
Design of a Neural Network Based Intelligent PI 
Controller for a Pneumatic System 

Dr. Ganesh Kothapalli           and          Dr. Mohammed Y. Hassan, Member, IAENG 

 
 
Abstract Pneumatic actuation systems are widely used in 
industrial automation, such as drilling, sawing, squeezing, 
gripping, and spraying. Also, they are used in motion control of 
materials and parts handling, packing machines, machine tools, 
food processing industry and in robotics; e.g. two-legged robot.  
In this paper, a Neural Network based intelligent PI controller 
is designed and simulated to increase the position accuracy in a 
pneumatic servo actuator where the pneumatic actuator 
consists of a proportional directional control valve connected 
with a pneumatic rodless cylinder. In this design, a well-trained 
Neural Network provides the PI controller with suitable gains 
depending on feedback representing changes in position error 
and changes in external load force. These gains should keep the 
positional response within minimum overshoot, minimum rise 
time and minimum steady state error. A comparison between 
this type of controller with a conventional PI type shows that 
the position of cylinder using a conventional PI controller keeps 
jittering even when the cylinder reaches the required steady 
state. This is because of nonlinearities that exist in the 
pneumatic actuator. This jitter does not persist when a Neural 
Network based Intelligent PI type controller is used.   
 
Index Terms Pneumatic System, Neural Network, PI controller. 
 

I. INTRODUCTION 

There are three prominent mechanisms used to power 
motion control: electromechanical, hydraulic and pneumatic. 
Electromechanical systems use motors to drive motion. 
Hydraulic systems use incompressible fluids, usually oil or 
water, to transport energy whereas pneumatic systems use a 
compressible fluid, usually air. Electromechanical systems 
have the advantage of highly controllable mechanisms that 
operate as linear systems.  Their disadvantage is that they 
often are expensive and heavy for high power applications. 
Hydraulic systems behave less linearly, but are often very 
efficient for high load applications, such as construction 
equipment.  
 

 
 
 
 
 
 
 
 
 

 
 
Their disadvantages are high weight and viscous force that 
slow the motion, thus limiting speeds. For high load 
applications where speed and weight are not important, 
hydraulic power is ideally suited as mentioned in [1]. 
Pneumatic actuation systems have the main advantages of 
high speed action capabilities, low cost, cleanliness, ease of 
maintenance, simplicity of operation of these systems 
relative to other similar hydraulic and electro-mechanical 
technologies, safe lightweight and good power to weight 
ratio, but due to the compressible nature associated with the 
fluid and the high speed, it is more difficult to control as 
mentioned in [2] and referred to in [3]. 
Pneumatic actuation systems are widely used in industrial 
automation, such as drilling, sawing, squeezing, gripping, 
and spraying. Also, they are used in motion control of 
materials and parts handling, packaging machines, machine 
tools, food processing industry and in robotics; e.g. two-
legged robot as mentioned in [4] and referred to in [5].  
However, the use of pneumatic systems in position and force 
control applications is somewhat difficult. This is mainly 
due to the nonlinear effects in pneumatic systems caused by 
the phenomena associated with air compressibility, 
nonlinear effects in pneumatic system components, valve 
dead-band, significant friction effects in moving parts, 
restricted flow, time delay caused by the connecting tubes, 
oscillations of air supply pressure and load variations as 
mentioned in [1].  
Due to the analytical complexity involved it is a very 
challenging task to obtain an accurate mathematical model 
of a pneumatic actuator controlled system, which can 
satisfactorily describe the behaviour of the control process. 
Using mathematical modelling and numerical simulations, a 
non-linear model can be obtained, which can give good 
prediction for dynamic behaviour of the system and can be 
used to build a control structure and obtain systems of 
higher accuracy. 
A number of authors have proposed different models and 
controllers of pneumatic systems. Thomas [6] explored 
advanced control strategies for proportionally controlled 
pneumatic actuators. A significant constraint apparent in this 
study is that the strategies developed can only work within 
the architecture of an industrial programmable logic 
controller (PLC). Two control systems were developed, and 
their performance were compared to that of a PI controller.  
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A design procedure and experimental implementation of a 
PID controller was also presented by Situm et al. [7]. The 
PID controller was tuned according to optimum damping in 
order to achieve precise position control of a pneumatic 
servo drive. The controller was implemented by extending 
the proposed PID controller with friction compensator with 
the gain scheduling fuzzy control.  Sepehri and Karpenko 
[8] documented the development and experimental 
evaluation of a practical nonlinear position controller for a 
typical industrial pneumatic regulator that gives good 
performance for both regulating and reference tracking 
tasks. Quantitative feedback theory was employed to design 
a simple fixed-gain PI control law that minimizes the effects 
of the nonlinear control valve flows, uncertainty in the 
physical system parameters and variations in the plant 
operating point.  Dumitriu [9] focused on the development 
of a MATLAB/SIMULINK library for servo-systems with 
friction as a part of a new simulation platform dedicated to 
model, analyse and control of friction. Guenther et al. [10] 
proposed a cascade controller with friction compensation 
based on the LuGre model. This control is applied to a 
pneumatic positioning system. The cascade methodology 
consists of dividing the pneumatic positioning system into 
two subsystems: a mechanical subsystem and a pneumatic 
subsystem.  
In this paper, a Neural Network based intelligent PI 
controller is designed and simulated to increase the position 
accuracy in a pneumatic servo actuator. The pneumatic 
actuator consists of a proportional directional control valve 
  

