
 
 

 

 
Abstract—Gene expression data is widely used in disease 

analysis and cancer diagnosis. However, since gene expression 
data could contain thousands of genes simultaneously, 
successful microarray classification is rather difficult. Feature 
selection is an important pre-treatment for any classification 
process. Selecting a useful gene subset as a classifier not only 
decreases the computational time and cost, but also increases 
classification accuracy. In this study, we applied both the 
information gain and correlation-based feature selection 
method as filter approaches, and an improved binary particle 
swarm optimization as a wrapper approach to implement 
feature selection; selected gene subsets were used to evaluate 
the performance of classification. Experimental results show 
that by employing the proposed method fewer gene subsets 
needed to be selected and better classification accuracy could 
be obtained. 
 

Index Terms—Gene expression data, microarray, feature 
selection.  

I. INTRODUCTION 
DNA microarray technology allows simultaneous 

monitoring and measuring of thousands of gene expression 
activation levels in a single experiment. This technology is 
currently used in medical diagnosis and gene analysis. Many 
microarray research projects focus on clustering analysis and 
classification accuracy. In clustering analysis, the purpose of 
clustering is to analyze the gene groups that show a 
correlated pattern of the gene expression data and provide 
insight into gene interactions and function. Research on 
classification accuracy is aimed at building an efficient 
model for predicting the class membership of data, produce a 
correct label on training data, and predict the label for any 
unknown data correctly.  

Typically, gene expression data possess a high dimension 
and a small sample size, which makes testing and training of 
general classification methods difficult. In general, only a 
relatively small number of gene expression data out of the 
total number of genes investigated shows a significant 
correlation with a certain phenotype. In other words, even 
though thousands of genes are usually investigated, only a 
very small number of these genes show a correlation with the 
phenotype in question. Thus, in order to analyze gene 
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expression profiles correctly, feature selection (also called 
gene selection) is crucial for the classification process.  

Methods used for data reduction, or more specifically for 
feature selection in the context of microarray data analysis, 
can be classified into two major groups: filter and wrapper 
model approaches [9]. 

In the filter model approach a filtering process precedes 
the actual the classification process. For each feature a 
weight value is calculated, and features with better weight 
values are chosen to represent the original data set. However, 
the filter approach does not account for interactions between 
features.  

The wrapper model approach depends on feature addition 
or deletion to compose subset features, and uses evaluation 
function with a learning algorithm to estimate the subset 
features. This kind of approach is similar to an optimal 
algorithm that searches for optimal results in a dimension 
space. The wrapper approach usually conducts a subset 
search with the optimal algorithm, and then a classification 
algorithm is used to evaluate the subset. 

Particle swarm optimization (PSO) is a population-based 
stochastic optimization technique, which was developed by 
Kennedy and Eberhart in 1995 [3]. PSO simulates the social 
behavior of organisms, such as birds in a flock or fish in a 
school, and can be described as an automatically evolving 
system. In PSO, each single candidate solution can be 
considered "an individual bird in the flock", that is, a particle 
in the search space. Each particle makes use of its own 
memory and knowledge gained by the swarm as a whole to 
find the best (optimal) solution. In 1997, Kennedy and 
Eberhart introduced a binary version of PSO (BPSO) [4] to 
solve discrete problems. In BPSO, each particle represents its 
position by either the binary value {0} or {1}, and the 
velocity is treated as a probability change of the particle 
position. However, BPSO has the same disadvantage as other 
evolutionary algorithms. After several generations, these 
algorithms tend to easy get trapped in a local optimum, 
which might prevent them from converging towards a global 
optimal solution. In order to circumvent the premature 
convergence at a local optimum, we incorporated a simple 
Boolean operation to create a new gBest position. This new 
gBest replaced the original gBest, so that all particles were 
able to leave the local optimal.  

