

Abstract— SQL is one of the major languages to manipulate

and retrieve data in the databases. It was standardized by the
corporation among researchers and commercial database
industries into many versions. SQL provides NULL values for
attributes which are unknown to the user. There are three
meanings of NULL but they are not classified by database
engines. Results of SQL queries show different meaning when
they are produced by subqueries or atomic predicates. This
paper explains the meaning of them with suggestions proposing
to database community.

Index Terms—Database Engines, Null, Predicates, SQL,
Subquery

I. INTRODUCTION
SQL was proposed in 1986 and revised into different

versions; SQL-89, SQL-92, SQL:1999, SQL:2003, and
recently SQL: 2006 which includes XML specifications. Null
value, also, has a long history of its own problems attached to
SQL standards and has been discussed since 1970s [16], [3],
[5], [6] about handling the missing data. Many approaches to
evaluate its miserable logical value have been proposed
including multi-valued logic such as 3-valued logic in [18],
and 4-valued logic in [9], [4] and others. Its effects are still
recently discussed in various issues of database such as
normalization in [13] providing axiomatization to normalize
databases over the multivalued dependencies with null
values, and language semantics in [10] between SQL and
XQuery that treats an empty sequence in the same manner of
NULL in SQL by returning the empty sequence if any of
operators is an empty sequence.

Understanding the semantics of NULL values in various
case is important because the side effects of mishandling null
when retrieving them from a database to an application may
lead to other problems such as, program crashing due to
unusable values in [1] whose authors introduce a method
called origin tracking to record program location where
unusable values are assigned in a form of value piggybacking
whereas other various techniques are demonstrated such as
null dereference analysis in [7] and reference-counting
garbage collection in [11].

Manuscript received July 22, 2008.
N. Waraporn is with the School of Information Technology, King

Mongkut’s University of Technology Thonburi, Thungkru, Bangkok, 10140
Thailand (phone: 662-470-9909; fax: 662-872-7145; e-mail:
narongrit@sit.kmutt.ac.th).

K. Porkaew is with the School of Information Technology, King
Mongkut’s University of Technology Thonburi, Thungkru, Bangkok, 10140
Thailand (e-mail: kk@sit.kmutt.ac.th).

The problem origination of an application receiving NULL
values from a database is from SQL that can be tackled with
different strategies. [15] suggests an adopting of Modified
Condition Decision Coverage (MCDC) for SQL conditions
to switch Boolean logic to a three-valued logic whereas [2]
proposes an improvement of SQL query optimization in their
version of nested relational algebra that allows null values
and duplicate values.

During the time we were ETL our data from a relational
database to our data warehouse, we found that writing SQL
statement with subqueries may cause various problems when
encountering NULL values whereas other researchers found
different problems such as negations cause a switch from a
sure answer to a potential answer and vice versa [12]. Many
execution strategies for SQL subqueries are discussed in [8]
using a mapping technique to deal with quantified
comparison in the presence of NULL values.

In this paper, we present semantics of NULL values in a
nested SQL query. The fundamental meanings and logical
facts of NULL values are explained in section II. In section
III, we illustrate how the comparison between NULL and
atomic values is done. The meanings of NULL values in
different cases according to the locality of NULL are
demonstrated in section IV and V while section VI presents
other cases such as semantic of NULL values in the aggregate
functions and their equality comparisons. Section VII
suggests practical approaches when dealing with NULL for
designing of database and application. Section VII, also,
suggests an extension for database engines to cope with
3-value logic of NULL values. At last, we conclude and
discuss other issues of NULL values in section VIII.

II. SEMANTICS OF NULL IN DATABASE
We can understand NULL values in two aspects; their

meanings, and their logical facts. The meanings are classified
by considering the acquiring of data into the table while the
logical facts are defined from the three-valued logic.

A. Meanings of NULL Values
NULL values in DBMS are classified in three meanings:
Missing: data supposes to be in the column but has not yet

filled in. For example, NULL for date of birth of an employee
is missing because every person was born on a date. Other
examples of missing for NULL values are name, and gender.

Not-applicable: data cannot be applied to the column at
this time. For example, GPA for freshmen, who just enter the
college, is not valid during the first semester. The NULL
value for GPA column is not applicable for at least one
semester.

Null Semantics for Subqueries and Atomic
Predicates

Narongrit Waraporn, and Kriengkrai Porkaew

Unknown: data can be either missing or not-applicable
values for NULL. For example, most students will have GPA
after the final exam. However, a NULL value for the GPA of
a sophomore may be considered in two situations. It is
missing data because of data loss during processing at the
registrar office. The second case is when student dropped all
course before the deadline, therefore the student still has no
GPA after the first year. The second case represents the
not-applicable meaning. Therefore the NULL value for GPA
of students who passed the first semester could be unknown.
Other examples of unknown meaning for NULL values are
supervisor column which can be missing or not-applicable if
he/she is the CEO, and address column which can be missing
or not-applicable for a person who may be temporarily
homeless after hurricane season.

 In this paper, the case that a customer does not provide
date of birth, or salary due to privacy information, can be
considered in another meaning but it is out of scope for this
paper.