Fig. 1 The Schematic diagram of the servo pneumatic 
actuator. 

 
connected with a pneumatic rodless cylinder. In this design, 
a well-trained Neural Network will provide the PI controller 
with suitable gains according to feedback that contains the 
changes in position error and the changes in external load 
force.  
 
 These gains should keep the resulting position control 
within minimum overshoot, minimum rise time and 
minimum steady state error. 

II. NONLINEAR SYSTEM MODEL OF THE 
PNEUMATIC ACTUATOR 

The complete mathematical model of the pneumatic servo 
actuator is obtained from the model of the pneumatic 
proportional directional control valve, then modelling the 
mass flow rate by analysing the thermodynamic changes in 
pneumatic cylinder and by applying Newton’s second law of 
motion. It will be assumed time delays in the pneumatic 
pipes are neglected. Fig. 1 shows the schematic diagram of 
the servo pneumatic actuator. We used 
SIMULINK\MATLAB package and implemented the block 
diagram of the nonlinear mathematical model of the 
pneumatic rodless cylinder controlled by a directional 
control valve as shown in Fig. 2.  

A. Modelling of proportional directional control 
valve 

Most of proportional directional control valves consist of 
four main parts: proportional solenoid, housing with the 
control spool, positioning transducer and integrated 
analogue device. The control spool shifts left or right 
proportionally to the input signal on the solenoid. The 
positional transducer, which sends a signal to the integrated 
control device, measures the stroke of the spool, where it is 
compared to the reference value and a correct command 
signal now controls spool movement. In this way, the 
proportionality of the airflow with the command signal is 
ensured with considerable accuracy as mentioned by [11].  
However, assuming the solenoid inductance is neglected, the 
relationship between control spool movement (xsp) and the 
voltage input (u) is: 

uCx Vsp =                        (1) 

where (CV) is the valve constant. Assuming the effective 
area of the valve orifice is (AV), the relationship between the 
control spool movement and the effective area of the valve 
as mentioned by [11] is: 
    

4
.2 π

spV XA ≈                         (2) 

Valve areas for input and exhaust paths versus the spool 
displacement are changed according to the position of the 
spool. The direction of flows in cylinder chambers has 
opposite signs, when one chamber is charged the other 
chamber is discharged, thus the role of calculating the 
effective area of the valve should be switched for the second 
chamber as mentioned by [12].  