In this study, we compared the gene selection performance 
of the filter and wrapper models, and hybrid the two models 
to create a new hybrid model for gene selection. To evaluate 
and compare the proposed method to other feature selection 
methods, we used two the K-nearest neighbor (KNN) and a 
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Support Vector Machine (SVM) classification algorithm to 
evaluate the selected features, and to establish the 
influenceon classification accuracy. The results indicate that 
in terms of the number of genes that need to be selected and 
classification accuracy the proposed method is superior to 
other methods in the literature. This paper is organized as 
follows: a brief overview introducing the methods is 
presented in Section II. The experimental framework and 
settings are described in Section III. Section IV consists of 
the results and a theoretical discussion thereof. Finally, the 
concluding remarks are offered in Section V. 

II. RELATED METHODS 

A. Information Gain 
Quinlan [5] proposed a classification algorithm called ID3, 

which introduces the concept of information gain. 
Information gain is a measure based method, which is 
usually used to select best split attributes in decision tree 
classifiers. The measure indicates to what extent the entire 
data’s entropy is reduced, and identifies the value of each 
specific attribute. Each feature basis obtains an information 
gain value, the amount of which is used to decide whether the 
feature is selected or deleted. Therefore a threshold value for 
selecting a feature must first established; a feature is selected 
when the information gain value of this feature is bigger than 
the threshold value.  

Let S be the set of n instances and let C be the set of k 
classes. Let P(Ci, S) be the fraction of the examples in S that 
have class Ci, Then, the expected information from this class 
membership is as follows: 
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If a particular attribute A has v distinct values, the 
expected information required for the decision tree with A as 
the root is then the weighted sum of expected information of 
the subsets of A according to distinct values. Let Si be the set 
of instances whose value of attribute A is Ai. 
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Then, the difference between Info(S) and InfoA(S) gives 
the information gained by partitioning S according to testing 
A. 
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The higher the information gain, the higher are the chances 
of getting pure classes in a target class if split on the variable 
with the highest gain. 

B. Correlation-based Feature Selection 
The Correlation-based Feature Selection (CFS) ranks 

attribute subsets according to a correlation based heuristic 
evaluation function. A subset of attributes is evaluated by 
considering the identification ability of each attribute. The 
score evaluations function as Eq. 4: 
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where sCFS is the score value of a attribute 

subset S containing k attributes, cfr is the average attribute 

to class correlation  Sf  , and ffr is the average attribute to 
the correlation. The CFS is used to determine the best 
combination attribute subset score values from original data 
sets, in which using heuristic search strategies to search the 
best combination. The common strategies include forward 
selection, backward elimination, and best first. In this study, 
we used Weka [2] to implement CFS, and used selected gene 
subsets to identify different kinds of cancer types and various 
diseases. 

C. Continuous particle swarm optimization 
The PSO system is initialized with a population of random 

solutions. This population searches for an optimal solution 
by updating generations. In PSO, a potential solution is 
called a particle. Each particle makes use of its own memory 
and knowledge gained by the swarm as a whole to find the 
best (optimal) solution in a d-dimensional search space. The 
particles have a positional value and velocities which direct 
their movement. 

Each particle is represented by ),,,( 21 idiii xxxx  , where 
d is the dimension numbers. The rate of velocity for the ith 
particle is represented by  idiii vvvv ,,, 21   and limited 
by maxV , which is determined by the user. The best previously 
encountered position of the ith particle (the position with the 
highest fitness value) is called pBesti and represented 
by  idiii pppp ,,2,1  . The global best value of the entire 
population is called gBest and represented 
by  dgggg ,,, 21  . At each interaction, the particles are 
updated according to the following equations: 
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where w is the inertia weight, c1 and c2 are acceleration 

(learning) factors, rand1 and rand2 are random numbers. 
Velocities new

idv  and old
idv  are those of the new and old particle, 

respectively, old
idx  is the current particle position (solution), 

and new
idx  is the updated particle position. 