B. Logical Facts of NULL values
Three valued logic, 3VL, for DBMS is defined by three

facts; true, false, and unknown, which is NULL, values. [17]
defined truth tables of 3VL in nine out of eighty one possible
pairs of conjunction and disjunction tables. Out of nine pairs,
SQL99 uses two pairs to define the elementary truth tables
shown in the Tables I and II by applying 3VL for NULL
values. Table I is the truth table for the logical AND while
Table II is for the logical OR. SQL99 demonstrated in [14]
also applied 3VL for the logical negation and is defined in the
truth table shown in Table III.

 Table I. Truth Table for Conjunction

AND True False Unknown
True True False Unknown
False False False False
Unknown Unknow

n
False Unknown

Table II. Truth Table for Disjunction

OR True False Unknown
True True True True
False True False Unknown
Unknown True Unknown Unknown

Table III. Truth Table for Negation

P Not P
True False
False True
Unknown Unknown

Due to the fact of logical AND that its predicate is true if

both facts are known as true whereas the third meaning of
NULL value is unknown, the value of truth table of logical
AND is unknown if another fact is unknown. However, if at
least one of the facts is false, regardless of another, the
predicate of logical AND returns false. This is analogous to
the fact of logical OR in two valued logic, if at least one of the
facts is true, regardless whether we know the second fact or
not, the OR predicate is true. On the other hand, if one of the

facts is false while another is unknown, we cannot determine
the OR predicate.

Because of 3VL in SQL where the facts of truth table could
be unknown, the results of condition in WHERE clause may
mislead the programmer when writing a SQL statement
against NULL values.

III. PREDICATES AGAINST NULL
When comparing values in an expression against NULL,

SQL standard suggests the use of IS NULL predicate. The
syntax is “value-expression IS NULL”. An IS NULL
predicate tests whether the value-expression is an empty
value or not. The surprise of IS NULL predicate occurs when
the value-expression is a tuple containing more than one
column such as WHERE (SALARY, SUPERVISOR) IS
NULL.

According to SQL99 standard in [14], the NULL predicate
semantics is summarized in Table IV. The surprise of
two-value logic for IS NULL predicate is when n-value
expression containing some null values and some not-null
values in an expression is false if the predicate compares with
IS NULL while comparing with IS NOT NULL, the n-value
expression is also false. This is due to the fact of IS NULL
predicates that it is true if and only if every value in the
expression is null. Similarly, the IS NOT NULL predicate is
true if and only if every value in the expression must be not
null.

Table IV. NULL Predicate Semantics
P: n-value
expression

P IS
NUL
L

P IS
NOT
NULL

NOT P
IS
NULL

NOT P
IS NOT
NULL

n=1: null True False False True
n=1: not null False True True False
n>1: all null True False False True
n>1: some null False False True True
n>1: none null False True True False

DB2, and MySQL do not allow the value-expression as a

n-value tuple to compare with IS NULL. They return syntax
error when comparing such tuple with IS NULL predicate.
However, they allow the comparison of the value-expression
as an n-value tuple with an n-value tuple, but not the case of
MS-Access. One reason that commercial databases does not
allow this type of predicate may due to the complicated
semantics of NULL when using IS NULL or IS NOT NULL
predicates as shown in Table IV. Alternatively, programmer
can rewrite the comparison of an n-value expression with IS
NULL predicate into n predicates comprehending to the
intended semantics of the query such as “SALARY IS NULL
AND SUPERVISOR IS NULL”, or “SALARY IS NULL
OR SUPERVISOR IS NOT NULL”.

 Since NULL means unknown in 3VL, the basic
comparisons such as =, < >, <, <=, >, and >= return unknown
value to the predicate containing NULL value. An example
of truth tables for equality is shown in Table V.

For example, if we want to find two employees who are
supervised by the same supervisor, Mike and Ann in Table

VII should not be in the result because we don’t know who
their supervisors are. Therefore, NULL = NULL comparison
should be unknown.

Table V. Truth Table for Equality

= X ~X Unknown
X True False Unknown
~X False True Unknown
Unknown Unknown Unknown Unknown

However, the fact in Table V might not be perfect. Using

data in Table VII, if the condition is “SUPERVISOR =
SUPERVISOR”, every database engine does not include
rows 1 and 5 due to NULL = NULL comparison is unknown.
But shouldn’t everyone have the same supervisor to
him/herself?

If we intend the comparison of NULL = NULL to be true
as in the previous paragraph, we may add an additional
predicate such as “SUPERVISOR = SUPERVISOR OR
SUPERVISOR IS NULL”. So, the case of NULL = NULL
comparison will be excluded. A similar example is also
presented in section VIII.

Another contradiction of NULL comparison of 3VL in
SQL is the case of aggregate functions in GROUP BY clause.
Let say, if we would like to count the number of employee for
each supervisor such as “Select count(*) from employee
group by supervisor” from the data in Table VII, every
database engine considers that Mike and Ann are in the same
group and returns 2 as the number of employees whose
supervisor is unknown. If NULL = NULL comparison is
unknown, database engine should not consider them into the
same group when applying an aggregate function.

In the case of aggregate functions, if we can define NULL
values into either missing or not-applicable, then SQL can
group the data properly. In the case of missing data for the
supervisor column, SQL should not group them together
because these missing supervisors might or might not be the
same person. If the case of NULL in supervisor column
means not-applicable, then SQL should group them together
into the same group because the count of the number of
employees for each supervisor is unambiguous comparing to
the meaning of missing data. This supports the proposal of
four-valued logic for databases in [4].

