TAENG International Journal of Computer Science, 35:2, [JCS 35 2 02

A Pruning Algorithm for Efficient Image
Segmentation with Neighborhood Neural
Networks
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Abstract —Most of the image preprocessing

techniques by existing neighborhood neural networks,
suffer from the problem of false classification of the
image features. This is mainly due to the redundancy
in the interconnectivity patterns of the networks. The
larger number of interconnections in these networks
implies a larger network complexity as well.
A fuzzy set-theoretic pruning algorithm to refine the
interconnection pattern of neighborhood neural net-
work architectures, is presented. The algorithm is
primarily focussed on the judicious selection of the
participating neurons of the network topology. Effi-
ciency of the pruning algorithm is demonstrated with
the segmentation and extraction of synthetic and real
life images. The universality of the algorithm is evi-
dent from its application in the binary, multilevel and
color domains.

Keywords: fuzzy cardinality, image segmentation,
netghborhood neural networks, pruning algorithms

1 Introduction

Most of the image preprocessing techniques suffer
from the problem of false classification of the image fea-
tures owing to the methodologies adopted in the classi-
fication procedure. Enhancement and restoration of im-
ages through filtering techniques and morphological ap-
proaches [1][2], report misclassification due to misrepre-
sentation of the information content. This problem be-
comes more severe in noisy environments. This is due
to the fact that the probability of erroneous classification
of an image feature into a noise feature and vice versa,
increases with the degree of noise levels. However, the
designing of appropriate filters and choice of morpholog-
ical parameters require appreciable a priori information
regarding the feature space and the degree of underlying
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noise content.

The neural networking paradigm has often been employed
for the purpose of processing of noisy images, leading to
faithful extraction of regions of interest in the images [3]-
[5]. The multilayer self organizing neural network (ML-
SONN) [6] is a feedforward neighborhood neural network
architecture, efficient for the extraction of objects from
noisy and blurred perspectives, by self supervision of the
image pixel neighborhood information.

Most of the existing neural network topologies, remain
highly interconnected through the interconnections be-
tween their neurons. Thus, a larger number of neurons
would mean a larger number of interconnections. The
obvious fallout is a larger network complexity. Moreover,
redundancy in the network interconnections also leads to
the problem of false classification and recognition.
Researchers have tried out several methods for arriving
at an optimized neural network topology, which would
sever the redundant interconnections in the architecture,
thereby evolving time and space-efficient topologies [7]-
[10]. Opitz and Shavlik [11] proposed the genetic algo-
rithm based pruning algorithm (REGENT) for refining
the network topology. However, the use of genetic al-
gorithm based search techniques leads to computational
overhead, which prevents the application of these opti-
mized networks from real time operations.

Other notable contributions in this direction include the
intuitive pruning methods based on weight and unit acti-
vation values [12], magnitude-based pruning (MBP) [13]
which assumes that small weights are irrelevant. A num-
ber of attempts based on approximations to the Fisher
information matrix for determining the optimal number
of hidden units and weights of neural networks figure in
the literature. Cottrell et al. [16] represented the inter-
connection weights as functions of the information ma-
trix. Approaches based on singular value decompositions
(SVD) of the hidden unit activation covariance matrices
for determining the optimal number of hidden units are
reported in [17][18]. However, these techniques are re-
stricted to weights between the hidden and output layer
only. Principal component analysis (PCA) based pruning
techniques [19][20] use the SVD of the Fisher information
matrix to find the linear transformations of the original
parameters of the network topologies. The nonprincipal
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components are pruned since they do not account for data
variance.

Statistical analysis of the network parameters have been
used often to determine the neurons to undergo prun-
ing. Steppe et al. [21] used the likelihood-ratio test
statistics of the interconnection weights to refine the net-
work topology. They pruned those hidden units hav-
ing weights statistically different from zero. Belue and
Bauer [22] injected a noisy input parameter into a neu-
ral network model and decided upon the relative signif-
icance of the original network parameters with the in-
jected noisy parameter. Parameters with lower signifi-
cance than the noisy parameter are pruned. Prechelt [23]
developed methods to determine the number of weights
to be pruned.