 
 

IAENG International Journal of Computer Science, 35:2, IJCS_35_2_05
______________________________________________________________________________________

(Advance online publication: 20 May 2008)



1
x

x_dot
Input 

Av

xsp

x

m_dot_A

x_dot

PA

Cylinder chamber pressure
Chamber A

PA

PB

x

x_dot

Piston dynamics

PA

Av

xsp

PB

m_dot_A

m_dot_B

Mass flow rate

1
FL2

Input
Voltage

Proportional Valv e

x_dot

m_dot_B

x

PB

Cylinder chamber pressure
Chamber B

Fig. 2 Simulation model of Nonlinear mathematical model of the servo pneumatic actuator. 
 

B. Modelling of mass flow rate: 
Assuming isothermal process, (temperature is constant), the 
rate of change of pressure as mentioned by [2] is: 

V
V
Pkmkmk

V
TRP oi

&&&& .)..(.
−−=                      (3) 

where  and are input and output mass flow rates 
respectively, k is the heat ratio, V is the control volume and 
R is the gas constant.  

im& om&

By setting the origin of piston displacement at half of the 
cylinder length, the control volume (V) is: 

   )
2

.( xLAV ±=                                      (4) 

Where A is the useful piston area, L is the piston stroke and 
x is the piston position. By substituting (4) in (3), the rate of 
change of pressure in the cylinder chambers is: 

      (5) 
where  is the rate of change of piston’s position. However, 
the mass flow rate ( ) of the compressible gas through a 
valve orifice (A

x&
m&

V) is given by:   
      (6) 

where (Cf ) is a non-dimensional discharge coefficient,      
(P

                                                                               
u  and Pd ) are the upstream and downstream orifice 

pressures respectively, T is the orifice upstream temperature 
and (Pcr ) is the critical pressure ratio. The constants C1   and 
C2 are given below: 
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The meaning of the upstream and downstream pressures is 
different for the charging and discharging process of the 
cylinder chamber. For charging, the pressure in the supply 
tank should be considered the upstream and the pressure in 
the cylinder chamber is the downstream one. For 
discharging process, the pressure in the chamber is the 
upstream and the ambient pressure is the downstream 
pressure as mentioned in [1]. Thus, the air in the valve flows 
through the input and output paths according to the 
following functions: 

),( ASIA PPmm && =          (7) 
),( aAOA PPmm && =                       (8) 
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= where  and are the input mass flow rate in chambers 
A and B respectively, ( ) and ( ) are the output mass 
flow rate in chambers A and B respectively, ( ) and ( ) 
are the pressures in chamber A and B respectively, ( ) is 
the atmospheric pressure and ( ) is the supply pressure.  
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C. Newton’s second law of motion: 
Using Newton’s second law of motion, the mechanical 
equation of the pneumatic actuator is: 
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where M is the piston and load mass, Ff  is the friction force 
and FL is the external load force.  The friction is presented 
by the following more general description static model as 
mentioned in [9]:                                                                                         

    (12)        

⎪
⎩

⎪
⎨

⎧

>=
<=

≠
=

SLLs

SLLf

FFandxotherwiseFF
FFandxifF

xifvF
F

0)sgn(.
0

0)(

&

&

&

IAENG International Journal of Computer Science, 35:2, IJCS_35_2_05
______________________________________________________________________________________

(Advance online publication: 20 May 2008)



 

Fig. 3 Closed loop PI controlled pneumatic system. 
 
Where F(v) is an arbitrary function and FS is the static 
friction. The arbitrary function can be represented by a 
Stribeck nonlinear function as mentioned by [9]: 

   ( ) xBFFFvF s
x

x
CSC e &&

& .).()( +−+= − δ
δ

             (13) 

Where FC    is Coulomb friction, δx&  is the Stribeck speed, B 
is the viscus friction coefficient and Sδ  is the Stribeck 
exponent. This model allows a good representation of stick-
slip motion behaviour and efficient simulations. The block 
diagram shown in Fig. 2 consists of five sub-blocks which 
implement the bulk of equations described in section-2. For 
example, the simulation of pressure in cylinder chambers A 
and B is modelled using (3) through (5). The simulation 
model implements pressure calculations in cylinder 
chambers A and B in a similar way except that the signs of x 
and  are complemented. The piston dynamics are 
simulated using (11) through (13).   