IV. NULL INTERPRETATION IN SUBQUERIES
We create tables and run queries in four database engines;

DB2 Express-C 9.0, MS-Access 2007, MySQL 5.0.18, and
Oracle 10g. The department and employee data in Tables VI
and VII will be used throughout the paper. WORKDEP
column in the EMPLOYEE table has a foreign key
referencing to DEPNO column in the DEPARTMENT table.

To compare with a NULL value, SQL offers IS comparison
operator in WHERE clause. For example:

Query I
SELECT ENAME FROM EMPLOYEE
WHERE SALARY IS NULL
A record containing NULL for salary will be shown in the

result of query 1. As for this case, Ann is shown in every
database engine.

To find a value that is not in a relation, SQL offers a NOT
IN atomic/set comparison operator to compare with a
subquery. A record whose searching column is not in the
subquery is retrieved in the result. For example:

Query II
SELECT ENAME FROM EMPLOYEE
WHERE EMPID NOT IN (SELECT MANAGER
 FROM DEPARTMENT)
Employee who is not a manager of any department will be

listed which is Tom and Ann.
However, a similar query using NOT IN operator to

compare with NULL values, does not return results as
expected. We illustrate the comparison between NULL
values and subquery into three cases; comparing a not-null
value with a subquery containing NULL values, a NULL
value with a subquery without any NULL, and a NULL value
with a subquery containing NULL values.

A. Subquery Containing NULL Values
When a pointer points to a record in the main query, values

in the record are passed to the WHERE condition for
comparison. For this case, values of the column comparing to
the subquery, in every record are not NULL, but, in contrast,
they are used to compare with a subquery returning NULL
values.

Table VI. DEPARTMENT Table

Depno Dname Location Manager
1 IT New York 111
2 HR London 112
3 Sale New York 113

Table VII. EMPLOYEE Table with Foreign Key on

WORKDEP to DEPARTMENT Table
EmpID Ename Salary Supervisor workdep

111 Mike 50000 NULL 1
112 John 250000 111 2
113 Jake 120000 112 2
114 Tom 40000 115 NULL
115 Ann NULL NULL 1

For example, query III finds a department that has no

employee working at:
Query III
SELECT DEPNO FROM DEPARTMENT
WHERE DEPNO NOT IN (SELECT WORKDEP
 FROM EMPLOYEE)
Every testing database engines returns no records whereas

DEPNO 3 is not in the WORKDEP column of
DEPARTMENT table. However, the query II returns 114,
and 115 which is not in the MANAGER column of
EMPLOYEE table. This is due to the NULL values in the
WORKDEP column. The database engines treat NULL
values as missing values. It cannot conclude whether
DEPNO 3 is not in the WORKDEP column because the
NULL can be 3 or other values.

Considering it as a set, the WHERE condition of query II
compares

111 ∉ { 111, 112, 113 } which is false.
115 ∉ { 111, 112, 113 } which is true.
whereas the WHERE condition of query III compares
3 ∉ {1, x, 2, 1, y} which cannot be true or false because x

and y are variables whose values are undetermined as NULL.
Conversely, if an employee 114 is a new employee and has

no department assigned to, the meaning of NULL in
WORKDEP column for employee 114 is not-applicable. For
this case, department number 3 has no one working at.
Therefore the database engines do not treat NULL for the
NOT IN operation as not-applicable because the query III
does not return DEPNO 3. However, SQL offer EXISTS
quantifier for an alternative for IN. Another way to find a
department that has no employee working at can be written in
SQL as query IV.

Query IV
SELECT DEPNO FROM DEPARTMENT
WHERE NOT EXISTS (SELECT *
 FROM EMPLOYEE
 WHERE DEPNO = WORKDEP)
We ran query IV in our database engines. Every database

engine returns DEPNO 3. The reason is that subquery tests
the WHERE condition that receives 3 from the main query
and the equality of 3 to NULL is false. This includes other
cases: 3=1 is false and 3=2 is false. The WHERE condition of
query IV can be considered as

~ (∃  x / x = 1 or x = 2 or x = NULL)
As a result, the subquery returns empty relation when 3 is

passed from the main query. Thus, NOT EXISTS quantifier
is true and DEPNO 3 is shown in the result of query.

Therefore, the meaning of NULL for the NOT EXISTS
quantifier is suitable for the case of not-applicable, but not for
missing values.

To find only matched value excluding the NULL values,
there are many ways to write such query. Using IN, opposite
to NOT IN, is one of the options. Other options include
Cartesian product operator, and EXISTS quantifier. Query V,
VI and VII, demonstrate these options.

