TAENG International Journal of Computer Science, 35:2, [JCS 35 2 04

Towards Model Driven Testing of
Human Machine Interface Framework for
In-vehicle Infotainment Platforn

Hemant Sharma, Dr. Roger Kuvedu-Libla, and DrKARamani

Abstract—Specification and implementation of tests for
In-vehicle Infotainment software system is demandig and time
consuming task. To reduce time and effort specifi¢eon and
development of tests can be done at model level. Vpeopose
platform independent test development using our egnsions to
xUnit Test Framework. Three phases of our test del@ment
approach: test pattern identification, test model @velopment,
and transformation are explained using components foour
Infotainment Human Machine Interface Framework.

Index Terms— Infotainment Human Machine Interface
Framework (iHMIFw), Model Driven Architecture (MDA) ,
Unified Modelling Language (UML), xUnit Framework.

I. INTRODUCTION

The number of embedded software systems in auteenot
domain areas, such as body electronics, infotaitjnaem
telematics applications, is steadily growing [2]. [®lost of
today’'s automotive software applications are dgwetb and
maintained by multiple programmers, often geogreahi
distributed, who work on parts of the overall apation code.
While leading to improved code churn rates, thiscpice also
leads to problems. For example, developers mayeadize that
they have inadvertently broken parts of the code.

How to test the software systems, which contaiasiyn
functions in short time, and how to evaluate thality of
each software sub-system are the key problemsrthst be
taken into consideration. Designers can no longsekbp
high-performance software systems from scratch nbust
use sophisticated system modeling method [1]. Soéw
testing methods and objectives differ in automotive
infotainment software applications from the othemputer

Hemant Sharma is Software Engineer at Delphi Delco Electroniesdpe
GmbH, Bad Salzdetfurth, Germany.
(e-mail: hemant.sharma @ delphi.com).

Dr. Roger Kuvedu-Libla is EMC-Competency-Leader at Delphi Delco
Electronics Europe GmbH, Bad Salzdetfurth, Germany.
(e-mail: roger.kuvedu.libla @ delphi.com).

Dr. A. K. Ramani is Professor at School of Computer Science, DényA
University, Indore, INDIA. (e-mail: headscs@dauaivin).

software applications. Automotive infotainment a@fte
development uses specialized compilers and developm
environments that rarely offer sophisticated mdangesting
and validation.

With the growing size and complexity of In-vehicle
infotainment HMI software applications, software
verification and validation techniques such asirigsand
model checking are increasingly important. Whilstiteg
focuses on the actual behavior of the program, inode
checking focuses on its business and logical intena
model. Also for infotainment applications, Testargl model
checking are complementary: testing is lightweidhit
incomplete while model checking is heavyweight but
complete.

User interfaces built for In-vehicle infotainment
applications traditionally presented a challenge to
development testing because of the following factor

e The complex nature of the underlying graphics
framework.

e The coupling of presentation and business logic
within a User Interface.

» The lack of support from underlying architecture
and intuitive automated testing frameworks.

Of course, the first two factors are nothing neyvaphical
frameworks are complex by nature and adding busines
functionality to a HMI application has always posebarrier
to testing. On the other hand, a number of hareipéworks
have popped up over the last few years that agtfaadllitate
testing of HMIs of software systems.

Our goal in this paper is to present our ongoirfgresf
towards the specification and efficient executibtesting of
components of infotainment HMI applications by neah
the model driven approach, which includes:

e The clarification of the methodological approach
for the introduction of model-driven testing in the
Infotainment HMI context.

¢ The identification of a testing metamodel able o b
used in practice in the context of In-vehicle
Infotainment HMI applications, and close to the
xUnit testing frameworks [21, 22].

(Advance online publication: 20 May 2008)

TAENG International Journal of Computer Science, 35:2, [JCS 35 2 04

e The selection of test modelling mechanisms capable
to represent the common and the variable parts in

the tests architecture, in usable and efficient.way

¢ The identification of derivation mechanisms that
cover the transformation of test specification® int
platform specific test cases.

