

GCUCE: A Large Scale Grid Computing
Environment for Ubiquitous Computing

Software Mobility
Dong-Bum Seo, Tae-Dong Lee and Chang-Sung Jeong, Member, IAENG

Abstract— In this paper, we describes GCUCE (Grid

Computing for Ubiquitous Computing Environment) which
supports the unified efficient ubiquitous service interacting with
Grid service modules using Access Grid computing, which
provides the collaborative computing framework which allows
the analysis, agreement and discussion among people with a lot
of data using Computation Grid Framework (CGF) and Access
Grid Framework (AGF). Also, we describe two mobility
models: enterprise model and automata model. The former is
focused on the service demand aspects, and the latter
concentrates on the state transition. Based on those models, we
shall show the performance of GCUCE by evaluating several
experiments for DOWS (Distributed Object-oriented Wargame
Simulation). The two models comprising enterprise model and
automata model of software state suggest the formal and
mathematical model about software mobility in GCUCE, and
provide the overall views and direction of ubiquitous software
development.

Index Terms— Ubiquitous Computing, Ubiquitous Mobility,
Ubiquitous Software Mobility, Access Grid, Computation Grid.

I. INTRODUCTION
The utilization and availability of resources may change

computers and network topology when old components are
retired, new systems are added, and software and hardware
on existing systems are updated and modified [1]-[3]. It is
rarely feasible for programmers to rely on standard or default
configurations when building applications.

Rather, applications need discover characteristics of their
execution environment dynamically, and then either
configure aspects of system and application behavior for
efficient and robust execution or adapt behavior during
program execution. Therefore, an application requirement for
discovery, configuration, and adaptation is fundamental to

the rapidly changing dynamic environment [4]-[8].

This work is partially supported by the Seoul Research and Business

Development, Program, Seoul, Korea, MIC (Ministry of Information and
Communication), Korea, under the ITRC (Information Technology
Research Center) support program supervised by the IITA (Institute of
Information Technology Assessment), Brain Korea 21 projects in 2007, and
Seoul Forum for Industry-University-Research Cooperation, Korea
University Grant.

D. B. Seo is with Ph. D course the Department of Information and
Communication Engineering in University of Korea, Student Member IEEE
(phone: 82-19-673-5144; fax: 82-998-0536; e-mail: treeline@korea.ac.kr).

T. D. Lee is with Ph. D School of Electronics Engineering in Korea
University, Korea, he is working at Digital Media, Samsung Electronics
(e-mail: leetd@korea.ac.kr).

 C. S. Jeong is the associate editor coordinating the review of this paper
and approving it for publication, he is a Professor at the department
Electronics Engineering in Korea University, Korea (e-mail:
csjeong@korea.ac.kr).

Ubiquitous computing environments [13]-[15], [29]-[30]
provide dynamic requirements on applications. Users want to
grasp information quickly, navigate representations fluidly,
and respond easily. These requirements drive systems toward
tight integration where every component knows about all
other components in order to simultaneously meet
performance expectations and create a composite view that
succinctly expresses vital information. These challenges are
critical in a young fast-moving field like context-aware
computing [9], [10].

A typical system might regularly undergo the addition of
new kinds of context sensors, modeled entity types, services,
or end-user devices. To reduce fragile coupling among
components, software engineering principles argue for
anticipating future changes and introducing separation of the
identified concerns. The mobility applications will want to
support the dynamic execution with successive load and
fewer losses [11]-[12].

While ubiquitous computing promises to make many more
resources available in any given location, the set of resources
that can be used effectively is subject to frequent change -
both because the resource pool itself can change dynamically,
and because a user may move to a new environment, making
some resources available and others not accessible. As we
detail later, traditional solutions normally associated with
mobile computing [3], [13]-[16] are inadequate to solve this
problem either because they are unable to exploit resources
as they become available in a user’s environment, or because
users must pay too high a price to manage those resources.

For the solution to this problem, we insert the concept of
Grid computing [4]-[7] into the existing concept of
ubiquitous computing [1]-[3]. Many ubiquitous computing
systems provide application developers with a powerful
framework [8]; however, its design is not intended to support
applications requiring either the many resources that are
needed to integrate instruments, displays, computational and
information managed by diverse organizations, or requiring
collaborative environment by audio/video conferencing.

The remainder of the paper is organized as follows: in
Section Ⅱ, we describes architecture in GCUCE(Grid
Computing for Ubiquitous Computing Environment),
and Section Ⅲ explains context reasoning. The Section Ⅳ
explains enterprise model in GCUCE, and Section
Ⅴ describes automata mobility in GCUCE. Section Ⅵ tests
experiments in DOWS on Access Grid and Computation
Grid. Finally Section Ⅶ concludes.

mailto:treeline@korea.ac.kr

II. GCUCE ARCHITECTURE
The GCUCE is the context-aware ubiquitous computing

[9]-[10] environment supporting grid computing [4]-[7],
which is composed of three layers as shown in Fig.1: Grid
Layer, Context-aware Layer, and Ubiquitous Main Layer.

Fig.1. GCUCE Architecture

A. Grid Layer
 The Grid Layer [12], [26] is divided into two elements:
Computation Grid Framework (CGF), Access Grid
Framework (AGF). The CGF provides the functions of grid
computing using a Java cog kit, which supports the fault
tolerance and high performance computation through
resource sharing, monitoring, and allocation. The CGF is
composed of four managers: Resource Manager (RM), Data
Manager (DM), Job Manager (JM), and Runtime Information
Manager (RIM). The RM uses the resource management
services offered by Grid, DM provides speed and reliability
for files being transferred, JM acts as an agent for the tasks in
a job, providing a single entity from which the tasks will
request resources, and RIM provides the information to
applications or middleware.