Sensitivity analysis based pruning techniques, which
model the network parameters as small perturbations to
the network sensitivity, have been widely used for evolv-
ing pruned network topologies. Zurada et al. [25][26] re-
moved redundant network input units by means of the
sensitivity analysis of the network output function with
respect to perturbations of input units. This approach
was further extended in [27][28]. Ponnapalli et al. [29] de-
vised a formal pruning technique for reducing redundancy
in feedforward neural network architectures, based on the
concept of sensitivity index proposed by Karnin [24]. In
the optimal brain damage (OBD) [30], optimal brain sur-
geon (OBS) [31] and optimal cell damage (OCD) [32],
sensitivity analysis is performed with regard to the train-
ing error, while network generalization error forms the
basis of pruning mechanism in [33].

In this article, a fuzzy set-theoretic neighborhood topol-
ogy pruning strategy for efficient image segmentation and
extraction, is proposed. Full connectivity in neighbor-
hood topology-based neural networks for processing of
neighborhood information, brings in false classification of
object pixels as noise pixels and vice versa. This problem
of misclassification gets aggravated at higher noise levels.
A fuzzy cardinality estimate of the image pixels is used
to prune the network architecture through a judicious se-
lection of the relevant participating neurons. Results are
reported on the segmentation of images from a noisy and
noise-free background.

2 Relevant fuzzy set-theoretic concepts

A fuzzy set A, [34][35] comprises elements character-
ized by a certain degree of membership, pa(z) lying in
[0, 1]. The resolution of a fuzzy set A is determined by
the a-cut (or a-level set) of the fuzzy set. It is a crisp set
A, that contains all those elements of the universal set
U with membership in A greater than or equal to «, i.e.

Aq ={z €Ulpa(x) > a},a €0,1] (1)

If Ay = {z € Ulpa(z) > a}, then A, is called a strong a-
cut. The set of all levels a € [0, 1] that represents distinct
a-cuts of a given fuzzy set A, is called a level set of A,

ie.,

Ay ={olpa(z) =a,z € U} (2)

For a fuzzy set A with finite support, the fuzzy cardi-
nality (Ay) of the set is defined as the summation of the
membership grades of all elements of z in A. It is given

by [34][35] N
Al = N (3)

aENy

where, « is the cut-off value, A, is the a-level set of the
fuzzy set and A4 is the corresponding level set. Since
the fuzzy cardinality is directly proportional to the mem-
berships of the constituent elements in a fuzzy set, it
indicates the relative proportion of the higher and lower
membership elements in the set.

The subnormal linear index of fuzziness for a subnormal
fuzzy set A, v)(As) is defined as

zme{uA )= LU —pa,(z)}]  (4)

3

3 Problems of redundant network inter-
connectivity

A neighborhood topology-based neural network in a
layered architecture, is a fully connected network struc-
ture comprising neurons which correspond to the pixels
in an image. The neurons of a particular layer of the
network architecture are connected to the corresponding
neurons and their neighbors in the other layers following
a neighborhood topology. These neurons self organize the
cumulative intensity information of the neighborhoods of
the pixels in the image.

This full connectivity ensures the propagation of the
neighborhood information from one layer of the network
to the other. However, in a noisy image, each object pixel
is encircled by pixels which correspond to either the ob-
ject or the noise. In such a scenario, full connectivity
among the neurons of such networks implies contribution
from both the object and the noise pixels. This leads to
false classification of an object pixel into a noisy pixel and
vice versa. As the noise level increases, this problem gets
aggravated. Thus, redundancy in interconnections leads
to misclassification of object pixels as noise pixels. A
reduced network architecture can be evolved by pruning
these redundant interconnections between the different
layers, thereby enabling the network to classify object
and noise pixels more efficiently. Moreover, pruning of
the redundant interconnections also reduces the overall
processing time of the network self organization process.