This paper is organized as follows: In the follogvsection
an overview of related research is provided. Se@ishortly
explains the architecture of iHMIFw. In section ve
describe the test framework architecture. Sectidegeribes
the model driven test development approach. In@e6t we
elaborate the future activities and finally coneube paper.

Il. BACKGROUND

The testing techniques for automotive infotainment
software systems are based on the specificatiarpodgram.
This specification driven testing is also callecdid-box
testing. White-box testing on the other hand isedaen
knowledge on the implementation of a program [13}ite
some confusion exists between these definition$. [WAit
testing can be seen as a mix between both tectmigeace
called grey-box testing. Developers of unit tests gse some
specific implementation knowledge for writing tesBn the
other hand, unit tests can also be written accgrdin a
(detailed) specification.

The rising popularity of automated unit testingrmeeo
have inspired the creation of several GUI testdibptojects.
JFCUnit [19] has a tool class callelffCTestHelper for
examining the state of the graphical environmestyell as
massaging the event stream to programmatically podate
components. Tests are coordinated Jiimit. Jemmy [20] is
a library for automating Java GUI applications.hts an
advanced abstraction tree for finding, examiningd an
manipulating specific graphical components.

In the field of software development the complexity
systems has been reduced by using abstract spicifis.
Models are used to represent the more complexiemntib
understand, communicate, explore alternatives, lateu
emulate, calibrate, evaluate and validate softwdra].
Therefore it is a logical consequence to repreteshicode as
models, too. In the case of test models all adgmsta
mentioned before are provided. The benefit of motes$ in
their abstractness as opposed to implementationifiepe
concreteness of code [16]. Model driven test dgumakent
does not oblige which software development methumgiol
has to be used. It suits to testing first methoglel® like
Agile [17] and Lean [18] development as well as twdel
Driven Development.

Most approaches to model-based testing [5, 6, &jl us
automotive infotainment domain do not consider the
separation described in MDA, i.e., they are eittaglored
towards a specific target platform or they are gena this
respect, taking into account platform-independemtdeh
information only.

In order to benefit from the separation of PIMs &8Ms
in the generation and execution of tests, the exyatof
Model-Driven Testing [16] has to refine the thrdassic
tasks of model-based testing:

« the generation of test cases from models according
to a given coverage criterion,

« the generation of a test oracle to determine the
expected results of a test,

« the execution of tests in test environments, pdssib
also generated from models.

With an appropriate level of detail in the intedac
specifications of domain-specific components, ipdssible
to automatically generate some or all of their testes. In
fact, test cases can be specified and generatedrailel to
the specification and generation of components.

A lightweight automation framework for system tesés
extend the benefits of extreme programming (XPY) teisting
[8] to a higher level, supporting test first deymioent for
system tests, and decreasing the difficulty ofimgitsystem
tests.

Il. INFOTAINMENT HMI| FRAMEWORK ARCHITECTURE

This section provides an overview of architectufeuar
HMI framework, iHMIFw, for In-vehicle infotainment
applications. The framework has been developedgusi
MDA methodology and partitioned into independent
components based on functional areas. Figure lafhart
represents the components of the HMI framework.

iHMIFw emphasizes on application development utiiieg
iterative practice of Test Driven Development fd]have the
following benefits:

» Shorter code implementation time
* Reduction in code defects

» Fewer instances of
unnecessary code

overcomplicated and

 Reduced likelihood of introducing bugs when
fixing bugs, refactoring or introducing new
features.

The components of HMI framework are organized t&ena
the framework scalable and flexible. The framewuak a set
of core components and some optional components.

Core components provide the bare minimum functignal
that is required for an HMI application. Optionalngponent
can be configured along with framework to provide
additional functional interfaces. These core conembs help
to design HMI for an Infotainment application, ipésdent
of the application, with basic features such asg#fig, Views
etc.

(Advance online publication: 20 May 2008)

TAENG International Journal of Computer Science, 35:2, [JCS 35 2 04

act Framework Architecture /
Infotainment HMI Framework
iHMIFw :: Core Components

Core : View Core :: 2 Core =

Interface HMI Base Communication
Core :: Graphics Core I Widget Core :?El
Interface Interface Context

IHMIFwr IHMIFw : IHMIFw :: IHMIFw :: IHMIFwy
GPS TCP/IP BLUETOOTH CAN MOST

Figure 1: iHMIFw Components.