The AGF supplies collaboration with audio/video
streaming and view of sharing through shared applications on
collaborative environments [4]-[8]. The AGF consists of four
managers: Collaboration Manager (CM), Collaboration
Session Manager (CSM), Shared Application Manager
(SAM), and Multimedia Manager (MM). The CM gathers the
information about the shared stubs from the venue, CSM
provides venue addresses that the user can access, SAM
integrates the whole features of the shared applications used
in the AccessGrid, and MM controls the base service of
AccessGrid like Audio/Video streaming service.

B. Context-aware Layer
The Context-aware Layer [9]-[10] (called Context-Aware

Infrastructure (CAI)) has a responsibility of functions, which
support the gathering of context information from different
sensors and the delivery of appropriate context information
to applications.

Also, the CAI supports the context model by ontology
methods. The development of formal context models satisfies
the need to facilitate context representation, context sharing
and semantic interoperability of heterogeneous systems. The
CAI provides an abstract context ontology that captures
general concepts about basic context, and also provides
extensibility for adding domain specific ontology in a

hierarchical manner. In CAI, there are eight elements:
Context Interpreter (CI), Context Aggregator (CA), Context
Model Factory (CMF), Context Model (CM), Reasoner
Factory (RF), Context Reasoned (CR), Reasoner Controller
(RC), and Information Repository (IR).

The CI gathers contextual information from sensors,
manipulates the contextual information, and makes it
uniformly available to the platform. The CA processes and
aggregates the data through sensor network after context
extraction, which provides high-level contexts by
interpreting low-level contexts. The CMF defines a context
based on concept of specific domain ontology through
internal/external providers, and associates a data set with
some reasoners to create a CM. The RF creates the specified
reasoners, and the CR has the functionality of providing the
deduced contexts based on direct contexts, resolving context
conflicts and maintaining the consistency of IR, and RC starts
and stops the specific CR.

C. Ubiquitous Main Layer
The Ubiquitous Main Layer [11]-[14] (called uMain) is

responsible for shielding the user from the underlying
complexity and variability through self-tuning environment
by mobility and adaptation, which are weak points in CGF
and AGF. Whenever the user moves from one place to
another, the tasks and devices such as grid authentication,
environment variables, video/audio device or large display
are automatically set up or executed, keeping their
environment.

The uMain has six managers: Task Manager(TM),
Environment Manager (EM), DB Manager, Context Manager,
File Manager, and Event Manager (EVM). The TM has
something concerned with user’s task processes. The EM
supports services concerned with making same user’s
environment in everywhere. Database Manager DBM
manages the recording about user information. The CM has a
role of detection about user’s activities such as entering or
leaving to/from the environment. The File Manger (FM) has
to take a charge for both remote and local file operations. The
EVM is to send and receive messages among them locally.

III. CONTEXT REASONING
The basic concept of our context model is based on

ontology [33], [35] which provides a vocabulary for
representing and sharing context knowledge in a pervasive
computing domain, including machine-interpretable
definitions of basic concepts in the domain and relations
among them. An ontology-based model for context
information allows us to describe contexts semantically in a
way, which is independent of programming language,
underlying operating system or middleware.

A. Context Ontology
There are several reasons for developing context models

based on ontology. The use of context ontology enables
computational entities such as agents and services in
ubiquitous computing environments to have a common set of
concepts about context while interacting with one another.

This is knowledge sharing. Based on ontology,
context-aware computing can exploit various existing logic

reasoning mechanisms to deduce high-level, conceptual
context from low-level, raw context, and to check and solve
inconsistent context knowledge due to imperfect sensing. By
knowledge reuse well-defined ontologies of different
domains, we can compose large-scale context ontology
without starting from scratch.

Fig. 2. Context Ontology Campus Model

In Fig. 2 shows the context model, which is divided into

two layers: abstract context ontology and campus domain
context ontology. The abstract context model is structured
around a set of abstract entities, each describing a physical or
conceptual object including Person, Location, Activity, and
Computational Entity, as well as a set of abstract sub-classes.
Each entity is associated with its attributes (represented in
owl:DatatypeProperty) and relations with other entities
(represented in owl:ObjectProperty). The built-in OWL
property owl:subClassOf allows for hierarchically
structuring sub-class entities, thus providing extensions to
add new concepts that are required in a specific domain.
Besides general classes defined in abstract ontology, a
number of concrete subclasses are defined to model specific
context in a given environment. The campus domain
ontology for specific domain model is depicted with
inheritance from abstract context model (e.g., the abstract
class GroupActivity of campus domain is classified into three
sub-classes Class, Meeting, and Sports).

B. Ontology Relationship

Fig. 3. Simple Context Ontology Relationship

In Fig.3 shows a simple definition of specific ontology for

a campus application domain. The Student inherited from

Person is engaged in Class with Notebook in EngBuilding I.
Where each concrete values are set such as Student name,

Class lesson, Notebook owner, and EngBuildingI
roomnumber.

IV. ENTERPRISE MODEL IN GCUCE
 The system architecture in uMain has the components:
ubiCore and ubiContainer as shown in Fig. 4. The ubiCore is
responsible for the application mobility [20]. When a user
moves from one place to another; ubiCore provides the
automatic movement of computing environment through
ubiContainer, which supplies the user information such like
IP, user preference, etc.