4 Neighborhood topology-based neural
network architecture

Several pixel neighborhood systems constitute an im-
age. A neighborhood system is made up of a candidate
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pixel encircled by a number of neighbors. Different or-
ders of neighborhoods are possible. A nt" order pixel
neighborhood system comprises 2("*t1) neighboring pix-
els. However, due to the fixed size of the image, the
neighborhoods of the pixels on the boundaries are neces-
sarily smaller. For an M x N image, the candidate pixels
at the corners of the lattice are encircled by only three
neighboring pixels. Moreover, for the candidate pixels ly-
ing on the rim of the lattice, there are only five neighbors.
A layered architecture of a mneighborhood topology-
based neural network comprises different neighborhood
topology-based network layers of neurons. The aggregate
information of the candidate pixels along with the respec-
tive neighbors are used by these networks for the purpose
of object extraction. This information is propagated from
the input to the other layers of the network, which in turn
are activated by an activation/transfer function charac-
teristic to the network. Subsequently, network responses
or outputs are generated at the different layers depend-
ing on the nature of the characteristic activation/transfer
function. Thus, the input information is used to gener-
ate outputs at the different layers of the neighborhood
topology-based neural network.

An example of a layered neighborhood topology-based
neural network architecture is the multilayer self orga-
nizing neural network (MLSONN) [6] architecture. It
is a feedforward network architecture characterized by
a neighborhood topology-based network interconnectiv-
ity. It comprises an input layer, any number of hidden
layers and an output layer. The network operates in a
self supervised mode featuring backpropagation of errors
and feedback of outputs. The system errors are deter-
mined from the linear indices of fuzziness in the network
outputs obtained. As a result, this type of network is
suitable for real time operations as compared to the su-
pervised neural network architectures, where the training
time required for the training of inputs poses additional
computational burdens. A detailed analysis of the archi-
tecture and operation of the MLSONN architecture can
be found in [6].

5 Parallel neighborhood topology-based
neural network architecture

Color images are natural extensions of the binary and
multilevel images. Similar to the binary images, pure
color image intensity levels are manifested through two
levels of intensity. These images comprise the primary
component color information and their admixtures in ei-
ther 0 or 255. True color images, on the contrary, exhibit
intensity levels of the primary color components and their
admixtures in all possible shades ranging from 0 to 255.
This aspect is similar to the multilevel images, which also
comprise intensity levels in the range of [0, 255]. The con-
ventional neighborhood neural network architectures are
unable to handle color image information on their own.
At least three independent neighborhood neural networks

are needed for processing the individual color component
information. Hence an architectural modification is an
obvious choice.

A parallel neighborhood topology-based neural network is
a parallel extension of the neighborhood topology-based
architecture. It comprises a collection of neighborhood
neural networks operating in parallel. The number of
such neighborhood neural networks in the collection de-
pends on the number of color components to be pro-
cessed. The parallel multilayer self organizing neural net-
work (PSONN) [36] architecture is an example parallel
neighborhood neural network architecture. The PSONN
architecture is efficient in retrieving objects from a pure
color noisy image. It comprises three independent three
layer self organizing neural networks (TLSONN) (a sub-
set of the MLSONN architecture) for processing of the
RGB triplet information of the color image. In addi-
tion, a source layer is present in the PSONN architec-
ture for the distribution of the RGB triplet informa-
tion to the input layers of the constituent independent
TLSONN architectures. Another sink layer fuses the
extracted /segmented output component information ob-
tained at the constituent TLSONN output layers, into ex-
tracted color outputs. Interested readers may refer to [36]
for details.