Responsibility of individual core component is désed
below.

Core:: View

This component is responsible for HMI View creati¢in
provides interfaces to describe the appearancéahnavior
of the view. Further, this component is also resjiua to
define the view tree structure for an HMI applioatiand
defining the view state transition.

Core:: HMIBase

HMIBase component defines the structure of HMI
applications. This component enables the HMI apgibn to
interface with platform specific aspects such astgp and
shutdown of application.

Core :: Communication

The communication between components of HMI
Application as well as communication with external
applications is supported by this component.

Core:: GraphicsInterface

This component interfaces to graphics resourcethén
system. This includes graphics libraries, displayeas
handlers, image management and font resource files

Core :: Widget Interface

HMI Applications are allowed to use specific widget
available in infotainment application specific walg
libraries. This component provide interface to thielget
resources, the HMI application intend to use.

Core:: Context

This component provides interfaces that help HMI
Applications to define the context for its indivalwiews.
Further, this component has mechanism to read xbnte
configuration information from a XML file.

IV. TESTFRAMEWORKARCHITECTURE

The test framework we propose here is inspiredkinit
Testing Framework’. Over the years the xUnit tegtin
framework has become a de facto standard. Moggriatied
development environments have xUnit integration sia
plug-in. The framework is referred to in many progming,
software development, maintenance, reengineeringhss
software testing books [21, 22, 23]. The xUnit feamork is
being adopted by industry as well, by means of Uits&lf or
its commercial derivatives.

In the subsections below, we describe the derivénlitx
patterns and the meta-model for the test framework.

A. Patternsfor Model Testing

In this section, we provide an overview of testtgris
derived from xUnit patterns to enrich behavioragital and
organizational test development for Infotainment HM
components.

HMI Mock Pattern

A common problem with HMI unit tests is to test quex
objects that rely on external systems. A unit tagst make
some assumptions on the state of the object toTtbis state
should be restored on each test run. External regsti not
always allow thisMock objects are a technique to prevent

(Advance online publication: 20 May 2008)

TAENG International Journal of Computer Science, 35:2, [JCS 35 2 04

this problem. Instead of using the actual impleragon, that
possibly uses external systems, a fake - henaesatine mock

- object is used. A mock object contains no comcret
implementation and is solely used to validate whetie
application code behaves as expected.

Figure 2 shows theMlock Test pattern that has been
customized for iHMIFw. ClassesMockView and
MockService implement the same interface as a real View
and Service classes respectively. ObjectgladkView class
shall serve as observation point for individualWwdeehavior
verification.

class HMI Mook Pattern
winterfaces «interfaces
IHMIView IHMIServicelnterface
MockView HMMiew |MuckSen.iice HMIAppService
wsubsoribew
wsubsoriben

Figure 2: Mock Test Pattern for iHMIFw.

Similarly, the objects of clagdockService shall be useful
for communication state-behavior verification. Batasses
shall produce ‘lenient’ mock object instances sthat the
tests are independent of the order of their exeouti

HMI Layer Test Pattern

The Infotainment HMI applications based on iHMIFw
inherit the Layered Architecture from the framewdik
separate major technical concerns. Most applicat&hall
have, at minimum, some kind of presentation (usteriace)
layer, a business logic layer or domain layer apédraistence
layer. Some future layered HMI application arcHitees
may have even more layers. It is difficult to gebd test
coverage when HMI application is organized as iratgn
of component in layered fashion. Such application
architecture forces the use of ‘Indirect Testingimalividual
function group of components.

In order to get good test coverage of logic of elagler
these application shall be supported by iHMIFw #pec
Layer test pattern. This iHMIFw specific Layer Testttern
has been derived from xUnit Layer Test pattern [6].