Fig. 4. Architecture of uMain

The communication component in GCUCE uses socket,

Java RMI (Remote Method Invocation). The socket used by
File Manager for transferring the files. RMI is Java’s
mechanism for supporting distributed object based
computing, which RMI allows client/server based distributed
applications to be developed easily because a client
application running in a Java virtual machine at one node can
invoke objects implemented by a remote Java virtual
machine (e.g., a remote service) the same way as local
objects.

The RMI mechanism in Java allows distributed application
components to communicate via remote object invocations,
and RMI mechanism enables applications to exploit
distributed object technology rather than low level message
passing (e.g., sockets) to meet their communication needs.

Fig. 5. Sequence Diagram of uMain

In Fig. 5 shows the sequence diagram of uMain. When a

new user enters into a new place or device, CM detects the
entrance of the user, and TM brings the information related to
the user, and FM makes the directory. TM copies the files
associated with the user by File Requester. File Requester
sends and receives messages to File Provider on remote host,
and File Provides sends the files to File Receiver. After the

end of file copies, EM executes the registered tasks through
JobFactory, which commands the start of tasks to Task. If a
user registers the task through the TMUI(TM user interface),
the related files are moved to a user directory and the XML
file is updated.

A. Enterprise Model
 Let us think about mobility the enterprise model of
competitive ubiquitous grid service [8], [9], [22]. Assume a
set G of N grid service providers. That is,

{ }1, 2, ... , ...G n= N . Each provider can be distinguished

by three service parameters such as { , , where
is the response time of nth service provider for unit resource
demand from its subscribers and is the loss probability

experienced by that service provider, and is the mobility
probability accumulated by nth service provider.

, }n n nr l m nr

nl

nm

The selection of these parameters has a significant impact
on completion of the job of ubiquitous users within a limited
time frame. Due to the competitiveness in between the
service providers, the ubiquitous user gets an option to shift
from one service provider to another for job completion at the
earliest possible time.

So, the nth grid service provider experiences a demand
, which depends not only on own response time, loss

probability, and mobility probability but also on the response
time, loss probabilities, and mobility probabilities, offered by
its competitors. So, depends upon entire response time
vector

nd

nd

[]1 2, ,..., Nr r r r= , loss probabilities vector

[]2, , ...,nl l l l= N , and mobility probabilities vector

[]1 2, , ..., Nm m m m= .

The strategy of each grid service provider will be always to
provide a response time, loss probability, mobility
probability which are in between the maximum and minimum
values offered by all of its competitors. Then, the strategy
space, of nth grid service provider, as in nS

() min max

min max min max

, , : 0 ;
.

0 ; 0
n n n n

n
n n

r l m r r r
S

l l l m m m
⎧ ⎫⎪

⎬
⎪⎭

≤ ≤ ≤⎪= ⎨
≤ ≤ ≤ ≤ ≤ ≤⎪⎩

 We assume depends on in the sense that if the

value of the loss probability increases, then the service
provider has to decrease its response time . The upper
bound on the response time and loss probability express that
after a certain value, the demand will be zero.

minr nl

nr

B. Demand Model

 For a particular grid service provider, the demand for

its services decreases as its response time increases; on
the other hand, it increases with the increase of its competitor
response time , for m . The analogous relationship

holds for loss probabilities, but then, increases with

decrease of and increase of , for m . The reverse

relationship holds for mobility probabilities, but then,

increases with increase of and decrease of , for

nd

nr

mr n≠

nd

nl ml n≠

nd

nm mm
m n≠ . We now consider the case where the demand
function () is linear in all QoS parameters [12]. That is, nd

()
,

,

,

, , (1)

nm m n n
m G m n

n nm m n n
m G m n

nm m n n
m G m n

r r

d r l m l l

m m

α θ

β δ

χ η

⊆ ≠

⊆ ≠

⊆ ≠

⎧ ⎫
− +⎪ ⎪

⎪ ⎪
⎪ ⎪= − −⎨ ⎬
⎪ ⎪
⎪ ⎪+
⎪ ⎪⎩ ⎭

∑

∑

∑

 where , , , , ,nm n nm n nm nα θ β δ χ η are constants, and is
mobility value at nth grid service provider. Here we make
some minimal assumptions regarding the demand function.

nm

() () ()

() () ()

, , , , , ,
0 , 0, 0;

, , , , , ,
0 , 0, 0;

n n n

n n n

n n n

m m m

d r l m d r l m d r l m
l m

d r l m d r l m d r l m
l m

m n

γ

γ

⎡ ⎤∂ ∂ ∂
≤ ≤ ≥⎢ ⎥∂ ∂ ∂⎢ ⎥

⎢ ⎥∂ ∂ ∂
⎢ ⎥≥ ≥ ≤

∂ ∂ ∂⎢ ⎥
⎢ ⎥∀ ≠⎢ ⎥
⎢ ⎥⎣ ⎦

This results in a decrease of own demand while increasing

those of its competitors, if a service provider increases
response time (loss probability), assumption the demand
is non-negative over the strategy space (i.e., response time
and loss probability are decreasing) and negative over the
non-strategy space (i.e. response time and loss probability are
increasing). Now each service provider will charge a cost,

, per unit of the demand provided to the ubiquitous user.
Then the gain earned by the nth service provider is

nd

n
cn

(), , (2)n n n n nG c d r l m c d= × = ×

We define that ε is the ratio of proportionate change in

quantity demanded to proportionate change in cost

()
()

/
 (3)