Query V
SELECT DEPNO FROM department
WHERE DEPNO IN (SELECT WORKDEP
 FROM EMPLOYEE)

Query VI
SELECT DEPNO
FROM DEPARTMENT, EMPLOYEE
WHERE DEPNO = WORKDEP
Query VII
SELECT DEPNO FROM DEPARTMENT
WHERE EXISTS (SELECT * FROM EMPLOYEE
 WHERE DEPNO = WORKDEP)
IN operator and EXISTS quantifier in Query V and VII

shows records of the main query that matches in the subquery
whereas query VI uses a Cartesian product to join two tables.
Query V and VII show the same result. They include DEPNO
1, and 2 whereas query VI shows a slightly different answer
which includes DEPNO 1, 2, and 1 due to the characteristic
of Cartesian product to concatenate a record to all matched

records.
We can write WHERE condition of query V, where x and y

represent NULL, in set comparisons as:
1 ∈ {1, x, 2, 1, y} which is true.
2 ∈ {1, x, 2, 1, y} which is true.
and 3 ∈ {1, x, 2, 1, y} which is false when we executed in

each testing database.
The example reveals that NULL values for this case does

not mean missing because if it is missing, the database
engines cannot determine whether 3 is a member or not. In
contrast, the database engines determine NULL values as
not-applicable meaning that employee 114 is not working at
DEPNO 3. Thus, 3 is not a member of subquery and is false
for the IN comparison operator.

This raises an issue that IN operation interprets NULL
values into two meanings; missing for NOT IN and
not-applicable for IN.

Query VII shows the same result as of query V. We can
write WHERE condition of query VII as

(∃ x / x = 1 or x = 2 or x = NULL) where x is a value passed
from the main query.

When x is 3, the condition returns false because 3 is not
equal to 1, 2 or NULL. Thus, 3 is not a result of the main
query. Therefore NULL for EXISTS quantifier has the
meaning of not-applicable, but not missing. The reason is that
if NULL value is a missing value, 3 may or may not equal to
a missing value. It would be nondeterministic. If NULL value
means not-applicable, 3 will not equal to something that has
no value. This is also true in our example that DEPNO 3 does
not exist in the subquery.

These results show us that IN and NOT IN operators
interpret the meaning of NULL value differently but not the
case of EXISTS and NOT EXISTS quantifier.

The next two queries, VIII and IX, demonstrate the
equivalency of the meaning of NULL values between set
comparison operators when NULL values are compared:

a) IN versus “ =SOME” and
b) NOT IN versus “!=ALL”

Query VIII
SELECT DEPNO FROM DEPARTMENT
WHERE DEPNO =SOME (SELECT WORKDEP
 FROM EMPLOYEE)
 Result of query VIII is the same as of query V. We can

write the WHERE condition of query VIII as
( ∃y/y∈WORKDEP and x = y) where x is DEPNO
For our example, it compares
(x = 1 or x = 2 or x = NULL)
When DEPNO is 1 or 2, the subquery is true, but not for 3.

This shows us that =SOME operator uses the meaning of
not-applicable which is the same as of IN operator.

Query IX
SELECT DEPNO FROM DEPARTMENT
WHERE DEPNO !=ALL (SELECT WORKDEP
 FROM EMPLOYEE)
(In MS-Access 2007 not-equal operator is < >.)
Result of query IX is empty which is the same as of NOT

IN operator in query III. The WHERE condition of query IX
can be written as

 (∀y/ y∈WORKDEP and x!=y) where x is DEPNO
For our example, it compares
 (x ! = 1 and x ! = 2 and x != NULL)
When x is 1, the condition is false. It is the same to 2.

However when x is 3, 3 != 1 is true, 3 != 2 is true, and 3 !=
NULL is false. (When comparing equality between NULL
and a constant, it is always false.) Therefore, when DEPNO is
3, the WHERE condition returns false. DEPNO 3 is not an
answer for the query IX. This is consistency with NOT IN
operator in query III. Hence, the meaning of NULL values
applied with != operator is missing.

B. NULL Comparing with Subquery without NULL
This case occurs when a value of the record in the main

query is a NULL value and it is used to compare with a
subquery containing no NULL value. We consider only the
cases expressing the different meanings of NULL which are
NOT IN, and IN operators and the EXISTS quantifier.

Query X
SELECT * FROM EMPLOYEE
WHERE WORKDEP NOT IN (SELECT DEPNO
 FROM DEPARTMENT)
Query X returns no record, not even Tom who has no value

of DEPNO. NULL value in this case means missing because
it implied that Tom is working in a department either DEPNO
1, 2, or 3 but we do not have his information. If we have an
employee who works in department 4 but not in the existing
department, he/she would be listed in the result. This is not
the case when we have a foreign key referencing from
EMPLOYEE to DEPARTMENT tables. If the meaning of
NULL in the DEPNO for Tom means not-applicable, Tom
would not have a department to work at. So, he should be
listed, but it is not the case for the result of query X.

The database engines interpret NOT IN operator of query
X as

x ∉ { 1, 2, 3 } where x is an unknown variable. The
database engines return false because of NULL comparison.
This shows that it is not true that x is not a member of set {1,
2, 3}. Logically, x is a member of the set. Therefore NULL
value comparing with a relation by NOT IN operator means a
missing value.

Query XI
SELECT * FROM EMPLOYEE
WHERE WORKDEP IN (SELECT DEPNO
 FROM DEPARTMENT)
Opposite to NOT IN, IN operator in query XI returns

Mike, John, Jake, and Ann but not Tom. This is obvious that
four of them are working at a department saving in the
DEPNO column of DEPARTMENT table but Tom is not. In
this case, “Tom is working in department 1, 2, or 3” is false
so, the result does not include Tom.

x ∈ { 1, 2, 3 } is false where x is an unknown variable.
It implies that x cannot be 1, 2 or 3. Therefore, the meaning

of NULL value for IN operator in this case is not-applicable.
This cannot be missing because x cannot be 1, 2, or 3,
otherwise x ∈ {1, 2, 3} would not be false, and x cannot be 4
due to foreign key between EMPLOYEE and
DEPARTMENT tables.