Figure 3 presents the custom Layered Test patmrn f
iHMIFw components and applications based on iHMIFw.
Layered Test interfaces are either realized orneldd to

derive layer specific test. ViewLayerTest and
ServiceLayerTest are the components that collectively
represent interface test classes for View and Sevayers
of IHMIFw respectivelyView Layer Test class shall provide
objects to test the presentation logic of Viewsemenhdent of
the business logic of HMI application. Service
communication logic test objects shall be providey
Service Layer Test classes.

class HMI Layer Test Pattern /

Interface Layer Tests

iV}

1
| zreslizes

1
Mssscnnman

$:|_©_ 5]

“realizes

Foommunicate s

Facade

: «metaclasss wlibrarys
i View Layer Test HMIMiEw
E FacadeProxy

— g
«wlibrans.
HMIService

Service Layer @
Tests

Figure 3: Layered Test pattern for
iHMIFw Components.

HMI Test Organization Pattern

class Test Organisation Pattern /

wframewoarks
Fixturelnterfaces

winterface: winterface:
NMiewBehaviorFix | | MewdpperanceFix

winterfaces winterfaces
IServicekixture ICommunicationFix

i3

H
wrealizes

HMIAppTest []

wframeworks
HMIApp

e |
#friends

Figure 4: Test Organizational Pattern for HMIFw.

(Advance online publication: 20 May 2008)

TAENG International Journal of Computer Science, 35:2, [JCS 35 2 04

class iHMIFw Test Meta Model /

IHMIL ayerTests

«interfaces» winterfaces winterfaces HMIRequirements
HMIFunc 7% Componentinterface [“1-*| FunctionalBehavior[™ ™
2 l |

“specifys
«interfacen | =~ <UnitTestCla | TestScenario
IHMIMock rhsea #specifys

154

winterfaces» '

*HMIL ayerTest

winterfaces
IHMIFizure

xHMIFixureTest

xHMITestSuit

#realizes

Figure 5: iIHMIFw Test Meta-model

In-vehicle Infotainment HMI applications based on
iHMIFw are expected to have significantly large roemn of
structural and behavior test classes.

Further, as the number of test methods shall gaw,
efficient mechanism is required to decide wrappst tlasses
to hold the test methods. To get a simplified cttiee of
application tests, the iHMIFw providesTast Organization
pattern derived from theest Fixture pattern defined in [6].

Figure 4 presents thiest Fixture interface packages that
establish thelTest Organizational Pattern for iHMIFw test
organization. Component specific partition ofest
Organization interfaces shall help to achieve a declarative
style of Test Suit development.

B. Test Meta-Model

The specification of a meta-model, capturing esgitand
relationships of interest duringUnit based testing, is
facilitated through the consistent terminology iesting
literature and supporting tools.

The metamodel for testing presented in the figuie &
conceptual framework able to cope with variabilityesting
[9], therefore, although it follows the general nmiples
stated by the UML profile for testing [10], mod#ieand
extends the profile in several aspects. In padigubur
metamodel includes some elements already availakiee
profile, such a3est Class, Test Quite, and the concept dest
Scenario. The mapping of thélest Class to Component
Interface as well as the realization of extendedt Pattern
interface in conjunction to ‘Requirements ModeBting [9],
are however, unique in our approach.

The metamodel shows the main entities of the test

approach and their relationships. The HMI requinetsi@re

the basis of the test; in particular, requiremébtth generic

in the Infotainment HMI family and specific to abset of
Infotainment functionality in the integrated sysjainive the
design of test classes. TRenitTestClass is a group of test
cases related with certain HMI functionality. Thésst cases
are based ofiest Scenarios, which are derived from a model
of the HMI behavior specification.

V. TESTSPECIFICATION AND TRANSFORMATION
DIRECTIVES

To accent the agile part of our model-driven test
development approach we want to support the tégtmr
development by enabling model-driven unit, layerd an
integration test development. Therefore, beside the
generation of test case model from application rhede
want to automatically generate platform specifist teases
from our test model.

A. Approach Towards Test Devel opment

In this section we present the steps of our appré@acest
development. Activity diagram in figure 6 shows ooodel
driven test development process enabling modekdrivnit
and integration testing.