/
n n n n

n n n n

d d d c
c c c d

ε
∂ ⎛ ⎞ ⎛ ⎞∂

= − = − ⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

Since the revenue of nth service provider is given by
n nG c d n= × , then taking the partial derivative of both

sides we get,

()
,

//

n n
n n

n n

n n n nn n

n n

G dd c
c c

d c d cG c
G G

∂ ∂⎡ ⎤= + ×⎢ ⎥∂ ∂⎢ ⎥
⎢ ⎥+ × ∂ ∂∂ ∂

=⎢ ⎥
⎣ ⎦

/ 1 1 (4)n n

n n n

G c
G c c

ε ε⎡ ⎤⎛ ⎞∂ ∂ − −
= = −⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦

Now integrating Equation (2) and considering the initial

value to demand as k, and then we get,

()
1/

 is initial value (5)n n
n n

k kd c k
c d

ε

ε

⎛ ⎞
= ⇒ = ⎜ ⎟

⎝ ⎠

Equation (5) represents a more generalized demand

function by incorporating constant price elasticity model,
which is more sensible and appropriate for our scenarios.

C. Gain maximization
 The revenue maximization problem is

()
()

,
, , (6)max

n n

n n n
c d

G c d r l m= ×

Subject to the following constraints:

0, (7)nc n N≥ ∀ ∈

, ,

,

 (8)
(, ,),

nm m n n nm m n n
m G m n m G m n

nm m n n n
m G m n

r r l l

m m d r l m n N

α θ β δ

χ η
⊆ ≠ ⊆ ≠

⊆ ≠

⎧ ⎫
⎪
⎬

− + − −
⎪
⎨

+ ≤ ∀ ∈⎪ ⎪
⎩ ⎭

∑ ∑

∑

In the above formulation, the cost and demand variable
(), ,nd r l m are both present. We will find it convenient to

replace the price variable by Equation 6 and retain only the
demand variables. The optimum price may be recovered from
the demands in the solution. Transforming the objective
function gives: max

() () ()
1/

,
, ,

, ,max
n n

n n
c d n

kG d r l
d r l m

ε
⎛ ⎞

= ×⎜ ⎟⎜ ⎟
⎝ ⎠

m

()
-1

1/ , , (9)nk d r l m
ε

ε ε= ×

D. Lagrange multipliers
1) Introduction

In mathematical optimization problems, the method of
Lagrange multipliers [34], [39], [45] named after Joseph
Louis Lagrange, is a method for finding the extrema of a
function of several variables subject to one or more
constraints; it is the basic tool in nonlinear constrained
optimization. Simply put, the technique is able to determine
where on a particular set of points (such as a circle, sphere, or
plane) a particular function is the smallest (or largest).

The RMI mechanism in Java allows distributed application
more formally; Lagrange multipliers compute the stationary
points of the constrained function. By Fermat’s theorem,
extrema occur either at these points, or on the boundary, or at
points where the function is not differentiable. It reduces
finding stationary points of a constrained function in n
variables with constraints to finding stationary points of an
unconstrained function in variables.

k
n k+

The method introduces a new unknown scalar variable

(called the Lagrange multiplier) for each constraint, and
defines a new function in terms of the original function, the
constraints, and the Lagrange multipliers. Consider a
two-dimensional case. Suppose we have a function,

(,)f x y , to maximize, subject to the constraint
(,) ,g x y c= where is a constant. c

 We can visualize contours of f given by

(,) . (10)nf x y d=

For various values of , and the contour of g given

by
nd

(,)g x y c= . Suppose we walk along the contour line
with g c= . In general the contour lines of f and may
be distinct, so traversing the contour line for

g
g c= could

intersect with or cross the contour lines of f . This is
equivalent to saying that whilst moving along the contour
line for g c= the value of f can vary. Only when the
contour line for g c= touches contour lines of f
tangentially, we do not increase or decrease the value of
f that is, when the contour lines touch but do not cross.

 This occurs exactly when the tangential component of the
total derivative vanishes: which is at the constrained
stationary points of

0df =
f (which include the constrained local

extrema, assuming f is differentiable). Computationally,
this is when the gradient of f is normal to the constraint(s):
when f gλ∇ = ∇ for some scalar λ .

A familiar example can be obtained from weather maps,
with their contour lines for temperature and pressure: the
constrained extrema will occur where the superposed maps
show touching lines. Geometrically we translate the tangency
condition to saying that the gradients of f and g are parallel
vectors at the maximum, since the gradients are always
normal to the contour lines.

Thus we want points (),x y where, and, further,

(,)g x y c= . To incorporate both these conditions into one
equation, we introduce an unknown scalar, λ and solve

(), , , , 0 (11)x y F x yλ λ∇ =

() () ()(), , , , , (12)F x y f x y g x y cλ λ= + −

, , , , . (13) x y x yλ λ
⎛ ⎞∂ ∂ ∂

∇ = ⎜ ⎟∂ ∂ ∂⎝ ⎠

2) Justification

As discussed above, we are looking for stationary points
of f seen while traveling on the level set (,)g x y c= . This
occurs just when the gradient of f has no component
tangential to the level sets of g. This condition is equivalent to

() (), ,, , (14)x y x yf x y g x yλ∇ = ∇

for some λ . Stationary points (), ,x y λ of F also satisfy

as can be seen by considering the derivative
with respect to

(,)g x y c=
λ .

3) Caveat: extrema versus stationary points

Be aware that the solutions are the stationary points of the
Lagrangian , and are saddle points: they are not necessarily
extrema of . is unbounded: given a point (

F
F F),x y that

doesn't lie on the constraint, letting λ → ±∞ makes
arbitrarily large or small. However, under certain stronger
assumptions, as we shall see below, the strong Lagrangian
principle holds, which states that the maxima of

F

f maximize
the Lagrangian globally.

