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Abstract— Keystream reuse also known as the “two time pad” 

problem in case of stream ciphered data has been the focus of 
cryptanalysts for several decades. All heuristics presented so far 
assume the underlying plaintext to be uncompressed text based 
data encoded through conventional encoding mechanisms such as 
ASCII Coding. This paper presents the use of hidden Markov 
model (HMM) based automatic speech recognition (ASR) 
approach to cryptanalysis of stream-ciphered waveform-encoded 
speech in a keystream reuse situation. We present that an 
adversary can automatically recover the digitized speech signals 
from their plaintext XORs obtained from two different speech 
signals stream ciphered with the same keystream. The proposed 
technique can be practically employed with the existing HMM 
based probabilistic speech recognition techniques with some 
modification in the selection of HMMs, their training and the 
maximum likelihood decoding procedures. Simulation 
experiments using such modified speech recognition tools have 
been presented.   

 
Index Terms— cryptanalysis,  keystream reuse, speech coding,  

stream cipher, two time pad. 
 
 

I. INTRODUCTION 
 In a stream cipher, a message m is exclusive ORed with a 
keystream k to produce the ciphertext c i.e. m k . If the 
keystream k is random and is of the same size as that of the 
message m then the stream cipher becomes a “one time pad” 
which is considered as a perfect cipher [1] in the cryptographic 
community. If two different plaintexts m

c⊕ =

1 and m2 are encrypted 
with the same keystream k then their results and 1m k⊕ 2m k⊕  
can be XORed to neutralize the effect of the keystream k, 
thereby obtaining . The key reuse problem in stream 
ciphers and its exploitation in different scenarios for 
uncompressed text based data have been studied since long. It 
has also been mentioned in the literature as the “two time pad” 
problem [2]. The vulnerability of keystream reuse exists with 
many practical systems which are still in use such as Microsoft 
Office [2, 3], 802.11 Wired Equivalent Privacy (WEP) [4], 

1m m⊕ 2
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WinZip [5], Point to point tunneling protocol (PPTP) [6] etc. In 
addition to this, the two time pad problem is predicted to remain 
there for quite some time in the near future also because of the 
endorsement of counter mode of AES by NIST [2, 7] for high 
speed data transfer applications. In this case, cryptographers, 
who would have otherwise used a block cipher with cipher 
block chaining (CBC) mode, are compelled to use AES in the 
counter mode, thereby turning a block cipher into a stream 
cipher and the chances of reusing key streams is further 
enhanced. Also, there is a compelling need for a cipher mode of 
operation which can efficiently provide authenticated 
encryptions at speeds of 10 gigabits/s and is free of intellectual 
property restrictions. The counter mode of operation of a block 
cipher (e.g. AES) has been considered to be the best method for 
this purpose [8, 9]. This has further increased the possibility of 
keystream reuse in actual systems because an effective and 
secure key management has still been an uphill task for the 
crypto designers as mentioned in [10] as: “If you think you 
know how to do key management, but you don't have much 
confidence in your ability to design good ciphers, a one-time 
pad might make sense. We're in precisely the opposite 
situation, however: we have a hard time getting the key 
management right….. And almost any system that uses a 
one-time pad is insecure. It will claim to use a one-time pad, 
but actually uses a two-time pad (oops).”   
 

As regards to hidden Markov models (HMMs), these are 
very rich in mathematical structure and form the theoretical 
basis for use in a broad scope of applications, particularly in 
machine recognition of speech [11]. Most contemporary speech 
recognizers are based on HMMs.  Speech is digitized, 
encrypted and sent between two parties in many situations. 
Encryption schemes particularly designed for speech whether 
these are analog speech scramblers (e.g. [12]) or modern digital 
selective speech encryption techniques (e.g. [13]), have been 
the focus of security professionals since long. With the 
advancement in the speech digitization and compression 
techniques, the speech signal is now treated as an ordinary data 
stream of bits as far as encryption is concerned.  But the 
acoustic and articulatory features of speech signals exploited by 
the automatic speech recognition (ASR) equipment especially 
in the distributed speech recognition (DSR) scenario [14] and 
automatic transcription of conversational speech [15] have 
encouraged us to look at their characteristics from the 
cryptanalytic point of view in a keystream reuse situation. We 
have extended the natural language approach from automated 
cryptanalysis of encrypted text based data to the digital data 
extracted from the underlying verbal conversation. An 
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interesting by product of our attack is that it would not only 
decipher the information but would automatically transcribe it 
during the process of cryptanalysis through speech recognition. 