D. Binary Particle Swarm Optimization 
Although PSO was originally introduced as an 

optimization technique for real-number optimization 
problems, many optimization problems are set in a space 
featuring discrete or qualitative distinctions between 
variables. PSO and BPSO each have their own characteristics. 
In the first, each particle is composed of a binary variable. 
Each particle will decide on “yes” or “no”, “true” or “false” 
or {1} or {0} in this model. In the latter however, the velocity 
is transformed into a change of probability, namely the 



 
 

 

probability of the binary variable taking the value {1}. 
However, the velocity must be restricted to the range [0.0, 
1.0]. In order to map the real value number of the velocity to 
the range, the sigmoid function is proposed to handle the 
probability of the variables [3]. 
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where  new
pdvS denotes the probability of bit new

pdx , if 

  new
pdvSrand ()  then 1new

pdx ; else 0new
pdx , the rand() is a 

random number selected from a uniform distribution in [0.0, 
1.0]. To avoid  new

pdvS  approaching 0 or 1, a constant maxV is 

used to limit the new
pdv , the range of maximum velocity 

is  maxmax , VV  . maxV is usually set to 6. 

E. An improved Binary Particle Swarm Optimization 
In this study, we propose an improved binary particle 

swarm optimization (IBPSO) which further develops 
standard BPSO. We executed IBPSO for feature selection 
and compared it to traditional BPSO. In general, after several 
generations, particles are influenced by their own pBest value 
and will stop moving towards gBest. If gBest is not changed, 
the particles cluster around gBest. To prevent particles from 
getting trapped in a local optimum, we introduced a simple 
Boolean algebra operation. 

The primitive Boolean function has three simple logical 
operators, namely ‘and’ )( , ‘or’ )( , and ‘not’ )( . The three 
operations can combine all kinds of logical functions and are 
used to solve combinational logic problems. In IBPSO, we 
assume that if the gBest values are unchanged after three 
generations, the particles have fallen into the local optimum. 
The particles thus stuck have to be induced to leave the local 
optimum. We used the ‘and’ )(  logical operation to ‘and’ 
pBest of all particles. After the operation, a new binary string 
will be created, and be treated as the new gBest. After this 
new gBest is created, each particle will depart from its 
original position, and continue to search other place in the 
search space. 

 
Figure 1. Process of creating a new gBest 

 

III. EXPERIMENT FRAMEWORK 

A. Hybrid filter and wrapper feature selection method 
In this study, we hybrid the filter and wrapper model 

methods to select feature genes in microarrays, and used two 
different classification algorithms to evaluate the 
performance of the proposed method. Figure 2 depicts the 
process of the hybrid filter and wrapper model feature 
selection method. The filter model part uses information gain 
(IG) and correlation-based feature selection (CFS) to 
evaluate the ability of each feature which differentiates 
between different categories. The reasoning behind these two 
methods is that can calculate the importance of each feature 
with respect to the class. Firstly, we used Weka [5] software 
package to determine the information value of each feature 
and sort the features in accordance with their information 
gain value. Higher values indicate higher discrimination of 
this feature from other categories, and mean that this feature 
can be used to calculate classification results effectively. 
After calculating the information gain values of all features, 
we implemented a threshold for the results. Since after 
calculation most information gain values were zero, not 
many features have an influence on the categorization of a 
data set.  The threshold in our study is 0 for most data sets. If 
the information gain values of the features are higher than 
the threshold, we select the feature, if not, the feature is not 
selected. In others, we also used Weka to implement 
correlation-based feature selection (CFS) to select suitable 
gene subset. 

For example, let a microarray data set have 10 gene 
numbers（10 feature numbers which can be represented 
by 10987654321 ffffffffff ). If only 5 genes ( 1f , 2f , 4f , 7f  
and 10f ) conform to the threshold of different filter methods 
respectively, only these 5 genes ( 107421 fffff ) are used after 
the wrapper procedure to implement the selection process. 

  
Figure 2. Hybrid filter and wrapper model feature selection 
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However, when using the filter model selection, the feature 
number could be reduced dramatically. In order to more 
effectively remove unwanted features, we used traditional 
BPSO and the improved BPSO method for wrapper model 
selection after the initial filter model selection was 
implemented to select features again, and used KNN and 
SVM algorithm to measure the classification performance. 