4) A more general formulation: the weak Lagrangian
principle

Denote the objective function by ()f x and let the

constraints be given by () 0kg x = , perhaps by moving

constants to the left, as in () ()k k kh x c g x− = . The

domain of f should be an open set containing all points

satisfying the constraints. Furthermore, f and the must
have continuous first partial derivatives and the gradients of
the must not be zero on the domain.

kg

kg

 Now, define the Lagrangian, Λ , as

() ., (15)k k

k
x y f gλΛ = + ∑

k is an index for variables and functions associated with a

particular constraint, . k λ without a subscript indicates the
vector with elements kλ , which are taken to be independent
variables.

Observe that both the optimization criteria and constraints
 are compactly encoded as stationary points of the

Lagrangian:
kg x

0 if and only if ,x x k
k

x kf gλ∇ Λ = ∇ = − ∇∑

x∇ means to take the gradient only with respect to each

element in the vector X , instead of all variables, and

0 implies 0.kgλ∇ Λ = =

Collectively, the stationary points of the Lagrangian,
 give a number of unique equations totaling the

length of
0,∇Λ =

X plus the length of λ . This often makes it
possible to solve for every x and kλ , without inverting

the . For this reason, the Lagrange multiplier method can

be useful in situations where it is easier to find derivatives of
the constraint functions than to invert them. Often the
Lagrange multipliers have an interpretation as some salient
quantity of interest. To see why this might be the case,
observe that:

kg

. (16)k
kg

λ∂Λ
=

∂

So, kλ is the rate of change of the quantity being

optimized as a function of the constraint variable. As
examples, in Lagrangian mechanics the equations of motion
are derived by finding stationary points of the action, the time
integral of the difference between kinetic and potential
energy. Thus, the force on a particle due to a scalar potential,
F V= −∇ , can be interpreted as a Lagrange multiplier
determining the change in action (transfer of potential to
kinetic energy) following a variation in the particle's
constrained trajectory.

 In economics, the optimal profit to a player is calculated
subject to a constrained space of actions, where a Lagrange
multiplier is the value of relaxing a given constraint. Here we
use a Lagrange multiplier λ , associated with the constraint
implied by demand satisfaction in (9) to form the Lagrange
expression

()() ()
1

1/, , , , ,n nL d r l m k d r l m
ε

ε ελ
−

= ×

()
,

,

,

, , (17)

nm m n n
m G m n

n nm m n n
m G m n

nm m n n
m G m n

r r

d r l m l l

m m

α θ

λ β δ

χ η

⊆ ≠

⊆ ≠

⊆ ≠

⎛ ⎞⎛ ⎞
− +⎜ ⎟⎜ ⎟

⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟+ − − −⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟

+⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑

∑

∑

Now the first-order condition for maximization of

()(), ,nL d r l λ is found by equating the partial derivative

of L to zero. Thus,

()

1/
10 0

, ,

1 (18)

n n

n

L k
d d r l m

c

ε
ε λ

ε

ε λ
ε

⎡ ⎤⎛ ⎞∂ −⎢ ⎥= ⇒ + =⎜ ⎟⎜ ⎟∂ ⎢ ⎥⎝ ⎠⎣ ⎦
−⎛ ⎞⇒ = ⎜ ⎟

⎝ ⎠

So, the strategy of each grid service provider are will be

always to provide a response time, loss probability, mobility
probability which are in between the maximum and minimum
values offered by all of its competitors.

V. AUTOMATA MODEL FOR MOBILITY IN GCUCE
Mobile Grid service in grid computing is a new paradigm

of Grid service. Grid Mobile Service [19] provides a series of
standard interfaces and intelligent mobile code service to
computation. It is extension software agent and Grid
technologies. In GCUCE, the software mobility is supported.

When sensor detects any signal such as entrance of person,
related software is moved into new place, and then executed.
The physical happenings can be made into formal automata.

Fig. 6. Automata of Software Mobility

Fig. 6 illustrates the software mobility state transition. The

initial state is software state beginning the system, running
state is software execution state, migration state is the state of
transfer from a host to another host, and stop (frozen) state is
the stopped state of software, and finally end state is the
termination state of software.

A. Automata Mobility
1) Automata vocabulary

The basic concepts of symbols, words, alphabets and
strings are common to most descriptions of automata.
Symbol is an arbitrary datum that has some meaning to or
effect on the machine. Symbols are sometimes just called
"letters". Word is a finite string formed by the concatenation
of a number of symbols. Alphabet is a finite set of symbols.
An alphabet is frequently denoted by , which is the set of
letters in an alphabet.

∑

Language is a set of words, formed by symbols in a given
alphabet. May or may not be infinite. Kleene closure a
language may be thought of as a subset of all possible words.
The set of all possible words may, in turn, be thought of as the
set of all possible concatenations of strings. Formally, this set
of all possible strings is called a free monoid. It is denoted as

, and the superscript * is called the Kleene stare. ∗∑
2) Formal description

The 5-tuple represents an automaton, 0, , , ,Q qδ∑ F

where is a finite set of symbols, that we will call the
alphabet of the language the automaton accepts.