 
The rest of the paper is organized as follows: In section 2, we 

present some background information on speech coding and 
hidden Markov model based speech recognition. In section 3, 
we discuss the previous and related work on the keystream 
reuse problem as well as the use of HMMs in cryptology. 
Section 4 presents the assumptions and concept behind our 
cryptanalysis technique. In section 5, we present the 
implementation procedure which we adopted along with 
experimental results. Section 6, concludes the paper and gives 
directions for future work.  

II. BACKGROUND INFORMATION 
In this context, we first discuss speech coding and then 
automatic speech recognition with relevance to our work. 
 

A. Speech Coding 
In waveform encoding, the speech signal waveform is sampled, 
quantized (and compressed) and then digitally encoded. The 
A-law and µ-law algorithms [16] used in traditional Pulse 
Coded Modulation (PCM) digital telephony can be seen as very 
early precursors of speech digitization based on waveform 
encoding. In case of parameter encoding speech is considered 
as a source filter model in which the parameters of the model 
alongwith excitation information in the form of 
voiced/unvoiced signals is used for digital represenation of 
speech. In hybrid coding which has become the most popular in 
modern speech coding, the excitation information is not only 
segregated as vioced or unvoiced but the details of excitation 
information such as pitch, pulse positions/signs and gains are 
used for its representation. The common coding technique in 
this domain is Code Excited Linear Prediction (CELP) [17]. 
Although speech coders based on CELP are well known and 
common coders used in voice over IP networks and 
predominantly used in PC based systems yet some of the 
leading IP phone vendors unfortunately stopped supporting 
some implementations of CELP. This leads to G.711, which is 
based on waveform coding, as the common coder for PC to IP 
phones [18]. Moreover, most of the telecommunication links 
still use the A-law and µ-law algorithms of waveform coding 
for speech digitization.  Keeping this fact in mind, we have 
developed our algorithm for the keystream reuse exploitation of 
speech signals based on waveform encoding. 
 

B. Automatic Speech Recognition 
The purpose of speech recognition is to convert spoken words 
to machine readable input. Two main techniques of speech 
recognition presently exist, one based on dynamic time 
warping (DTW) and the other based on hidden Markov models 
(HMMs). The technique which is the most common is based on 
hidden Markov Models and is also applicable in our scenario.  
A Markov process is a stochastic process in which the 
conditional probability of the future states depends only on the 
present state and not on any past state, whereas, a hidden 

Markov model is a statistical model in which the system to be 
modeled is assumed to be a Markov process with unknown 
parameters and the challenge is to determine the hidden 
parameters from the observable ones.  For complete details of 
the hidden Markov models and their applications in speech 
recognition the reader is referred to [11].  All modern speech 
recognition tools use this technique because of its robustness, 
flexibility and efficiency. The goal of any ASR system is to find 
the most probable sequence of words W = ( w1, w2, w3, ……) 
given an acoustic observation O = (o1, o2, o3, ….oT). 
Mathematically, 

^

arg max ( )i
i L

W P w
∈

= O                           (1) 

where L indicates the phonetic units in a language model. 
Equation 1 cannot be solved directly but using Baye’s Rule, the 
above equation can be modified as 

( ) ( )
( )

^

arg max i i

i L

P O w P w
W

P O∈
=                 (2) 

or it can also be written as 

( ) (
^

arg max i
i L

W P O w P
∈

= )iw

2

                 (3) 

here, P(O/wi) is calculated using HMM based acoustic models, 
whereas P(wi) is determined from the language model. 
 

III. PREVIOUS AND RELATED WORK 

A. Keystream Reuse Exploitation 
Key stream reuse vulnerability exploitation of stream ciphers 
dates back to the National Security Agency’s VENONA project 
[19, 20] which started in 1943 and did not even finish uptil 
1980. Other worth mentioning works on the topic are those of 
Rubin in 1978, who for the first time formalized the process of 
keystream reuse exploitation [21]; Dawson and Neilson in 
1996, who automated the process of cryptanalysis of plaintext 
XORs [22] and the recent cryptanalysis of two time pads by 
Joshua Mason and coauthors in 2006 [2]. Mostly the keystream 
reuse exploitation discussed previously is with respect to the 
textual data and mainly based on heuristic rules for obtaining 
the two plaintexts m1 and m2 from  except for [2] 
which uses statistical finite states language models and natural 
language approach.  Prior works also exist on automated 
cryptanalysis of analog speech scramblers (e.g. [23]), but no 
previous work exists on the use of modern automated speech 
recognition (ASR) techniques based on hidden Markov models 
(HMMs) being used for cryptanalysis of the two time pad 
problem for the digitally encoded speech signals. In [2], the 
concepts borrowed from the natural language and speech 
processing communities are used for text based data whereas 
we use similar concepts with addition of speech recognition for 
speech based data. 