In BPSO, we used two bits, {0} and {1}, to represent the 
feature condition. If the number of each particle is identical 
to the input data dimension number, the ith particle 
is 10011ip  in our example, meaning that the 1f , 7f  and 

10f  feature are selected, and the others are not select. 

B. Data sets 
We used six multi-category cancer-related human gene 

expression data sets [4], which were downloaded from 
http://www.gems-system.org to evaluate the performance of 
the proposed method. The data format is shown in Table 1; it 
includes the data set name, the number of samples, categories 
and samples. In order to avoid bias, we implemented a linear 
scale for each gene expression data value to the range [0, 1]. 

C. Classifier performance 
To evaluate the performance of the proposed method, the 

selected feature subsets were evaluated by leave-one-out 
cross-validation (LOOCV) of one nearest neighbor (1-NN), 
and K-fold cross validation (K-fold) for SVM.  

For LOOCV, neighbors are calculated using their 
Euclidean distance. The fitness value for the 1-NN evolves 
according to the LOOCV method for all data sets. In the 
LOOCV method, a single observation from the original 
sample is selected as the validation data, and the remaining 
observations are selected as training data. This is repeated so 
that each observation in the sample is used once as the 
validation data. For K-fold cross validation, we set K=10 in 
this study.  During K-fold cross-validation, the data was 
separated into 10 parts  1021 ,,, DDD  , and training and 
testing was carried out a total of 10 times. When any part 

10,,2,1, nDn  is processed as a test set, the other 9 
parts will be training sets. Following 10 times of training and 
testing, 10 classification accuracies are produced, and the 
averages of these 10 accuracies are used as the classification 
accuracy for the data set. We assumed that the obtained 
classification accuracy is an adaptive functional value. 

Furthermore, the one-versus-rest method (OVR) was used 
to deal with multi-class problems. OVR assembles classifiers 
that distinguish one class from all other classes. For each 
class i, 1 i k, a binary classifier separating class i from the ≦ ≦

rest is built. To predict a class label of a given data point, the 
output of each of the k classifiers is obtained. If there is a 
unique class label, say j, which is consistent with all the k 
predictions, the data point is assigned to class j. Otherwise; 
one of the k classes is selected randomly. Very often though, 
a situation arises in which consistent class assignment does 
not exist. 

D. Experimental parameter set 
Principal algorithm parameter settings used were the 

following. The number of particles used was 30. The two 
factors rand1 and rand2 are random numbers between [0, 1], 
whereas c1 and c2 are acceleration factors, here c1 = c2 = 2. 
The inertia weight w was 1.0. The maximum number of 
iterations was 100. For the GA, chromosomes numbers is 30, 
crossover rate, and mutation rate is 1.0 and 0.1 respectively. 

IV. RESULTS AND DISCUSSION 
In this study, we tested and compared a hybrid filter and 

wrapper feature selection method’s performance on the 
classification of six multi-category cancer microarray 
expression data sets. We also proposed an improved BPSO 
method and compared it to other evolutionary algorithms. 
After feature selection, the selected feature subsets were 
evaluated using two common classification algorithms. 

Table 2 and Table 3 show the accuracies achieved by the 
filter, wrapper and hybrid model feature selection methods 
individually. In Table 2, the classification accuracy is 
evaluated by KNN and in Table 3 by SVM. The experimental 
results show that the accuracy of microarray data which had 
feature selection implemented was better than without 
feature selection.  For all the feature selection methods, the 
average of the wrapper model accuracy was better than for 
the filter model, but the number of selected feature was also 
higher for the wrapper model than for the filter model. The 
wrapper model differs from the filter model in that it is 
dependent on a classifier and evaluates the combination of 
feature subsets. The wrapper model can identify interaction 
amongst all features simultaneously.  