∑
δ is the

transition function, that is

: . (19)Q Qδ × ∑ →

For non-deterministic automata, the empty string is an
allowed input. is the start state, that is, the state in which
the automaton is when no input has been processed yet
(Obviously,

0q

0q Q∈). F is a set of state of Q (i.e. ,
called accept states. Given an input letter, one may write the
transition function as, using the simple trick of currying, that
is, writing

)F Q⊆

(,) ()aq a qδ δ= for all . q Q∈
This way, the transition function can be seen in simpler

terms: it’s just something that "acts" on a state in , yielding
another state. One may then consider the result of function
composition repeatedly applied to the various functions

Q

,a bδ δ , and so on. Repeated function composition forms
monoid. For the transition functions, this monoid is known as
the transition monoid, or sometimes the transformation
semigroup.

Given a pair of letters, , one may define a new

function,

,a b∈ ∑

δ̂ , by insisting that âb a bδ δ δ= , where denotes
function composition. Clearly, this process can be
recursively continued, and so one has a recursive definition
of a function ω̂δ that is defined for all wordsω ∗∈ ∑ , so
that one has a map

ˆ : (20)Q Qδ ∗× ∑ →

The construction can also be reversed: given a δ̂ , one can

reconstruct a δ , and so the two descriptions are equivalent.
The triple , ,Q δ∑ is known as a semiautomaton.

Semiautomata underlay automata, in that they are just
automata, where one has ignored the starting state and the set
of accept states.

The additional notions of a start state and an accept state
allow automata to do something the semiautomata cannot:
they can recognize a formal language. The language L
accepted by a deterministic finite automaton is:

{ }0
ˆ| (,) (21)L q Fω δ ω∗= ∈ ∑ ∈

That is, the language accepted by an automaton is the set of

all words ω , over the alphabet ∑ , that, when given as input
to the automaton, will result in its ending in some state from

. Languages that are accepted by automata are called
recognizable languages. When the set of states Q is finite,
then the automaton is known as a finite state automaton, and
the set of all recognizable languages are the regular
languages. In fact, there is a strong equivalence: for every
regular language, there is a finite state automaton, and vice
versa.

F

As noted above, the set Q need not be finite or countable;
it may be taken to be a general topological space, in which
case one obtains topological automata. Another possible
generalization is the metric automata. In this case, the
acceptance of a language is altered: instead of a set inclusion
of the final state in , the acceptance criteria
are replaced by a probability, given in terms of the metric

0
ˆ(,)qδ ω ∈ F

distance between the final state 0
ˆ(,)qδ ω and the set F .

Certain types of probabilistic automata are metric automata,
with the metric being a measure on a probability space.

B. Relationship between Automata and Enterprise
Demand Model
Fig. 6 describes automata of software mobility using Table.

There is a response time and loss probability parameters are
related to running and abnormal running state. The two
parameters are measured on that state. The mobility
parameter is related to migration state. In the case, we
describe the relationship of three parameters. In the
running/abnormal running state, the response time and loss
probability are main factors, and mobility is important factor
when the software is transferred. The automata model is
software state transition on ubiquitous computing. The
combination of two models provides the system
characteristics which software is best on ubiquitous
computing environment.

VI. EXPERIMENT
In this section, we test two cases [21]-[26]. In the first case,

the completion time is measured as the number of task is
increased when a user leaves out a lab and enters into another
lab. The completion time means the loading and execution of
task, and Microsoft PowerPoint is used as task.

In the second case, the test of Shows that the completion
time of general tasks with registration of AGF is larger than
result. For the test, DOWS on AG is used through AGF as
graphic mode. The completion time and frame rate is
evaluated. Each evaluation shows the superiority of GCUCE.

A. Task Completion Time
Test of loading and execution of tasks as the number of

task goes up in Fig. 7 shows. There is John who is a military
analyst. Let us suppose that John is working the tasks at lab A
(at Room A in Building A), and he registers his general tasks,
which can be, used everywhere. He goes out lab A, and
moves lab B (at Room B in Building B). We measure the
completion time about loading and execution of task when
John arrives at lab B as the number of task is increased.

B. Evaluation with Enterprise Model
Like scenario in Fig. 7, John wants to know the result

when DOWS simulation [14], [17]-[18], [35] ends while he
moves around building, and continues to do other works such
as meeting, eating, etc.

Currently, John is at lab B and registers DOWS and RTI on
computation Grid, and executes the DOWS on RTI. After
execution, he leaves out the lab, and will go into the meeting
room (Room C in Building C) where is off 30 minutes away.
The simulation will end 20 minutes later after execution, and
is transferred to GCUCE as text result. When John will arrive
at Room C in Building C, he will receive and analyze the
result file. Access Grid is used. John is at Room C in Building
C. Now, he joins into collaboration on AG and registers the
SharedDOWS on AGF on GCUCE.

He wants to see SharedDOWS and discusses the
simulation states with other military analysts through
multimedia conferencing. At the moment after some
discussion, John must go to other place (Room D in Building
D). When John moves to Room D in Building D, GCUCE

makes the computing environment same at Room C in
Building C that AG is executed and SharedDOWS is
provided to him. For experiments, we used the AGTk2.4 and
OpenGL, which are constructed on window-based system,
while servers are based on Linux. Our implementation is
accomplished on 6 PCs as clients, and 2 servers (Pentium IV
1.7GHz).

Fig. 7. Test of Shard DOWS on GCUCE

The demand in GCUCE is increasing because the response

time in automatic distribution test is shorter, loss rate in
dynamic migration test is smaller, and mobility rate in
dynamic migration test is higher. GCUCE is superior as the
scale of simulation is increasing, although the time
consumption of initialization has an effect on the state of
small forces. GCUCE can utilize abundant computing power
and adapt for various environments, as well as provide
convenient user interface. This brings a fast response time,
and the demand becomes larger. To verify the dynamic
migration service, we execute a second experiment.