For the iIHMIFw xTest patterns and meta model hanbe
developed, as described in previous sections, tnedsin a
repository. The test development process can benswized
in the following steps:

(Advance online publication: 20 May 2008)

TAENG International Journal of Computer Science, 35:2, [JCS 35 2 04

act Test Dewvelopment Approach /

xTest:
Interface

iHMIFw::
pummanns TestModel

iHMIFw:: 7 iaalote
Core
Transform
Test Classes Test

Configuration
®

End

Figure 6: Test Development Approach

e Generate Test UML Model - First step in Test
Development is to develop test model from the
UML design model. Class diagrams from the
design model serve as basis for test class
generation. Interfaces from xTest::Interface are
extended to get the test classes for HMI classes i
class diagram from design model.

¢ Test Model Transformation — Test classes and the
relationship between them, as represented by test
class diagram, is transformed to provide source
code and test configuration .

B. Platform Independent Test Modeling

The basic idea of our test development approacheis
specification of test classes by using defined xUest
interface classes. Further, the test classes aiehed with
pre- and post-conditions (Infotainment Contract)jolu can
be viewed as a test oracle [11, 12] and runtimerties
checking can be used as a decision procedureést aracle.

In order to keep the test model simple for presenta
purpose, we have partially used the core componehts
iHMIFw in class diagram of Figure 7 below. This uig
represents partial model for the framework and ftihvebasis
to develop platform independent test model.

Interface clas$Object is the base class from which all the
framework classes have been deriv&tidgetBasel nterface
provides the base structure for Widgets that diallised in
views of HMI applications. HMI Views shall udéewBase
to inherit minimal functionality for the view. Thaews shall
contain multiple widgets to manage the appearanm@ a
collective behavionidgetAppearance andWidgetBehavior
classes provide the basic appearance and behaaturés
respectively.

«interfaces o HMIApplicationBase
ViewBase [/ |
\ ServerCommBase
0.7
ServiceCommBase

WidgetAppearance| MidgetBehavior]

«interfaces intertita
IHMInterface | P i :
IComminterface

winterfaces
[IOhject fep— |

winterfaces
U MWidgetBaselnterface]+

Figure 7: iHMIFw::Core PIM

Figure 8 shows the Platform Independent Test Model

(TPIM) derived from the platform independent modtai
core components of iHMIFw. Corresponding to evdass

in PIM model of the framework, a test class hasmts®wn
in TPIM. IHMIMock represents the behavioral tegeiface
(Mock object interface).

xHMIAppBaseTest
T «interfaces
1 : [» HMIFixure
; ‘ P
i ¥WidgethppearanceTest | | wiwidgetnterfaceBaseTest
i
i ; 0
harnasaas Lo interface» [CF-===-====- KWidgetBehaviorTest
IHMIMock feo-mmmmmemsnnmmsnnnnnd
k<t
: «interfaces
* IServiceFixture
®xServiceCommBaseTest |------
1
#ServerCommBaseTest
<5

Figure 8: iHMIFw::Core Platform Independent Test
Model

IHMIFixture and IServiceFixture bring in the test suit
organization strategy for test classes. The teatsek
realizing these interfaces provide objects thatviddally
represent Mock test cases. Defined collection gdaib from
test class shall form scenarios for layer tests.fixfure
configuration along with test classes shall organésts into
a test suit. Test collection definition and fixtwenfiguration

(Advance online publication: 20 May 2008)

TAENG International Journal of Computer Science, 35:2, [JCS 35 2 04

are the topics for our future work.
C. Platform Soecific Test Model

Similar to classical unit-testing, our test itemse a
operations. The behaviour of an operation is depetaf the
input parameters and the system state. Thust ea®s has to
consider the parameter values of an operation aherete
system state.

A test case for an operation consists of concratameter
values and a concrete system state. We can geretatd
case for an operation from our model in three ss&ige
steps.