6 Multilevel activation function

The main drawback of the MLSONN [6] architecture

or its subset TLSONN architecture is its inability to re-
spond to multilevel image information, i.e. information
exhibited in different scales of intensity levels. This lim-
itation is imposed by the bilevel transfer characteristics
of the architecture, which only generate binary responses
to the input information.
Multilevel responses can be induced in the architecture
by employing a multilevel form of the characteristic sig-
moidal activation function, which can generate subnor-
mal responses in the range of [0, 1]. The multilevel form
of the sigmoidal activation function can be defined as

K-1 1

Ivusiq (s oy, cy) = Z ay + e A=y 0] (5)

y=1

where, v represents the gray scale object index (1 <~ <
K). c, represents the gray scale contribution of the Ath
class. A controls the slope of the function and € is a
threshold /bias value. K is the number of gray scale ob-
jects or classes. a., controls the multilevel class responses.
It is related to c, by

1
= —0 6
a7 Cy X ON ( )
where, C'y is the neighborhood gray scale contribution.
Since the MUSIG activation function generates multilevel
responses, an MLSONN architecture guided by this func-
tion, would be able to segment multilevel images. The
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network system errors would then be estimated from the
subnormal linear indices of fuzziness given by equation 4.
The PSONN architecture is also constrained in the seg-
mentation of true color images owing to the aforemen-
tioned inherent limitation of the constituent TLSONN ar-
chitectures. The proposed functional modification in the
MLSONN architecture for inducing multilevel responses
would also enable the PSONN architecture in generat-
ing multicolor responses to true color image informa-
tion. Hence, if the transfer characteristics of each of the
three constituent TLSONN architectures are controlled
by MUSIG activation functions, the PSONN architecture
would be able to segment true color images as well.

7 Basis of fuzzy set-theoretic pruning

A TLSONN architecture or its parallel version
(PSONN) enjoys full interconnectivity between the
constituent neurons of different layers. Hence, these
architectures are prone to false classification of image
features. Pruned networks evolved through a selective
choice of the participating neighbors of the candidate
neurons in these architectures, would be able to reduce
the problem of misclassification.

As TLSONN neurons correspond to the pixels in the
input image information, a judicious selection of the
participating neurons of network neighborhood can
be made by considering the similarity/dissimilarity
in the intensity levels of the image pixels. Such a
selection would be effective in reducing the network
architecture without hampering its accuracy and per-
formance. Obviously, the choice of the participating
neurons tantamount to the selection of corresponding
pixels in the pixel neighborhood systems in the input
image. This selection should be essentially limited to
those neighboring pixels which bear similarity to the
candidate pixel in terms of the intensity level. The fuzzy
cardinality estimate of a pixel neighborhood (as per
equation 3), can be a guiding factor in arriving at the
required decision of choosing neighboring neurons. A
pruning algorithm can be devised taking into cognizance
the fuzzy cardinality estimates of the pixel neighborhood
regions. This is because the fuzzy cardinality estimates
are reflective of the relative contributions of the higher
and lower membership pixels in an image.

The interconnectivity pruning mechanism rests on the
role of the neighbors of a candidate pixel in a pixel neigh-
borhood system. Since, a fully connected neighborhood
topology uses the cumulative neighborhood information,
the interconnection weights between a neuron of one
layer and the neighboring neurons in the previous layer
are all fixed and full. This ensures equal participation
of all the neighbors in the processing task. Due to this
pattern, the possibility of a pixel to be classified as
an object pixel increases when most of its neighbors
belong to the object class. However, this also leads to
misclassification of the said pixel in case some of the

neighbors are corrupted with noise, since the noisy pixels
also participate in the classification procedure.

One of the remedies of this problem would be to pre-
vent the participation of those neurons which are not
conducive to the processing task. These neurons can be
identified from the relative contributions of the object
and noise pixels in the neighborhoods. Subsequently,
these neurons can be made inactive by assigning their
interconnection weights with other neurons a value of 0.
On the contrary, the active neurons as usual, would have
their respective interconnection weights set to 1.