In this test, we measured accumulated received packets
updated by 600 forces per 30 second. One packet has the size
of 100 bytes. In 70 minutes, we intentionally made a failure
on one server. The information related to execution like
object information is stored periodically, and then the
application resigns from the execution. The application sends
the stop message to applications before resignation. RM
gathers the information, and DM sends the application to a
selected host. The application sends the restart message to all
applications and receives the data stored before failure.
GCUCE can fulfill its mission after the failure, while the
original DOWS is halted. The enterprise model shows that
responses time and loss probability are decreased, mobility is
increased, and the demand of this service is increased.

C. Computation Grid Framework
We use DOWS (Distributed Object-oriented Wargame

Simulation) on RTI (RunTime Infrastructure) on Grid [18].
DOWS is an object-oriented simulation system based on a
director-actor model, which can be mapped efficiently on
object-oriented and distributed simulation. The existing RTIs,
the software of HLA (High Level Architecture), do not
consider coordinating and managing the resource for
distributed simulation to complete the simulation efficiently
and effectively. The RTI on Grid is a grid-enabled
implementation of RTI solving the problems.

Like the scenario in Fig. 7, John wants to know the result
when DOWS simulation ends while he moves around the

building, and continues to do other tasks. Currently, John is
at lab B and registers DOWS and RTI on computation Grid,
and executes the DOWS on RTI. After execution, he leaves
the lab, and will go into the meeting room (Room C in
Building C), which is 30 minutes away. The simulation will
end 20 minutes after execution, and is transferred to GCUCE
as text result.

When John arrives at Room C in Building C, he will
receive and analyze the result file. For test, the
implementation is accomplished on 4 PCs as clients, and 10
clusters (5: Pentium IV 1.7GHz, 5: Pentium III 1.0GHz Dual)
and one 486 computer as servers on a VO. Our experiments
are accomplished to confirm key services of CGF. The first
experiment is for the automatic distribution service.

We organize the system, which has five servers (we
assume that 486 computer is included as server, because of
the limitation in local condition), and the GCUCE, which has
a VO (Virtual Organization) of 11 servers (10 clusters and
486 PC). Then, we estimated the complete time of simulation
as the number of forces increases. As we expected, the
resource selection of the GCUCE did not choose the 486
computers.

D. Access Grid Framework
The DOWS system was modified and upgraded into

SharedDOWS, which provides the shared view to all DOWS
participants. The Access Grid [4], [6] supports shared
applications sharing channel such as events channel for
collaboration. Having event channel, the client of Access
Grid can interact through communicating messages each
other. Therefore, we needed shared application so that
Shared DOWS combining DOWS into Access Grid is
implemented. The Event Channel and the Application
Service enable the Venue to provide a mechanism for
discovery, coherence, and synchronization among
application clients.

1) Architecture of Shared DOWS
When events are appeared, application client transfers

their event information through events channel. After
receiving the event information of other client, Shared
Applications parse the information to apply to their state.

Fig. 8. Architecture of Shared DOWS

Moreover, the AGTk provides developers with a Shared

Application Client; implemented in the SharedAppClient

class creating shared applications. Shared applications
should be run as one of the Venue Client Applications. In
order to solve the problem, we also implemented a Relay
Station, which has some handlers and message passing
method as collaboration method between DOWS and Access
Grid [4], [27].

In Fig. 8, we can show both Venue Server and Venue
Client. It has to provide people many services such as
synchronizing, authorizing and registering users and
broadcasting data. In this project, two venues called Blue
Team Venue and Red Team Venue are shown in the Venue
Client. Entering team venue, you can show a process of
simulation of your team using Shared DOWS.

2) Tests on Access Grid
In Fig. 9 shows the comparison between DOWS and

SharedDOWS about the simulation completion time and
frame rate. The result shows the almost same values, which
prove the same system. However, SharedDOWS provides
more additional functions than functions of DOWS. The
SharedDOWS gives the additional functions of multimedia
(audio, video) function and sharing view. The multimedia
function makes the military join into the virtual spaces with
audio and video, and conference with other military. The
sharing view supplies that the military in other host can see
the sharing view of applications on another host.

Fig. 9. Performance Comparison between DOWS and SharedDOWS

If a military want to see the 3D visualization of DOWS, it

is possible to see the DOWS visualization through
SharedDOWS. While the additional functions are added for
SharedDOWS, the evaluation result is almost same as
DOWS result.

Fig. 10. Comparison of completion time to AGF

Fig. 10 shows that the completion time of general tasks
with registration of AGF is larger than result. This means that
the loading and execution of AG environment takes one
second more, and as the number of general tasks is increased,
the loading and execution of AG environment takes more
time.

E. Evaluation with AGF
Like scenario in Fig. 7, John wants to know the result

when DOWS simulation [24]-[26] ends while he moves
around building, and continues to do other works such as
meeting, eating, etc.

Currently, John is at lab B and registers DOWS and RTI on
computation Grid, and executes the DOWS on RTI. After
execution, he leaves out the lab, and will go into the meeting
room (Room C in Building C) where is off 30 minutes away.
The simulation will end 20 minutes later after execution, and
is transferred to GCUCE as text result.

When John will arrive at Room C in Building C, he will
receive and analyze the result file. Access Grid is used. John
is at Room C in Building C. Now, he joins into collaboration
on AG and registers the SharedDOWS on AGF on GCUCE.