< In the first step, we generate values for the input
parameters of an operation as specified in the

class diagram.
« we initialize the pre-condition of an infotainment

Figure 9(a) shows, out of the test specificatiordetca
platform independent test code that has been gedefar
the classx\WidgetBasel nterfaceTest. The class inherits Mock
interface for behavioral tests for the widgets.sTlgiads to
incorporation of one test method corresponding d@che
method ofWidgetBasel nterface class. Secondly, inheritance
of fixture interface helps in partitioning of test methods for
complex widgets. Widget Test objects shall be atited at
test startup via configurable test data.

All test cases need access to representative datsetin
testing the functionality of the HMI applicationroponent.
Test PIM transformation, in second step, generxies
configuration information corresponding to tessekas. This
configuration information mainly describes testedand test
execution setup sequence. . Test objects shatlataeout of
XML configuration files for two main purposes:

step one. The variables in the parameter-list are .
used to restrict the attribute values of objects in
the pre-condition.

for determining the sequence of execution for test
methods.

Figure 9(b) represents an example of XML configorat
* In the last step of our test case generation, we file for X\\WidgetBaseTest test class.
have to find out how to generate a system state

which contains the object structure found in step

two.
,u"l**
* generated — xWidgetBaselnterfaceTest
s

class xWidgetBaselInterfaceTest:
public THMIMock, public THMIFixture
{

protected:
ff Test case setup
volid Test3etUp ()
i
/7 Initislize wmock test parameters
_initWidgetBaselock|) :

ff Initialize fixture test parameters
_initWidgetBaseFixturel):
H

pulblic:
/4 Test - Widget creation
void testWidgetBaseCreate(int widget Id
{
WidgetBase testWidget (widget Id);
testWidget .initialize|)
}

Af Test Widget - paint
vold testilidgetBasePaint)
{
WidgetBase testWidget;
testWidget.initialize () ;
cestWidoget . .painc i) ;

Figure 9(a) : PSM - iHMIFw::Core Generated Test
Case

<?xwl wersion="1.0" encoding="utf-g"2>
<root
¥lng:tegsc="iHNIFv/core/ vidget/ xWidyetBaseTeat ">
- <testicase test="setUp" result="pass"
desc="test:case 3etTP"»
- <testingletUp nested="false"
accrib="widget id">
<testiattribute id="wlxl2g90" nawe="NenuGear"
result="fail™/>
<testiattributeRefrb:panel</attributeRets
<ftestrattributer
<ehild child="method"™ />
- <testicase test="createllidget” result="pass"
desc="test:case createlidget:>
- <testingBody nested="true":
<ehild child="mechod™ />
4/ teatingBodyr
</testicaser
</ teatingdetlps

4/ testicaser

Figure 9(b) : PSM - iHMIFw::Core Test Case
Configuration

(Advance online publication: 20 May 2008)

TAENG International Journal of Computer Science, 35:2, [IJCS 35 2 04

The transformation will result in source code and
configuration XML repository for set of test classe
corresponding to iHMIFw::Core components. The test
library resulting from these test classes shalubable for
execution from test automation tools [24, 25] theg using
xUnit Test Framework.

VI. CONCLUSION

In this paper, we proposed an approach for test cas
development for components of HMI framework for
In-vehicle infotainment platform implementing modkiven
approach. By using extended xUnit test patteiinss
possible to derive test model for iIHMIFw compotseWe
have established test patterns, by extending tisérexxUnit
patterns that will help in platform independent tesdeling.
Further, we presented meta-model for development of
iHMIFw test PSM.

We have shown that the UML design model of iHMIFw
can be used to develop platform independent testemo
enriched with unit, coverage and integration tdasses.
Further, it has also been shown, how transformadiotest
PSM will provide test classes along with test cgumfation.

The growing complexity of HMI software applicatioims
In-vehicle Infotainment systems needs solutionscviaillow
complexity reduction by raising the abstractioneleWodel
driven test development is a step further to achieore
manageable and transparent HMI development. We ha
shown that model driven test development can bptaddor
unit testing, integration testing, system testingd a
performance testing of HMI components of infotaimmne
platform. By using UML, we build on a well knowrastdard
that is predominantly used in today’s model-driven
development processes. Further, we presented hosetthe
test patterns in a model driven test developmenttgss.