For an a—cut value of 0.5 and a eight pixel neighborhood
geometry, the limiting value of the fuzzy cardinality

0.5x8
cardinality estimate indicates equal participation of

background and object pixels in a pixel neighborhood. If
the fuzzy cardinality of a pixel neighborhood is less than
the limiting value, then the neighborhood is a brighter
background perspective. On contrary, a larger limiting
cardinality implies a darker background context. Hence,
the MLSONN neighborhood topology can be pruned by
means of a thresholding operation on the neighborhood
fuzzy cardinality estimates of the input image pixel
neighborhoods based on the limiting fuzzy cardinality
(Ayim))-

The gray value (G¢) of the candidate pixel in the
neighborhood and the gray values (Gn) of the neigh-
boring pixels also play a vital role to decide the
relevance/irrelevance of the candidate-neighbor con-
nectivity strength (Con).  The following network
interconnectivity pruning algorithm can be devised
taking into consideration these parameters along with
the limiting cardinality estimate (Af(in))-

0.5
Ayim) 1s equal to ie. R This limiting fuzzy

Begin
Initialize totpizers < M x N (total no. of pizels)
Initialize counter « 1
Do
Input G¢ and Gy
Determine Ay
If Af = Af(lim) and GC < 0.5 Then
If Gy > 0.5 Then Cony =1
Else Cony =0
End If
Else If Ay = Ag(jim) and G¢ > 0.5 Then
If GN S 0.5 Then CCN =1
Else CCN =0
End If
Else If Ay < Ay (im) and G¢ < 0.5 Then
If Gy > 0.5 Then Cony =1
Else CCN =0
End If
Else If Ay < Af(im) and G¢ > 0.5 Then
If Gy > 0.5 Then Cony =1
Else Cony =0
End If
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Else If Af > Af(lim) and G¢ < 0.5 Then
If GN S 0.5 Then CCN =1
Else Cony =0
End If

Else If Ay > Ay im) and G¢ > 0.5 Then
If GN S 0.5 Then CCN =1

Else CCN =0

End If
Else

CCN =1 with all GN
End If

counter < counter + 1
Until counter = totpizers
End

The pruning algorithm therefore, assigns full inter-
connections to a subset of the neurons of a neighborhood
topology-based neural network architecture, subject
to certain conditions based on the fuzzy cardinality
estimates of the incident image pixel neighborhoods.
Thus, the algorithm determines the active and inactive
neighbors in an image pixel neighborhood. Hence, any
misclassification that may arise otherwise due to fixed
and full neighborhood connectivity, is avoided by a
judicious choice of the active neighbors.

8 Implementation Results

The proposed pruning technique has been applied to a
TLSONN architecture for the segmentation of noisy and
noise-free binary, multilevel and color images of dimen-
sions 128 x 128. This section summarizes the results of
application of the algorithm.

8.1 Image segmentation with a pruned TL-
SONN architecture

Binary image segmentation followed by object extrac-
tion from a noisy background, has been implemented us-
ing a binary real life spanner image. A real life gray
scale spanner image is used to illustrate multilevel im-
age segmentation. Several degrees of Gaussian noise of
zero mean and standard deviation of ¢ = 8, 10, 12, 14
and 16 have been used to degrade the images. The noisy
images with 0=14 and 16 are shown in Figure 1 (a)(b)
and 1 (a)(b), respectively. The retrieved binary and gray
scale images obtained with the fully connected TLSONN
architectures for the different noise levels are shown in
Figures 1 (a’)(b’) and 2 (a’)(b’), respectively. The corre-
sponding retrieved images using the pruned TLSONN ar-
chitecture are shown in Figures 2 (a”)(b") and 2 (a”)(b"),
respectively.