1m m⊕

  

B. Use of HMMs in Cryptology 
As regards to the use of hidden Markov models in cryptology, 
these have recently been used for several problems in this area. 
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The most prominent are the works of A. Narayanan and V. 
Shamtikov who used hidden Markov models for improving fast 
dictionary attacks on human memorable passwords [24]; D.X 
Song , D. Wagner and X. Tian who used HMMs for timing 
attacks on Secure Shell (SSH) [25]; D. Lee gave the concept of 
substitution deciphering of compressed documents using 
HMMs [26]; L. Zhuang, F. Zhou and J. D. Tygar modeled the 
keyboard acoustic emanations as HMMs [27]; C. Karlof and D. 
Wagner used HMMs for modeling countermeasures against 
side channel cryptanalysis [28] and  finally the most relevant 
work of Joshua Mason et al [2] who used the Viterbi beam 
search for finding the most probable plaintext pairs from their 
XOR in case of textual data. It is worth mentioning here that the 
works involving cryptanalysis with the aid of HMMs presented 
so far either do not relate to two time pad cryptanalysis or 
pertain only to text based data. Our algorithm for cryptanalysis 
of the plaintext XOR of the digitized speech signals using 
hidden Markov model based speech recognition techniques is 
the first of its kind according to our knowledge and has showed 
encouraging preliminary results. 
 

IV. PROPOSED APPROACH  
Before discussing the concept behind our approach for 

exploiting keystream reuse in stream ciphered digitized speech 
signals, we first elaborate and justify our assumptions. 

A. Assumptions 
We assume that the cryptanalyst knows before launching an 
attack, the details of the speech digitization and encoding 
before being stream ciphered. As an a priori knowledge the 
cryptanalyst must know whether the audio data which he 
targets is waveform encoded or parameter encoded. This 
assumption becomes realistic from the fact that the audio 
encodings follow some standards and by mere knowing the 
standard reference, the bit level details can be easily accessed 
as these details are publicly available. For example, in the 
waveform coding we may have ITU-T G. 711 [16], the bit level 
details of which are publicly available. Had these details not 
been available then even the plaintext speech without 
encryption would have not been possible to be decoded. We 
also assume that the cryptanalyst has a priori knowledge of the 
language and genre of the underlying speech signal. For 
example, we may like to model military telephonic 
conversations, corporate discussions, and informal chat over 
mobile telephones, etc. In case of VENONA project [20], the 
NSA knew before hand that the said link carried Soviet military 
and diplomatic communication. Moreover, keeping in view the 
Kerckhoff’s principle re-asserted by Claude Shannon as the 
enemy knows the system, the language and encoding details of 
the underlying speech signals can be rightly assumed to be 
known to the cryptanalyst before hand.  

 

B. The Concept 
Our method of cryptanalyzing the speech signals being 
encrypted with the same keystream is based on the hidden 
Markov model based speech recognition techniques. All 
modern speech recognition tools use this technique because of 

its robustness, flexibility and efficiency [11]. The three basic 
questions with respect to the HMMs and their solutions as 
regards to speech recognition are effectively utilized with some 
modification in our case. The three basic problems of interest 
that are to be solved for the model to be useful as regards to the 
cryptanalysis of speech signals encrypted with the same key 
are:  

 
1) Finding Probability of Observation given a Model 
Given an observation sequence O (XORed ciphered speech 
waveforms in our case) and a model ( , ,i )A Bλ π=  where iπ  
is the initial probability of states (XORed phonemes in our 
case), A is the transition probability of states and B is the 
emission probability distribution of the observation sequence, 
how do we compute the probability that the given sequence of 
observations was produced by the model λ  i.e. ( )P O λ ? The 
solution to this problem allows us to choose the model which 
best matches the observation sequence which in our case would 
be a sequence of XORed speech samples. 
 