 Query XII
SELECT * FROM EMPLOYEE
WHERE NOT EXISTS (SELECT *

FROM DEPARTMENT
 WHERE DEPNO = WORKDEP)
Unlike query X, query XII returns Tom. Query XII finds

an employee who is not working in any department. If NULL
of WORKDEP means missing, Tom would work at either
DEPNO 1, 2, or 3 and he would not be listed in the result.
Therefore, the meaning of NOT EXISTS quantifier of query
XII is not-applicable which is consistent with the meaning of
NULL value in query IV. The WHERE condition can be
rewritten as

~ (∃x / x = 1 or x = 2 or x = 3) where x = {1, 2, NULL}
When x is 1 or 2, the proposition is false. When x is

NULL, NULL=1 is false, NULL=2 is false, and NULL=3 is
false. The ( ∃x / x = 1 or x = 2 or x = 3) is false. So the
proposition is true. Therefore, Tom is a result of query XII.

C. NULL Comparing with Subquery Containing NULL
Queries XIII and XIV are the combination of the previous

cases; subquery returns NULL values and the main query
sends NULL values to compare with the subquery. Suppose
the DEPNO 2 has no manager as shown in Table VIII.

Query XIII
SELECT SUPERVISOR FROM EMPLOYEE
WHERE SUPERVISOR NOT IN
 (SELECT MANAGER

FROM DEPARTMENT)
Query XIV
SELECT SUPERVISOR FROM EMPLOYEE
WHERE NOT EXISTS (SELECT *
 FROM DEPARTMENT
 WHERE SUPERVISOR = MANAGER)
Both queries simply mean “find supervisor who is not a

manager”. When we ran the queries, query XIII returned no
record, but query XIV returned 112, 115 and two NULL
values.

In query XIII, if a NULL value of MANAGER column
means not-applicable, the 112 and 115 must be listed. Similar
to NULL values in SUPERVISOR column, their meanings
are missing. Employees 111, and 115 have a supervisor but
their supervisors are managers, so their supervisors are not
listed in the same way as of employees 112, 113, and 114. If
employees 111, and 115 do not have a supervisor
(not-applicable), then it is true that their supervisors are not in
the list of managers. So, their records should be listed, but
they are not. Therefore the meaning of NULL values for
SUPERVISOR in query XIII is, only, missing.

Table VIII. DEPARTMENT Table with a NULL Value
in the MANAGER Column

Depno Dname Location Manager
1 IT New York 111
2 HR London NULL
3 Sale New York 113

Because query XIV showed 112, and 115, the meaning of
NULL values in MANAGER column could be
not-applicable. However it can be missing if its value is 116.
This is because of foreign key. The effects of foreign key are
explained in section V. This is also applied to SUPERVISOR
column.

In case of IN operators, and EXISTS quantifier, the
meaning of NULL values in MANAGER and SUPERVISOR
columns are not-applicable with the same reasons as explain
for query XIV.

V. UNKNOWN MEANING IN SUBQUERIES
In this section, we demonstrate the case of NULL values

when two tables have no reference integrity. The example is
shown in Table IX, when the WORKDEP column of
EMPLOYEE table does not have a foreign key to the
DEPARTMENT table. Some employees may work in the
department that is not in the DEPARTMENT table such as
John.

Query III returns the same result for both having-foreign
key in section IV and no-foreign key in this section.
Therefore the meaning of NULL value in the case of
no-foreign key is missing as the case of having-foreign key.
The value of missing NULL can be 1, 2, or 3 but not 4 or
others because if its value is 4 or other, the query III would
show DEPNO 3. The meaning of NULL cannot be
not-applicable with the same reason as the case of having
foreign key.

Query X returns, by all database engines, only John, who is
working in DEPNO 4, but not Tom who, has no department
to work at this time. It is slightly different from the same case
of having-foreign key which has no result return. NULL
value in this case is also interpreted as missing. It implied that
Tom is working in a department either DEPNO 1, 2, or 3 but
not 4, and we do not have his info. Unlike John who is
working in DEPNO 4, John is listed in the result. The
meaning cannot be not-applicable with the same reason of
query X in section IV.

Table IX. EMPLOYEE Table without Foreign Key on

WORKDEP Column to the DEPARTMENT Table
EmpID Ename Salary Supervisor workdep

111 Mike 50000 NULL 1
112 John 250000 111 4
113 Jake 120000 112 2
114 Tom 40000 115 NULL
115 Ann NULL NULL 1

In case of having-foreign key, the query X is meaningless

because the query always returns no value. In case of
no-foreign key, it means “finding employee who works
outside the company (not in the list of departments of the
company)”. However, for both cases, the meaning of NULL
value is missing.

The database engines interpret NOT IN operator of query
X as

4 ∉ { 1, 2, 3 } which is true.

x ∉ { 1, 2, 3 } where x is an unknown variable. The
database engines return false because of NULL comparison.
This shows that it is not true that x is not a member of set {1,
2, 3}. So, x must be a member of the set which also means
that x cannot be 4 as of John.