However, how many gene subsets are truly necessary to 
identify cancer categories is still a question under debate [8]. 
Only filter selection does not reduce the number of features 
very much; hence another method is needed to reduce the 
number of features further. In order to select more effective 
feature subsets, we acceded to a wrapper model method after 
the implementing the filter approach. Table 2 and Table 3 
show that the proposed method effectively increases 
classification accuracy and selects a smaller number of 
feature subsets. 

During the wrapper phase of the proposed method, we 
implemented an improved BPSO algorithm, which uses a 
Boolean function to prevent the standard BPSO’s premature 
convergence on a local optimal, and compared it to a GA and 
BPSO. The experiment showed that the combination of 
IBPSO and a wrapper model alone or when yet hybrid with a 
filter method achieves a better performance than GA or 
single BPSO. The reason for this is simple: all evolutionary 
algorithms are prone to converge at a local optimum location. 
In a GA, for example, chromosomes with higher fitness 
values are chosen as parents and produce a new offspring. 
After several generations (crossover and mutation), all 
chromosomes are similar, which reduces the search 
capability. In BPSO, each particle is guided by pBest and 
gBest.  However, if gBest is not continuously changed, all of 
the particles will close in on gBest after several generations, 
again resulting in a weakened search capability. 



 
 

 

V. CONCLUSION 
In this paper, we hybrid the filter and wrapper model 

methods for microarray classification to implement a feature 
selection process, and then used KNN and SVM to evaluate 
the classification performance. Experimental results showed 
that the proposed method simplified gene selection and the 
total number of parameters needed effectively, thereby 
obtaining a higher classification accuracy compared to other 
feature selection methods. The classification accuracy 
obtained by the proposed method was higher than other 
methods for all six test problems. In the future, the proposed 
method can assist in further research where feature selection 
needs to be implemented. It can potentially be applied to 
problems in other areas as well. 
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Table 1. Cancer-related human gene expression datasets 
Number of 

Dataset Name Diagnostic task 
Sample Genes Classes 

9_Tumors Nine various human Tumor types 60 5726 9 

Brain_Tumor1 Five human brain tumor types 90 5920 5 

Brain_Tumor2 Four malignant glioma types 50 10367 4 

Leukemia1 
Acute myelogenous leukemia (AML), acute 
lympboblastic leukemia (ALL) B-cell, and ALL 
T-cell 

72 5327 3 

Leukemia2 AML, ALL, and mixed-lineage leukemia (MLL) 72 11225 3 

DLBCL 
Diffuse large B-cell lymphomas and follicular 
lymphomas 

77 5469 2 

 
 
Table 2. KNN accuracy performance for the six microarray data sets for the filter, wrapper and hybrid filter/wrapper feature 
selection methods 

  wrapper Hybrid filter and wrapper 

Data set 
KNN 

(Statnikov et al.)[1] 
GA  BPSO IBPSO 

IG  
+  

GA  

IG  
+  

BPSO 

IG  
+ 

IBPSO 

CFS 
+ 

GA 

CFS 
+ 

BPSO 

CFS 
+ 

IBPSO 
9_Tumors 43.90 60.00 60.00 70.00 85.00 85.00 90.00 86.67 86.67 90.00 

Brain_Tumor1 87.94 91.11 91.11 93.33 95.56 93.33 96.67 97.78 98.89 100.0 

Brain_Tumor2 68.67 80.00 80.00 86.00 90.00 84.00 92.00 100.0 100.0 100.0 

Leukemia1 83.57 95.83 94.44 97.22 100.0 98.61 100.0 100.0 100.0 100.0 

Leukemia2 87.14 93.06 91.67 97.22 97.22 95.83 100.0 100.0 100.0 100.0 

DLBCL 86.96 92.21 90.91 96.10 100.0 100.0 100.0 100.0 100.0 100.0 

Average 76.36 85.37 84.69 89.98 94.63 92.80 96.45 97.41 97.59 98.33 

 
 
 
 
 
 



 
 

 

Table 3. SVM accuracy performance for the six microarray data sets for the filter, wrapper and hybrid filter/wrapper feature 
selection methods 

  wrapper Hybrid filter and wrapper 

Data set 
MC-SVM 
(No FS) 