2) Finding Internal States given Model and Observation 
Given the observation sequence O of XORed speech 
waveforms and the model λ , how do we choose a 
corresponding sequence of states i.e. XORed spoken words in 
case of isolated word recognizer and sequence of XORed 
phonemes in case of continuous speech recognizer, which is 
optimal and best explains the observation?  This is the problem 
in which we try to find the hidden part of the model i.e. to find 
the “correct” state sequence. In this case we have to impose 
certain optimality criterion like the sequence with maximum 
log probability may be selected. 
 
3) Adjusting Model Parameters given Observation 
How do we adjust the model parameters ( ), ,i A Bλ π=  to 
maximize the probability of the observation sequences of 
XORed speech waveforms given the model λ ? This is the 
training part of the models and on one hand is the most crucial 
part in the sequence of events but on the other hand gives a lot 
of flexibility to the cryptanalyst thus empowering him to adjust 
his model for all sorts of varying situations like different 
languages, accents, different speech coding and compression 
techniques and even different noisy conditions. This allows the 
crypanalyst to create best models for real phenomena. 

 
All the abovementioned problems and their efficient 

mathematical solutions have a very rich literature with respect 
to speech recognition [11]. In the conventional speech 
recognition techniques, the hidden Markov models are trained 
for complete words in case of isolated word recognizers and for 
phonemes in case of continuous speech recognizers. In our 
case, for isolated word recognition, we have to first list down 
all the possible combination of words resulting from the XOR 
of the two speech signals and hence the HMMs required to be 
trained will increase from n to n2.  Since the list of words is 
generally very large, therefore, this approach of training the 
HMMs would be very computational intensive and maybe 
impractical. A better and more efficient approach is to train the 
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HMMs for the exclusive ORed pairs of all the possible 
phonemes in the language under test. In this case, since the 
number of phonemes is relatively very small as compared to the 
number of possible words, the increase in computational 
complexity from n to n2  does not become unachievable. For 
example, in English language there are about 40 to 50 
phonemes and hence the number of HMMs to be trained in this 
case would be at the most 2500 (502) which are not high as 
regards to the computational resources available to a normal 
user these days. Using this approach would not require any 
major modification in the conventional phoneme based speech 
recognition procedure. In the pre-computation phase which 
comprises of selection and training of HMMs, we will first list 
down all the possible phonemes in the language and then we 
will pair each phoneme with every other phoneme including 
itself in the list. We will then assign each HMM to each 
phoneme pair and then train it with the training data selected on 
the basis of the a priori knowledge about the language and 
encoding mechanism of the speech signal. Once the HMMs 
corresponding to phoneme pairs are fully trained then these can 
be used for the identification of phoneme pairs in a given 
sequence of XORed speech samples in a process similar to the 
decoding part of a conventional HMM based ASR system. The 
decoded phoneme pairs are first separated into two distinct 
groups and then the phonemes within a group can then be and 
combined to form different words and sentences. For both these 
steps, help can be taken from the semantics and syntactic rules 
of the language.  

 

V. IMPLEMENTATION OF PROPOSED APPROACH 
The implementation part of our attack involves a pre 

computation phase which involves selection and training of the 
models and then the decoding phase which corresponds to the 
recognition of sequence of phoneme pairs which gives the 
highest log probability. Both the phases are interrelated and 
interdependent and the accuracy of the attack is greatly 
dependent on how well these two parts of the attack are 
carefully employed and joined.  

A. HMM Selection and Training Phase 
This phase corresponds to the pre computation part of the 
speech recognition in which the HMMs are first selected and 
then trained with the help of speech samples available with 
respect to each phoneme pair. This is done once for a particular 
language and specific speech encoding procedure. In order to 
prove the concept, we present a simple example in which we 
take two phonetically balanced English sentences: Clothes and 
lodging are free to new men; and All that glitters is not gold at 
all.  We bit wise XORed the digital encoded forms of these 
sentences to simulate the keystream reuse scenario. Fig. 1(a), 
(b) show the spectrogram and waveform of the two sentences 
along with their transcription. The transcription at the phoneme 
level is obtained from the British English pronunciation 
dictionary BEEP [29]. For simplicity of implementation the 
silence between words is not marked separately, only the initial 
silence and the end silence are marked. Fig 1(c) corresponds to 
the bitwise XOR of the two signals and the associated 