The reduction in the number of interconnections achieved
through pruning, serves as a figure of merit of the fuzzy
set-theoretic pruning algorithm. The total number of in-
terconnections (tnoc) is 128 x 128 x 8 = 131072 in the
fully connected TLSONN architecture with second or-

Table 1: Reductions achieved during spanner image re-
trieval

Binary image Gray scale image
7 "tnoc % reduc- | tnoc % reduc-
tion tion
8 | 123247 | 5.97% 127676 | 2.59%
10 | 113406 | 13.48% 127702 | 2.57%
12 | 102088 | 22.11% 122678 | 6.40%
14 | 95652 27.02% 117661 | 10.23%
16 | 90986 | 30.58% 115938 | 11.55%

Table 2: pcc and p values for retrieved spanner image

pee values for bi- p values for gray
7 nary image scale image

Full net- | Pruned Full net- | Pruned

work network | work network
8 | 99.38 98.82 0.9108 0.9096
10 | 99.14 98.69 0.9025 0.9049
12 | 98.94 98.34 0.8831 0.8991
14 | 97.86 97.41 0.7980 0.8495
16 | 96.14 97.04 0.6418 0.6833

der interconnectivity. The efficiency of the algorithm in
terms of the proportion of reduction in the interconnec-
tions achieved, is presented in Table 1. From the table,
it is evident that tnoc increases with an increase in the
noise levels. This can be attributed to the fact that as
noise levels increase, the probability of an object pixels to
be surrounded by noise pixels also increases and a greater
number of neighboring pixels become prohibitive.

The retrieval efficiency of the algorithm can be judged
from the quality of the retrieved images. The percent-
age of correct classification of pixels (pce) [6] is used as
the figure of merit for the retrieval of the binary spanner
image. The quality of the retrieved gray scale spanner im-
age is determined by the standard correlation coefficients
(p) between the retrieved and the original images. Ta-
ble 2 lists the pcc and p values obtained by the fully con-
nected and pruned TLSONN architectures corresponding
to the different noise levels for the spanner images. It is
clear from the tables that the pruned TLSONN archi-
tectures outperform the fully connected architecture at
higher noise levels. This asserts that the proposed prun-
ing algorithm is efficient in overcoming the problems of
misclassification, which arises out of the redundant inter-
connections in a fully connected TLSONN architecture.

8.2 Image segmentation with a pruned TL-
SONN architecture

A PSONN architecture has been applied for the seg-
mentation of a pure color image degraded with Gaussian
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(a”)

(b")

Figure 1: Noisy and retrieved real life binary spanner images at o = 14 and 16 (a) (b) noisy images (a’)(b’) extracted
with fully connected network (a”)(b”) extracted with pruned network

(b™)

Figure 2: Noisy and retrieved real life gray scale spanner images at ¢ = 14 and 16 (a) (b) noisy images (a’)(b’)
extracted with fully connected network (a”)(b”’) extracted with pruned network

Table 3: Reductions achieved for pure color synthetic image

Pruned PSONN processing units

Red component Green component Blue component
o | tnoc % reduction tnoc % reduction tnoc % reduction
8 | 3699 97.18% 3819 97.09% 3751 97.14%
10 | 9913 92.44% 9881 92.46% 10136 92.27%
12 | 13838 89.44% 13765 89.49% 13764 89.49%
14 | 15999 87.79% 15975 87.81% 16026 87.77%
16 | 16120 87.70% 16137 87.69% 16141 87.69%
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Figure 3: Results of pure color synthetic image segmentation (a)(b)(c) Noisy images at o = 12, 14 and 16 (a’)(b’)(c’)
Segmented images using fully connected PSONN architecture (a”)(b”)(c”) Segmented images using pruned PSONN

architecture
() ) (c)

(d)

(a") (b") (") (d')

Figure 4: Results of true color cube image segmentation for four sets of k., parameter (a)(b)(c)(d)(e) Segmented
images at o = 8 using fully connected PSONN architecture (a’)(b’)(c’)(d")(e’) Segmented images at o = 8 using
pruned PSONN architecture
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Figure 5: Segmented true color Lena images using sets (a) s1 (b) s2 (¢) s3 (d) s4 using fully connected PSONN
architecture (a’) s1 (b’) s2 (¢’) s3 (d’) s4 using pruned PSONN architecture