When we ran query XII with employee that does not have
foreign key, both Tom and John showed in the result. NULL
value in this case can be interpreted either missing or
not-applicable. In case of missing, Tom may work at DEPNO
4, 5, or others but not 1, 2, and 3. If he works at DEPNO 1, 2,
or 3, he will not be listed, but he is listed. This is similar to the
case of John. If the meaning of NULL in the DEPNO for Tom
is not-applicable, Tom would not have a department to work
at. Thus, he would be listed in the result and he is listed.

In case of having-foreign key, the query X means “finding
employee who does not have a department to work at”. In
case of no-foreign key, it means “finding employee who does
not have a department to work at or works outside the
company (not in the list of department of company)”. The
first case is for not-applicable null whereas the second case is
for both not-applicable and missing null. Therefore, it is
unknown.

Query XV
SELECT * FROM EMPLOYEE
WHERE EXISTS (SELECT *FROM DEPARTMENT
 WHERE DEPNO = WORKDEP)
Query XV does not return John and Tom. As for meaning,

Tom may not work in any department, as not applicable, or
Tom may work in the department 4 with John (or other
departments but not 1, 2, or 3) but we do not have his
information about working department. Therefore, the
meaning of NULL value in the EXISTS case is unknown
which can be either not-applicable or missing. The meaning
of NULL values as unknown are also applied to the queries
IV, and VII for quantifier NOT EXISTS and EXISTS,
respectively, and queries V, and XI for set comparison
operator IN.

VI. OTHER ATOMIC PREDICATES COMPARING NULL
There are other cases when interpretation of NULL values

is unclear in an atomic predicate. One of them is the case of
DISTINCT keyword of SQL and another case is the equality
between NULL and subquery.

A. DISTINCT and Aggregate Functions
Let consider the following queries with data in Table VII:
Query XVI

SELECT SUPERVISOR FROM EMPLOYEE
Query XVII

SELECT COUNT(*) FROM EMPLOYEE
Query XVIII

SELECT DISTINCT(SUPERVISOR)
 FROM EMPLOYEE

Query XIX
SELECT COUNT(DISTINCT(SUPERVISOR)

FROM EMPLOYEE
 Query XX
SELECT COUNT(SUPERVISOR)

FROM EMPLOYEE

 Query XVI returns five records which is consistent with
query XVII that returns 5. In contrast, query XVIII returns
four records by evaluating that two NULL values are not
distinct while query XIX returns 3 by excluding the NULL
values from the counting. However, query XIX is consistent
with query XX that returns 3.

One reason that SQL holds the duplicate, which is opposite
to the set theory, is the correctness of the computation of the
aggregate functions. For example, if two employees have the
same salary and SQL eliminates duplicates before
computation, the summation of two identical salaries would
not be twice of the salary. Count(*) in query XVII counts the
number of rows which is equal to the number of rows of
query XVI due to the duplicate holding of the SQL.

However, SQL does not include NULL values when
applying them into aggregate functions, obviously with
SUM, AVG, MAX, and MIN functions, because NULL is
not zero. COUNT is also considered as an aggregate function
even though it does not require computation among values.
This leads the semantics of query XVIII different from the
query XIX that user sees four values displayed but the
number three when they are counted.

NULL for the COUNT function in query XX means
not-applicable because if the NULL value means missing, the
number of supervisors cannot be determined that there are
exactly three supervisors. Every tested database engines
confirms that there are exactly three supervisors. The NULL
values in this column should not represent any value.
Another word, these employees have no supervisor.

B. Equality between NULL and Subquery
In SQL, there is an exceptional case in WHERE clause,

opposing to the set theory, that a programmer can write
equality comparing an expression with a relation. It is only
allowable if the relation returns only one tuple such as a
subquery in query XXI.

Query XXI
SELECT * FROM EMPLOYEE
WHERE SALARY = (SELECT MIN(SALARY)

 FROM EMPLOYEE)
WHERE clause of Query XXI is valid for SQL but not for

the set theory because, in set theory, 40000 = {40000} is not
comparable. Since it is valid in SQL, the second unclear case
of NULL value is that whether a NULL value is equal to an
empty set and a NULL value is equal to a set containing
NULL values. We consider the comparison between NULL
and a set of NULL value(s) in three cases.

a) NULL = { }
b) NULL = { NULL }
c) NULL = { NULL, NULL }
Cases a) and b) are valid but case c) is error because the

relation returns more than one value which is not the
exceptional case in SQL. Let consider the following query

Query XXII
SELECT * FROM EMPLOYEE
WHERE SUPERVISOR = (SELECT SUPERVISOR
 FROM EMPLOYEE

 WHERE ENAME = 'BOB')

Query XXIII
SELECT * FROM EMPLOYEE
WHERE SUPERVISOR = (SELECT
 DISTINCT(SUPERVISOR) FROM EMPLOYEE

WHERE ENAME = ‘MIKE’)
According to data in Table VII, Bob is not an employee.

So, Query XXII is an example of case a). In contrast, Mike is
an employee whose supervisor in the table is NULL, thus,
query XXIII is for case b).