transcriptions in the form of phoneme pairs. The “+” sign in the 
figure corresponds to XOR. For the individual sentences the 
number of phonemes is 27 for sentence 1 and 26 including 
silence (sil) and hence the HMMs required to be trained for the 
XOR case would be 702 (27x26) at the max. These are obtained 
by pairing every phoneme of sentence 1 with every phoneme of 
sentence 2. We used ten utterances each of the sentence 1 and 
sentence 2 from ten different speakers, labeled the wave files 
and then bit wise XORed both the files again labeling these 
with the HMM boundaries clearly defined. For recordings, 
transcription and speech recognition we used the HTK [30] 
which is a toolkit based on C language for analysis of hidden 
Markov models particularly for machine recognition of speech. 
The recordings and transcription can be obtained by the HTK 
tool HSLab. The above mentioned acoustical events were 
modeled by 167 HMMs with each HMM corresponding to one 
XORed pair of phonemes. Since all the possible phonemes do 
not occur hence the actual number (167) of phoneme pairs is 
quite less than the total possible number (702). The basic 
design of the HMM we used in this case for all the models is as 
shown in Fig. 2.  Since speech recognition equipment cannot 
process waveforms directly, these are to be converted into more 
compact form. The configuration we used for the speech 
recognition was based on Mel Frequency Cepstral Coefficients 
(MFCC) [31] with 12 first MFCC coefficients, the null MFCC 
coefficient which is proportional to the total energy in the 
frame, 13 Delta coefficients estimating the first order derivative 
of MFCC coefficients and 13 acceleration coefficients 
estimating the second order derivatives, altogether a 39 
coefficient vector is extracted from each signal frame. The 
frame length is 25 milliseconds with 10 milliseconds frame 
periodicity.  The parameters which are to be estimated for each 
HMM during the training phase are transitional probabilities aij 
and the single Gaussian observation function for each emitting 
state which is described by a mean vector and variance vector 
(the diagonal elements of the autocorrelation matrix). In our 
case we have to estimate all these values for each of the 167 
HMMs during the training phase.  The HTK tools HInit, 
HCompV, and HRest can be used for this purpose. 
  
Before using our HMMs we have to define the basic 
architecture of our recognizer. In actual case this depends on 
the language and the syntactic rules of the underlying task for 
which the recognizer is used. We assume that these things like 
the language of the speakers and the digital encoding 
procedures are known to the cryptanalyst before hand. HTK, 
like most  speech recognizers, works on the concept of 
recognition network which are to be prepared in advance from 
task grammars, and the performance of the recognizer is greatly 
dependent on how well the recognition network maps the actual 
task of recognition. In addition to the recognition network, we 
need to have a task dictionary which explains how the 
recognizer has to respond once a particular HMM is identified. 
The task grammar for our recognition network is shown in Fig. 
3. The recognition network for our experiment is shown in Fig. 
4. The HParse tool of HTK can be used to construct the 
recognition network from the task grammar.  HSGen can be 
used for testing and verification of the recognition network.  
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Fig. 1(a). Spectrogram and waveform along with transcription of the sentence:  

Clothes and lodging are free to new men. 
 
 

 
 

Fig. 1(b). Spectrogram and waveform along with transcription of the sentence:  
All that glitters is not gold at all. 

 
 

 
 

Fig. 1(c). Spectrogram and waveform along with transcription of XOR of the sentences. 
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Fig. 2. Basic Topology of the HMM 

 

 
Fig. 3. Task Grammar for the Recognition Network 

 

   
Fig. 4. Recognition Network 

 
 
 

