed that the use of small CW for the VO 
access category may not be a very good idea since when the 
number of stations is higher than 38 the goodput starts to 
decrease due to a small CW size. By suffering successive 
collisions the retransmission threshold is overcome causing the 
increase of packet losses. As CW is longer for the BK traffic, 
there is a longer period for the random backoff generator to 
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generate a backoff. The collisions do not exist in BK and VI 
applications because the data traffic is only present for 
downlink direction (from access point to stations). As the VO 
traffic is bidirectonal, collisions occur very frequently because, 
apart of the access point, all the stations are contending to 
access to the medium. 

For future work, we suggest to extract results with mixtures 
of applications and to suggest block acknowledgement policies. 
Handover policies between APs will also be an objective to be 
fulfilled, where a scenario supporting more than one cell can be 
used. Later, our simulator will be integrated into the 
IT-MOTION simulator, and further work will be performed to 
optimise inter-working among different systems (e.g., WiFi, 
HSDPA, and WiMAX). 
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