For query XXIII, the comparison is evaluated in the same
way of query XXI as an exceptional case whether NULL is
equal to NULL. According to truth table in Table V, equality
of two NULL’s is unknown. The query XXIII returns an
empty relation on every database engines. The semantics of
NULL in the SUPERVISOR column for the main query in
Query XXIII is unknown. Because his/her supervisor in the
main query is missing, the query cannot determine whether
he/she has the same supervisor as of Mike. However, this
employee does not have a supervisor; which is not-applicable
for the NULL semantics; therefore, this employee does not
have the same supervisor as of Mike. Thus, the NULL in the
SUPERVISOR column for the main query of Query XXIII
means unknown.

For query XXII, x = { } is false in SQL where x is a
constant. If x is null, regardless the meaning of missing or
not-applicable, x = { } is false in every databases. Therefore,
NULL in query XXII means unknown.

This is also consistent with other cases whether NULL is a
member of a set containing NULL as in query XXIV.

Query XXIV
SELECT * FROM EMPLOYEE
WHERE SUPERVISOR IN (SELECT SUPERVISOR

FROM EMPLOYEE
WHERE ENAME = 'MIKE')

Query XXIV is valid due to set comparison operator IN.
NULL ∈ { NULL, NULL } is unknown for each tuple
because it can be rewritten as “NULL = NULL or NULL =
NULL”.

VII. PRACTICAL APPROACHES
Table X is a summary of the meanings of NULL values in

three cases; NULL in the subquery, NULL in the main query
and NULL in both subquery and main query. The meanings
are interpreted according the proposition of WHERE
condition using IN comparison operator and EXISTS
quantifier.

Summary of the meaning of NULL values when the tables
of the main query and subquery have no foreign key
referencing one to another is shown in Table XI.

To consider meanings of NULL values, we present two
methodologies; designing of databases and applications to
handle values of NULL and extending database engines to
support the meaning of NULL values.

A. Design of Database and application
1. A column that cannot contain NULL, the designer

should use “NOT NULL” constraint, when creating a table,
to avoid missing value.

2. Database designers add two Boolean columns for
columns that are critical for the meaning of NULL values.
One additional column is for missing and not-applicable for
another. For example, if the WORKDEP column is NULL
and we know that it is a missing value, user (or application)
must mark TRUE and FALSE into these two added columns
respectively. When writing a query, programmer must check
these new columns. The existing tables and applications
require no change but only those that need to handle the
meaning of NULL values.

3. There is no change at the design of database but
programmer must consider the meaning of NULL when
querying data. This includes the consideration of foreign key
among tables in the query as shown in Tables X and XI. For
example, if a query is intended for the meaning of NULL as
not-applicable, and programmer wants to use NOT IN, the
query must add IS NOT NULL in the subquery such as:

SELECT * FROM DEPARTMENT
WHERE DEPNO NOT IN (SELECT WORKDEP
 FROM EMPLOYEE
 WHERE WORKDEP IS NOT NULL)
Other features of SQL such as NULLIF and COALEASE

expressions should be considered when handling NULL
values.

4. NULL can be handled at the level of application
programs when a database returns null values to a running
process with various techniques; [1], [7] and [11] to avoid
errors of the application.

Table X. Meanings of NULL values when there is a

foreign key referencing between tables in the main query
and subquery.
NULL
Locality

Subquery Main
Query

Subquery and
Main Queries

NOT IN Missing Missing Missing
IN Not-app. Not-app. Not-app.
NOT EXISTS Not-app. Not-app. Not-app.
EXISTS Not-app. Not-app. Not-app.

Table XI. Meanings of NULL values when there is no
foreign key referencing between tables in the main query
and subquery.

NULL
Locality

Subquery Main
Query

Subquery and
Main Queries

NOT IN Missing Missing Missing
IN Unknown Unknown Unknown
NOT EXISTS Unknown Unknown Unknown
EXISTS Unknown Unknown Unknown

Table XII. Two Additional Bits Adding to Nullable
Column by Database Engines.

Value M-bit NA-bit Meaning
X 0 0 Not-null
NULL 0 1 Not-applicable
NULL 1 0 Missing
NULL 1 1 Unknown

B. Extension of Database engines
Database engines can support three–valued NULL by

adding two bits for each nullable column. The meanings of
two additional bits are shown in Table XII.

The M-bit and NA-bit represent the meaning of missing
and not-applicable respectively. It would be an option for
database users to choose the intended meanings of their
NULL values. This is a similar approach to [18] using
A-mark, I-mark, and U-mark. Existing SQL of application is
still valid where its NULL value means unknown. But SQL
can accept two new values; Missing and Not-applicable,
additional to the NULL only. [18], also, recommends the
logical truth table among true, false, unknown, missing, and
not-applicable. But it is out of scope of this paper and will be
considered in our future work.

VIII. CONCLUSION AND DISCUSSIONS
A programmer who writing a standard SQL statement

likely assumes that database engine will return correct
answers without considering effects of NULL locality. Three
meaning of NULL can be handled at the database design or
application phase whereas database engines can provide this
feature to programmer with the set theory and three-valued
logic.

 While writing a query or application, the programmer
must consider both three meanings of NULL and the truth
tables and the predicate semantics of the three-valued logic
so when retrieving information from databases, they can
expect the correct consequential result.