/* Task grammar*/ 
$WORD = sil+ao | k+l | l+dh | ow+ae | dh+t | z+g | ae+g | n+l  | d+l | l+ih | l+t | l+ax | oh+ax | oh+r | jh+z |ih+ih 
| ng+z | ng+n | aa+n | r+oh | r+t | r+g | f+g | iy+g | iy+ow | iy+l | t+d | t+ax | uw+ax | uw+t | n+t | n+ao | y+ao | 
uw+ao | m+l | m+sil | eh+sil | n+sil | k+ao | ow+dh | ow+t | dh+g | z+l | ae+l | ae+ih | n+ih | d+t | l+r | oh+z | jh+ih 
| ih+z | aa+t | f+ow | r+ow | r+l | iy+d | iy+ax | iy+t | t+t | y+l | uw+sil | sil+l | f+oh | f+t | n+ax | y+t | m+ao | eh+l 
| l+ao | ow+ao | dh+ao | ae+dh | ae+ae | d+g | l+g | oh+l | jh+l | ng+t | aa+ax | r+ax | r+r | f+r | f+z | f+ih | r+ih | iy+z 
| t+z | uw+n | n+oh | uw+g | uw+ow | m+ow | eh+ow | n+d |  sil+ax | sil+t | n+ae | d+ae | l+ae | oh+ae | oh+t | oh+g 
| jh+g | ih+l | ng+l | aa+ih | f+ax | r+z | iy+ih | uw+z | n+n | y+oh | m+g | eh+g | n+ow | sil+ow | sil+d | l+l | ow+l 
| dh+l | z+dh | jh+t | ih+t | ng+g | aa+g | f+l | n+z | y+z | m+z | eh+n | eh+oh | sil+oh | dh+dh | ih+g | aa+l | t+ih | 
uw+ih | m+n | sil+g | k+sil | n+dh | ng+ax | aa+r | aa+z | f+n | l+sil | ow+sil | z+ao | ih+ax | ng+r | r+n | iy+oh | r+d 
| ae+t | oh+ih | jh+ax | ih+r | t+g | y+d | uw+d | m+ax | eh+ax | aa+oh ; 
 
( [ START_SIL ] { $WORD } [ END_SIL ] )

START_SIL 

sil ⊕ ao 

k ⊕ l 

l ⊕ dh 

m ⊕ ax 

eh ⊕ ax 

aa ⊕ oh 

b2 b3 b4 b5

S1 S2 S3 S4 S5 S6

a13 a24 a35 a56 

a22 a33 a44 a55 

a12 a23 a34 a45 a56 

END_SIL 
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A. Decoding Phase 
Once the pre-computation phase has carefully been 

completed, the decoding process becomes pretty simple and 
elegant. An input speech signal, which in our case will be the   
bitwise XOR of two unknown speech waveforms, is first 
converted to a sequence of n MFCC vectors and is then fed as 
input to the recognizer. Every path from the start node to the 
end node in the recognition which passes through precisely n 
emitting states is a prospective recognition hypothesis. Each of 
these paths has a log probability which is computed by 
summing the log probability of individual transition in the path 
and the log probability of each emitting state generating the 
corresponding XORed vector. Within the model, transitions are 
determined from the model parameters (aij), between two 
models the transitions are regarded as constant and in case of 
large recognition networks the transition between end words 
are determined by language models likelihoods attached to the 
word level networks. The decoder lists those paths through the 
network which have the highest log probability. These paths 
are found using a Token Passing Algorithm [30]. At time 0, a 
token is placed in every possible start node. Each time step, 
tokens are propagated along connected paths through the 
recognition network stopping whenever they hit an emitting 
HMM state. When there are more than one out going paths 
from a node, the token is copied so that all possible paths are 
explored in parallel. As the token passes across transitions the 
corresponding transition and emission probabilities add up to 
its log probability. The token also maintains a history of its 
route during the process of propagation. In a large network, 
which will definitely be in our the case, a beam search may be 
used in case of which a record of the best token overall is kept 
while deactivating all tokens whose log probability falls more 
than a beam width below the best.  This beam search technique 
has one problem i.e. if the pruning beam width is set too small 
then the actual recognition path might be pruned before its 
token reaches the end of the observation i.e. it may result in a 
search error. Setting the beam width is thus a compromise 
between computational load and avoiding search errors. 
Fortunately, HTK tools HVite takes care of all these speed and 
computation problems [30]. The initial experiments which we 
performed gave us up to 80 percent correct recognition of 
phoneme pairs obtained though HResults tool of HTK as shown 
in Fig. 5. 

 
ts 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 5. HTK Recognition Performance 