(Statnikov et al.)[1] 
GA BPSO IBPSO 

IG  
+  

GA 

IG  
+ BPSO 

IG  
+ 

IBPSO 

CFS 
+ 

GA 

CFS 
+ 

BPSO 

CFS 
+ 

IBPSO 
9_Tumors 65.10 71.67 71.67 78.33 90.00 91.67 90.0 83.33 88.33 91.67 

Brain_Tumor1 91.67 90.00 90.00 92.22 91.11 93.33 97.78 97.78 98.89 98.89 

Brain_Tumor2 77.00 84.00 80.00 88.00 88.00 88.00 88.00 98.00 100.0 100.0 

Leukemia1 97.50 97.14 97.14 98.57 97.14 100.0 100.0 98.57 98.57 98.57 

Leukemia2 97.32 98.57 98.57 100.0 98.57 98.57 98.57 100.0 100.0 100.0 

DLBCL 97.50 98.57 97.14 98.57 97.14 100.0 98.57 100.0 100.0 100.0 

Average 87.68 89.99 89.09 92.62 93.66 95.26 95.49 96.28 97.63 98.19 

 
Table 4. The selected feature number for the six microarray data sets the filter, wrapper and hybrid filter/wrapper feature 
selection methods using KNN 

  wrapper Hybrid filter and wrapper 

Data set 
MC-SVM 
(No FS) 

(Statnikov et al.)[1] 
GA BPSO IBPSO 

IG  
+  

GA 

IG  
+  

BPSO 

IG  
+ 

IBPSO 

CFS 
+ 

GA 

CFS 
+ 

BPSO 

CFS 
+ 

IBPSO 
9_Tumors 5726 886 1531 552 72 49 31 22 20 20 

Brain_Tumor1 5920 1016 2602 435 179 474 115 40 31 17 

Brain_Tumor2 10367 1464 4158 1081 444 1855 327 22 17 12 

Leukemia1 5327 770 1811 462 66 186 34 12 12 7 

Leukemia2 11225 1683 4310 829 346 459 220 12 11 11 

DLBCL 5469 617 2123 485 100 252 33 8 6 4 

 
Table 4. The selected feature number for the six microarray data sets the filter, wrapper and hybrid filter/wrapper feature 
selection methods using SVM 

  wrapper Hybrid filter and wrapper 

Data set 
MC-SVM 
(No FS) 

(Statnikov et al.)[1] 
GA BPSO IBPSO 

IG  
+  

GA 

IG  
+  

BPSO 

IG  
+ 

IBPSO 

CFS 
+ 

GA 

CFS 
+ 

BPSO 

CFS 
+ 

IBPSO 
9_Tumors 5726 1801 2755 996 93 68 40 19 20 17 

Brain_Tumor1 5920 1608 2090 311 371 409 111 55 40 27 

Brain_Tumor2 10367 2246 4446 541 1005 1503 216 27 17 11 

Leukemia1 5327 1268 2077 431 203 160 30 66 42 41 

Leukemia2 11225 4121 4868 2096 353 1049 183 23 11 9 

DLBCL 5469 1397 2161 511 426 200 124 19 9 6 
Legends: (1) MC-SVM: Multi-class support vector machines (2) No FS: Non-Feature selection (3) GA: Genetic Algorithm (4) BPSO: Binary Particle Swarm 
Optimization (6) IBPSO: Improved Binary Particle Swarm Optimization (7) IG+GA: Information Gain combined with Genetic Algorithm (8) IG+BPSO: 
Information Gain combined with Binary Particle Swarm Optimization (9) IB+IBPSO: Information Gain combined with Improved Binary Particle Swarm 
Optimization (10) CFS+GA: Correlation-based Feature Selection combined with Genetic Algorithm (11) CFS+BPSO: Correlation-based Feature Selection 
combined with Binary Particle Swarm Optimization (12) CFS+IBPSO: Correlation-based Feature Selection combined with Improved Binary Particle Swarm 
Optimization. 
 
 
 