In future work we will have to concretize our modieiven
unit testing approach. At First step, we shall mefithe
extended patterns and integrate them in to iHMIRBvaa
component. Secondly, we shall investigate for dedit test
automation framework. Finally, we shall establistest tool
chain for automated testing for iHMIFw and compdsenf
HMI application based on it.

REFERENCES

[1] D. Gajshi et al., “Specification and Design of Esdbded Systems”,
Prentice Hall, Englewood Cliffs, N. J., 1994

[2] Ren Yu, Wan Jian, “Software Simulator of Embeddguplication
System”, Computer Application, Vol. 11, No. 7, Jul2004,
P.144-146.

[3] Ren Yu, “Threads Communication Performance of Erdbdd
Simulator”, Computer Application, Vol. 25, No. 2Rec. 2005,
P.12-14.

[4] David Astels, Test Driven Development: A PractiGlide, Upper
Saddle River, NJ: Prentice Hall PTR, 2003.

[5] Basanieri, F., A. Bertolino and E. Marchetti, A UNblased approach
to system testing, in: J.-M. Jezequel, H. Hussmand S. Cook,
editors, UML 2002, LNCS 2460 (2002).

[6] Briand, L. and Y. Labiche, A UML-based approaclsystem testing,
in: M. Gogolla and C. Kobry, editors, UML 2001, LISR185 (2001).

[71 Martena, V., A. Orso, and M. Pezze, Interclassirtgsbf object
oriented software, in: Proceedings of the IEEE riragonal
Conference on Engineering of Complex Computer 8yst¢CECCS
2002), 2002.

[8] XUnit Test Patternshttp://xunitpatterns.cofn

[9] Coplien, J., Hoffman, D., Weiss, D.: Commonalitglavariability in
Software Engineering. IEEE Software, November 1998.

[10] OMG, UML Testing Profile (final submission) by Esson, IBM,
Fokus, Motorola, Rational, Softeam, Telelogic. Mag903.

[11] Antoy, S., Hamlet, D.: Automatically checking anpil@mentation
against its formal specification. IEEE Transactioms Software
Engineering 26(1) (2000) 55-69

[12] Peters, D.K., Parnas, D.L.: Using test oraclegggad from program
documentation. |IEEE Transactions on Software Ermging 24(3)
(1998) 161-173

[13] Bret Pettichord. Thinking outside the boxes, 2004.

[14] Alexandre Petrenko and Andreas Ulrich, editorsnf@rApproaches
to Software Testing, Third International Workshom &ormal
Approaches to Testing of Software, FATES 2003, Meeilt Quebec,
Canada, October 6th, 2003, volume 2931.

[15] Thomas, D.: Programming with Models - ModelinghMEode. The
Role of Models in Software Development. in Jouroél Object
Technology vol .5, no. 8 (November -December 2(16)15-19.

[16] Stahl, T., Volter, M.: Modellgetriebene Softwanesicklung.
dpunkt- Verl. (2005) of Lecture Notes in ComputeieBce. Springer,
2004.

[17] Beck, K.: Extreme Programming Das Manifest. Addiddesley
(2003).

[18] Poppendieck, M., Poppendieck, T.: Lean Software elx@ment
Number ISBN 0-321-15078-3 in The Agile Software Blepement
Series. Addison-Wesley (2003)

[19] JFCuUnit. http://jfcunit.sourceforge.net/

[20] Jemmy http://jemmy.netbeans.org/

[21] A. Hunt and D. Thomas. Pragmatic Unit Testing in\@th NUnit.
The Pragmatic Programmers, 2004.

[22] J. Langr. Agile Java Crafting Code with Test-Drivieevelopment,
chapter Lesson 15: Assertions and Annotations.tieesHall, 2005.

[23] M. Feathers. Working Effectively with Legacy Cod&entice Hall,
2005.

[24] StrutsTestCase for JUnifttp://strutstestcase.sourceforge.net/

[25] JUnit Test Decorators
http://www.clarkware.com/software/JUnitPerf.html

(Advance online publication: 20 May 2008)