B. Detailed Experimentation 
After getting encouraging results from the experiment in 

the controlled environment, we then tested our technique on 
actual speech files. For this purpose, we selected the 
Switchboard Corpus [32] which is a collection of telephone 
bandwidth conversational speech data collected from T1 Lines. 
The speech files are fully transcribed. The reason for this 
selection was to simulate the situation of eavesdropped 
encrypted communication of waveform encoded speech. In 
order to simulate the keystream reuse scenario, we selected 256 
speech files and XORed them with each other. The acoustical 
events were modeled with 588 HMMs with each HMM 
corresponding to one pair of phonemes. Since all the possible 
phonemes do not occur always hence the actual number of 
phoneme pairs (588) is quite less than the total possible number 
(2500). As discussed earlier, speech recognition tools cannot 
process speech waveforms directly. Different acoustic feature 
representations were used for recognition purposes. For all the 
representations, we used frame length of 25 milliseconds with 
10 milliseconds frame periodicity. The parameters which were 
to be estimated for each HMM during the training phase were 
transitional probabilities aij and the single Gaussian observation 
function for each emitting state which is described by a mean 
vector and variance vector (the diagonal elements of the 
autocorrelation matrix). The different acoustic features 
extracted for recognition purposes include linear predictive 
coefficients, linear predictive reflection coefficients, linear 
predictive Cepstral coefficients and Mel frequency Cepstral 
coefficients along with delta and reflection coefficients. For 
testing purpose, we selected twenty different files from the 
Switchboard corpus not included in the training data, XORed 
these to get ten files. As an initial test we also selected ten 
different files from the training data and fed these to the 
recognizer. The experimental results with respect to test files 
selected from the training data as well as arbitrary test files are 
depicted in Table I. The best accuracy results were presented by 
the Mel Frequency Cepstral Coefficients (MFCC) with delta 
and acceleration coefficients for both the test file categories.  

 

TABLE I : RECOGNITION ACCURACIES OF DIFFERENT ACOUSTIC FEATURES 
Recognition Accuracy (%) 

SNo Feature Extraction 
Mechanism Training Data 

Test Files  
Arbitrary Test 

Files 

1. Linear Predictive 
Coefficients 65.93 29.51 

2. Linear Predictive Reflection 
Coefficients 69.06 28.61 

3. Linear Predictive Cepstral 
Coefficients 72.09 34.62 

4. Mel Frequency Cepstral  
Coefficients (MFCC) 74.72 40.73 

5. Linear Predictive Cepstral + 
Delta Coefficients 77.15 37.81 

6. Mel Frequency Cepstral + 
Delta + Acceleration Coef. 79.96 59.09 

=================== HTK Results Analysis============== 

Date: Mon Jun 11 20:05:23 2007 

Ref : data2/ref22.mlf 

Rec : data2/rec22.mlf 

---------------------------Overall Results --------------------------------------- 

SENT: %Correct=10.00 [H=1, S=9, N=10] 

WORD: %Corr=86.98, Acc=83.72 [H=374, D=10, S=46, I=14, N=430]

================================= 
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C. Complexity Analysis 
For the complexity of the training phase, the increase in the 
number of models to be trained is from n to n2 at the most, if we 
pair each phoneme with every other phoneme and of course 
itself. For the decoding phase, the number of phonemes which 
are to be checked at each stage of the decoding path is also 
increased from n to n2 and the number of possible paths 
increases from n2 at each stage to n4 at each stage. Hence we 
may expect an exponential increase in the decoding from the 
conventional speech recognition. One way to reduce the 
number of iterations at each stage is to carry out beam search in 
which the width of the beam should be carefully selected in 
order to avoid pruning of useful paths at the early stage of the 
recognition network. Fortunately, HTK supports the beam 
viterbi search approach and hence can be employed in our case 
with no major modification in the decoding phase.  

VI. CONCLUSIONS AND FUTURE WORK 
In this paper, we presented that how the keystream reuse 

problem of stream ciphers can be exploited in case of waveform 
encoded speech signals. Prior to this work, one could safely 
reuse keystreams in case the underlying plaintext data was 
speech as all exploitation techniques presented before this 
transaction assumed the underlying plaintext to be 
uncompressed text-based data encoded through conventional 
encoding techniques such as ASCII coding. We have shown 
that the conventional speech recognition techniques can be 
adapted to be used for cryptanalysis of two time pads in case of 
stream ciphered digitized speech signals. HTK and other 
automatic speech recognition (ASR) tools can be effectively 
modified for this purpose. These speech recognition tools work 
on the concept of context-dependent tied-state multi-mixture 
tri-phones [30] which make the performance of the recognizer 
more flexible and robust. The use of tri-phones in the 
keystream reuse scenario needs to be looked into in the future 
assignments. The parameter encoded and compressed speech 
signals in the keystream reuse situation can also be looked into 
as a future work.  
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