Table 4: Reductions achieved for true color cube image

Pruned PSONN processing units

Red component Green component Blue component
o | tnoc % reduction tnoc % reduction tnoc % reduction
8 | 12724 90.29% 12832 90.21% 13931 89.37%
10 | 15366 88.28% 15413 88.24% 15477 88.19%

Table 5: Reductions achieved for true color Lena image

Pruned PSONN processing units

Red component

Green component

Blue component

tnoc

% reduction

tnoc

% reduction

tnoc

% reduction

4149

96.83%

4530

96.54%

5336

95.93%

Table 7: p values for true color cube image and Lena image for different sets of values of .,

Set Sige e =10 Lena Image
Full Net- | Pruned Full Net- | Pruned Full Net- | Pruned
work Network work Network work Network
S1 0.8884 0.9050 0.8184 0.8286 0.8214 0.8282
So 0.8968 0.8986 0.8065 0.8119 0.8141 0.8287
S3 0.8737 0.9017 0.8082 0.8332 0.8139 0.8253
S4 0.8798 0.8993 0.8119 0.8272 0.8086 0.8245
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Table 6: pcc values for the pure color synthetic image

o | Full network | Pruned network
8 97.96 98.32
10 92.86 96.77
12 92.89 96.65
14 54.71 85.50
16 29.17 76.99

noise of zero mean and standard deviation, o = 8, 10,
12, 14 and 16. The noisy images with 0=12, 14 and 16,
are shown in Figure 3 (a)(b)(c). The corresponding im-
ages retrieved with the conventional fully connected and
pruned architectures, are shown in Figure 3 (a’)(b")(c’)
and (a”)(b"”)(c"), respectively.

The performance of the pruning algorithm is also illus-
trated with the segmentation and retrieval of true color
images. The number of target classes are taken to be
K = 8. A=1 decides the slope of the MUSIG activation.
Experiments have been conducted with four different sets
(s1, S2, 83, Sa) of Ky = (le parameter of the multilevel
MUSIG activation function.

A true color cube image affected with Gaussian noise
(with 0=8, 10) is used for the object extraction proce-
dure. The images segmented with the fully connected
and pruned PSONN architectures for o = 8 are shown in
Figure 4. Segmentation results are further demonstrated
with an 8-class segmentation of a true color Lena image.
The segmented output images with the conventional and
pruned PSONN architectures, are shown in Figure 5. An
analysis of the performance of the pruning algorithm can
be made from the reductions achieved in the PSONN
interconnections. Tables 3, 4 and 5 show the tnoc and
reduction level in the tnoc for the independent pruned
color component (RGB) processing TLSONN units of the
PSONN architecture for the test images.

The efficiency of the algorithm can also be adjudged from
the quality of the segmented pure and true color images.
Table 6 compares the pcc values obtained by the fully
connected and pruned PSONN architectures.

The qualities of the segmented true color images have
been assessed by the standard correlation coefficients (p)
between the outputs obtained and the original images.
The p values obtained for the true color cube and Lena
images are shown in Table 7. From Table 7 it can be sur-
mised that the pruned PSONN architecture outperforms
its fully connected counterpart. This is due to the suc-
cessful prevention of false classifications that is common
with the fully connected version.

9 Discussions and Conclusion

A fuzzy set-theoretic pruning algorithm for reduc-
ing false classification of images through refinement of a
neighborhood neural network architecture, is presented.

Pruning of irrelevant and redundant network interconnec-
tions is carried out by estimation of the fuzzy cardinality
estimates of the input image pixel neighborhoods.
Results of applications of the algorithm to the segmenta-
tion and retrieval of objects from images are illustrated
with a second order neighborhood topology-based three
layer self organizing neural network and its parallel ver-
sion. The efficiency and scalability of the algorithm is
justified from its applicability in all of the binary, multi-
level and color intensity domains.
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