x&

III. NEURAL NETWORK BASED PI CONTROLLER 
In order to increase the robustness of PI controller, a Neural 
Network based intelligent PI controller is used. In this 
approach, a well-defined Neural Network provides online 
the PI controller with appropriate gains according to the 
change in operating conditions, which is selected to be the 
error in position (Error) and external load force (FL).  
In order to train this Neural Network, input patterns that 
contain the above mentioned parameters under different 
operating conditions are used and output patterns that 
contain the optimal values of gains are collected from 
several simulations of the closed loop PI controlled servo 
pneumatic actuator. Selection of gains is done by a certain 
performance index (PF); i.e. the KP and KI that makes PF 
minimum is the optimal PI gain with respect to each input 
vector (Error and FL) as mentioned in [13]. These patterns 
are used to train the Neural Network and the output of the 

Neural Network will be optimal values of Proportional gain 
(KP) and Integral gain (KI). 
In this work, the performance index is selected to minimize 
the overshoot, rise time and steady state error of the cylinder 
position response according to the following equation: 
 

 K*state                                                
 K* K*

3

21

 errorSteady 
Rise timeOvershootPF

+

+=    (14) 

where K1, K2, and K3 are weighting factors chosen to be 20, 
80, and 100 respectively.   
Details of the selection algorithm and the procedure of 
implementation are explained in [13].    

IV. SIMULATION RESULTS 
In order to simulate the servo pneumatic actuator model, it 
will be assumed that the actuator model consists of a 
pneumatic rodless cylinder (SMC CDY1S15H-500) with 
stroke length L=500 mm and diameter d=15 mm. Linear 
motion of the piston is controlled with a proportional 
directional control valve (FESTO MPYE-5 1/8 HF-010B), 
which is connected to both cylinder chambers. The valve has 
a neutral voltage for 5V control voltage and the input 
voltage is within the range of 0 to 10V.  Table I gives 
specifications of the servo pneumatic system used in this 
paper as mentioned in [2] and referred to in other works 
[7],[8],[12]. The PI controlled pneumatic system model is 
shown in Fig. 3 and the Neural Network based PI controller 
together with the Pneumatic system is shown in Fig. 4.  
A reference input voltage is applied to the pneumatic system 
model in the range between 0 to 10V and the piston position 
and piston speed responses are shown in Fig. 5. It can be 
noticed that the piston did not move till the voltage 
increased more than 5V, which is the neutral voltage of the 
solenoid. The results we obtained are in agreement with 
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experimental and simulation results that were mentioned in [2]. 

Fig. 4 Block diagram of the Neural Network based intelligent PI controlled  pneumatic system. 
 

Tan-Sigmoid activation functions are used in the hidden 
layers whereas linear activation functions are used in the 
output layer. The error in position and external load force 
are divided into intervals where error in position is chosen 
within the range of (-0.5) to (0.5) in steps of 0.01 and the 
external load force is chosen within the range of 1 to 10 N in 
steps of 1 N. Furthermore, KP and KI are limited within the 
range of (1) to (100). Using a SIMULINK model of 
pneumatic actuator, the PI controlled pneumatic system 
model shown in Fig. 3 is used to collect patterns of training. 
Using the above mentioned intervals, several simulations 
were done with the help of (14) and a total of 1111×4 input-
output patterns are collected. By using gradient-descent with 
momentum back-propagation algorithm with a learning rate 
of 0.001 and momentum constant of 0.9, a Neural Network 
is trained after 250,000 epochs and SIMULINK Neural 
Network block diagram is eventually generated. Finally, this 
Neural Network SIMULINK block is connected with a PI 
controller that is used to control the pneumatic system. The 
block diagram of the complete Neural Network based PI 
controlled system is shown in Fig. 4.   
As the reference position input with no external load force to 
the closed loop system is applied, the controller tries to 
maintain the position of the cylinder while following the 
reference position with minimum overshoot, minimum rise 
time and minimum steady state error. The responses of the 
position of cylinder, the reference position input and the 
error in position are shown in Fig. 6.  The Neural Network 
reads the error in position and the values of external load 
force and recalls the optimal values of KP and KI to keep 
the position response of the cylinder within the required 
performance as can be shown in Fig. 7.  
In order to test the controller under the effect of variable 
load force, by applying a reference position input and an 
external variable load force at the same time to the 
pneumatic system model, responses of the position of 