There are other cases that SQL is not perfect when
considering the meaning of NULL with the result of a SQL
query. For example, FALSE returning, when comparing an
expression with a NULL value, misleads the results from the
meaning. Such as

SELECT * FROM EMPLOYEE E1, EMPLOYEE E2
WHERE E1.EMPID = E2.EMPID AND
 E1.WORKDEP = E2.WORKDEP
The result of this query does not return Tom whose

WORKDEP is null, because NULL = NULL is false.
However other employees are listed because they are
working at the same place as themselves. One may argue that
if Tom does not assign to a department, then Tom does not
work in the same place with himself. It is a paradox.

Another example of NULL misleading is:
SELECT * FROM EMPLOYEE
WHERE SALARY > 100 OR SALARY <= 100
The result does not show Ann whose salary column is

NULL. Salary of Ann cannot be missing. Otherwise, it would
be true in one of the condition. However, it cannot be
not-applicable too because if Ann does not have salary, she
would not get paycheck which is the same to a person who
receives salary zero. In this case, the second condition is true
and Ann should be in the result.

NULL is handled well in XML due to the fact that XML
provide programmers arbitrary elements and attributes.
Programmers can define their own ways to handle NULL
values in XML schemas. XML schemas provide basic
features for null such as “nillable” and xsi:nil attributes for

provision of null values. However, some database engines
may not support all features of XML. XML is still evolving.
There are issues that XML has to gain its grounds before
database vendors fully adopt them.

At last, the key factor of a success application is up to
application programmers who are responsible to understand
business logic, database design and query analysis because
submitting a query to the database engine. Application
programmers must be aware of null values when submitting a
query to the database and handle them well when a database
returns them during the run-time to avoid errors of the
application. Therefore, the responsibility is not only for the
database designers but also the application programmers to
tackle problem of the semantics of NULL values.

REFERENCES
[1] M. D. Bond, N. Nethercote, S. W. Kent, S. Z. Guyer, K. S. McKinley,

“Tracking bad apples: reporting the origin of null and undefined value
errors”, Proc. 22nd annual ACM SIGPLAN conf. on OOP Sys. and
App. Montreal, Quebec, Canada, 25-27 Oct 2007, pp. 405 – 422

[2] B. Cao, A. Badia, “SQL query optimization through nested relational
algebra”, ACM Tran. on DB. Sys., Vol. 32, No. 3, Art. 18, Aug. 2007

[3] E. F. Codd, “More commentary on missing information (applicable and
inapplicable information)”, SIGMOD RECORD 16(1), Mar 1987, pp.
42-27

[4] E. F. Codd, “The relational model for database management: version
2”, Addison-Wesley Longman Publishing., January 1990

[5] C. J. Date, “A critique of the SQL database language”, Dec. 1983.
[6] C. J. Date, “Null Values in Database Management. In Relational

Databases: Selected Writings”, Addison-Wesley, Mass. 1986.
[7] I. Dillig, T. Dillig, A. Aiken, “Static error detection using semantic

inconsistency inference”, Proc. 2007 ACM SIGPLAN Conf. on Prog.
Lang. Design and Imp. PLDI '07, San Diego, CA, USA Vol. 42 Issue 6
June 2007, pp. 435 - 445

[8] M. Elhemali, C. A. Galindo-Legaria, T. Grabs, M. M. Joshi,
“Execution strategies for SQL subqueries”, SIGMOD’07 June 12-14
2007, Beijing, Chaina, pp. 993-1004

[9] G. H. Gessert, “Four valued logic for relational database systems”,
SIGMOD RECORD, Vol.19, No. 1, Mar. 1990, pp.29-35

[10] A. Halverson, V. Josifovski, G. Lohman, H. Pirahesh, M. Morschel,
“ROX: Relaional over XML” Proc. 30th VLDB Conf., Toronto,
Canada, 2004, pp. 264-275

[11] P. G. Joisha, “Formal semantics and static analysis: compiler
optimizations for nondeferred reference: counting garbage collection”,
Proc. 5th Inter. Symp. on Mem. Man. Ottawa, Ontario, Canada June
2006, pp. 150 - 161

[12] H. J. Klein, “How to modify SQL queries in order to guarantee sure
answers”, SIGMOD, Vol. 23, No. 3, September 1994, pp.14 – 20

[13] S. Link, “On the logical implication of multivalued dependencies with
null values”, 12th Computing: The Australasian Theory Symposium
(CATS), Hobart, Tasmania. Conferences in Research and Practice in
Info. Tech., Vol.51. 2006

[14] J. Melton, A. R. Simon, “SQL:1999 Understanding Relational
Language Components”, Morgan Kaufmann Publishers, 2002

[15] J. Tuya, M. J. Suarez-Cabal, C. Riva, “A practical guide to SQL
white-box testing”, ACM SIGPLAN Notices Vol. 41 (4), Apr. 2006,
pp. 36-41

[16] Y. Vassiliou, Null values in data base management A denotational
semantics approach”, ACM 1979

[17] E. A. Walker, “Stone Algebras, Conditional Events, and Three Valued
Logic”, IEEE Trans. Sys. Man, and Cyb. Vol. 24, No. 12, Dec 1994 pp.
1699 -1707

[18] K. Yue, “A more general model for handling missing information in
relational databases using a 3-valued logic”, SIGMOD Vol.20, No. 3,
Sept. 1991, pp.43-49