cylinder, the reference position input and the error in 
position are shown in Fig. 8. It can be noticed that the 
controller tries to keep the position of the cylinder with 
minimum position error in spite of the effect of changing 
load force.  Responses of changing the parameters of the 
controller and the shape of external load force are shown in 
Fig. 9.  We compare this type of controller with a 
conventional type of PI controlled pneumatic system shown 
in Fig. 3.  By applying the same reference input and external 
load force and tuning the parameters of the controller using 
trial and error to obtain cylinder position response with 
minimum overshoot, minimum rise time and minimum 
steady state error. It was found that the best values of KP 
and KI were (100) and (50) respectively. However, by 
setting parameters of the controller with the best values of 
gains, responses of position of cylinder, reference position, 
error in position and external load force are shown in Fig. 
10.  
A comparison between the two results, shown in Fig. 9 and 
Fig. 10, shows that the conventional PI controller fails to 
keep the cylinder position within the allowed minimums of 
overshoot and steady state error as the intelligent controller 
did. The cylinder keeps jittering even when the cylinder 
position reached the required value. This is, of course, 
happening because of nonlinearities that exist in the 
pneumatic model and leads to the conclusion that using the 
proposed Neural Network based intelligent controller has 
the potential to compensate for the nonlinearities. 

V. CONCLUSIONS 
In this paper, a Neural Network based intelligent PI 
controller was designed and simulated to increase the 
position accuracy in a pneumatic servo actuator. The 
pneumatic actuator consists of a proportional directional 
control valve connected with a pneumatic rodless cylinder. 
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In this design, a well-trained Neural Network provides the 
PI controller with the suitable gains according to each 
feedback that contains the change in error in position and the 
change in external load force. These gains should keep the 
response of position within minimum overshoot, minimum 
rise time and minimum steady state error. These 
characteristics are satisfied without and with the effect of 
applying external variable load force. 
A comparison between using Intelligent PI type of controller 
and conventional PI type shows that the position of cylinder 
using a conventional PI controller keeps jittering in an 
oscillating way when the position of cylinder reaches a 
steady state position value. This is because of nonlinearities 
that exist in the pneumatic actuator and yet the jittering does 
not happen when a Neural Network based Intelligent PI 
controller is employed. 
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Table I: Values of the system parameters 
 System Parameter  Value 
Piston cross-section area A=1.767.10-3  m2

Maximum effective area of 
valve 

Avmax=7.83.10-6  m2

Viscus friction coefficient B=65  Ns/m 
Valve coefficient of discharge Cf =0.7 
Valve constant CV=3.15745.10-4  m/V 
Cylinder diameter d=15.10-3  m 
Stribeck exponent    

Sδ =2          

Coulomb friction FC=24  N          
External load force acting on 
the piston       

FL =0   N              

Static friction FS  =35  N              
Specific heat ratio of air   k=1.4                  
Cylinder stroke length   L=500.10-3  m 
Total mass of Piston, rods and 
load 

m=1.91   kg              

Critical pressure ratio Pcr =0.528              
Supply pressure  Ps=5.105  Pa 
Gas constant R=287 
Air temperature  T=294.5  K  
Stribeck speed Sx& =4.10-3   m/s      

  
 

 
Fig. 5 Open loop responses of cylinder’s position and  speed. 
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Fig. 6 Closed loop no-load piston position and error in 

position responses of Neural Network based 
 PI controlled pneumatic system. 

 

 
Fig. 7 Closed loop no-load KP, KI and FL responses of 

Neural Network based PI controlled pneumatic system. 
based PI controlled pneumatic system. 

 

 
Fig. 8 Closed loop variable-load force piston position and 

error in position responses of Neural Network 
 
 

 
Fig. 9 Closed loop variable-load force KP, KI and FL 

responses of Neural Network based PI 
controlled pneumatic system.
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Fig. 10 Closed loop variable-load force responses of PI controlled pneumatic system. 
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