Fig.11. Evaluation and result of GCUCE

As shown in the result of experiment, the demand in

GCUCE is increasing because the response time in automatic
distribution test is shorter, loss rate in dynamic migration test
is smaller, and mobility rate in dynamic migration test is
higher. In Fig. 11 (a), GCUCE is superior as the scale of
simulation is increasing, although the time consumption of
initialization has an effect on the state of small forces.
GCUCE can utilize abundant computing power and adapt for
various environments, as well as provide convenient user
interface. This brings a fast response time, and the demand
becomes larger. To verify the dynamic migration service, we
execute a second experiment.

In this test, we measured accumulated received packets
updated by 600 forces per 30 second. One packet has the size
of 100 bytes. In 70 minutes, we intentionally made a failure
on one server. The information related to execution like
object information is stored periodically, and then the
application resigns from the execution. The application sends
the stop message to applications before resignation. RM
gathers the information, and DM sends the application to a
selected host. The application sends the restart message to all
applications and receives the data stored before failure.

As shown Fig. 11 (b), GCUCE can fulfill its mission after
the failure, while the original DOWS is halted. The enterprise
model shows that responses time and loss probabilities are
decreased, mobility is increased, and the demand of this
service is increased.

VII. CONCLUSION
We first have described the architecture of GCUCE that is

the unified ubiquitous computing environment using grid
computing. For collaborative computing, we develop the
collaborative computing framework by supporting the real
time video and audio stream using high-speed network, it can
remote conference.

After explanation of architecture, we suggested the
enterprise model of software and automata model of software
state. Two models for GCUCE provide the system
characteristics, which are designed with the philosophy that
supports software mobility among a number of devices for
ubiquitous computing makes the system vastly more
complex.

The development for solution of the requirements as
ubiquitous infrastructure is needed, and we have developed
the GCUCE as the core module, which provides the
automatic computing environment, and makes applications
or services used everywhere.

The enterprise model compares the service aspects among
software, and provides the direction of good service. The
automata model describes the software state transition on
ubiquitous computing. The combination of two models
provides the system characteristics which software is best on
ubiquitous computing environment.

For the traditional distributed computing model, we have
developed two frameworks based on grid computing:
Computation Grid Framework (CGF) and Access Grid
Framework (AGF). For a large computation application,
CGF provides the high performance-computing framework,
which processes the real time data with high-speed
computation through distributed resources using
computation grid. For collaborative computing, AGF
supplies the collaborative computing framework, which
co-works the analysis, agreement and discussion among
people with a lot of data using Access Grid. The framework
gives the merits of collaboration with multimedia functions.

The AGF is based on Venue, VenueClient, and Node. We
have developed frameworks based on grid computing:
Access Grid Framework (AGF) on DOWS system. For a
large computation application, AGF supplies the
collaborative computing framework, which co-works the
analysis, agreement and discussion among the military with a
lot of data using Access Grid. The framework gives the
merits of collaboration with multimedia functions.

The DOWS system was modified and upgraded into
SharedDOWS, which provides the shared view to all DOWS
participants. The Access Grid supports shared applications
sharing channel such as events channel for collaboration.
Having event channel, the client of Access Grid can interact
through communicating messages each other.

Therefore, we needed shared application so that Shared
DOWS combining DOWS into Access Grid is implemented.
Which is designed with the philosophy that supports
application mobility among a number of devices for
ubiquitous computing makes the system vastly more complex.
The development for solution of the requirements as
ubiquitous infrastructure is needed, and we have developed
the GCUCE as the core modules, which provide the
automatic computing environment, and makes applications
or services, used everywhere.

For GCUCE superiority, we did several experiments based
on two models with military application on AG, including
completion time, packet bytes, and frame rate. As a result, the
experiments showed the good result of the performance.

REFERENCE
[1] M. Weiser, “Hot Topic Ubiquitous Computing,” Computing

publication, 1993, pp. 71–72.
[2] M. Glesner, T. Hollstein, T. Murgan, ”System design challenges in

ubiquitous computing environments, ” Microelectronics, 2004. ICM
2004 Proceedings. The 16th International Conference on 6-8 Dec. 2004
Page(s): 11 – 14.

[3] K. Kangas, J. Roning, “Using code mobility to create ubiquitous and
active augmented reality in mobile computing,” International
Conference on Mobile Computing and Networking archive
Proceedings of the 5th annual ACM/IEEE. 1999, Page(s): 48 – 58.

[4] R. Stevens, “Access Grid: Enabling Group Oriented Collaboration on
the Grid,” The Grid: Blueprint for a New Computing Infrastructure, C.
Kesselman, ed., Morgan Kaufmann, 2003.

[5] I. Foster, C. Kesselman and S. Tuecke, ”The Anatomy of the Grid:
Enabling Scalable Virtual Organizations,” International J.
Supercomputer Applications, 15(3), 2001.

[6] Access Grid, Available: http://www.accessgrid.org/.
[7] Abowed, G.D, “Software engineering issues for ubiquitous

computing,” Software Engineering, 1999. Proceedings of the 1999
International Conference on, 16-22 May 1999 Page(s):75 – 84.

[8] R. Harrison, D. Obst, C.W. Chan, “Design of an ontology management
framework,” Cognitive Informatics, 2005. (ICCI 2005). Fourth IEEE
Conference on 8-10 Aug. 2005 Page(s): 260 – 266.

[9] T. Gu, H.K Pung, D.Q Zhang, “Toward an OSGi-based infrastructure
for context-aware applications,” Pervasive Computing, IEEE Volume 3,
Issue 4, Oct- Dec 2004 Page(s): 66 – 74.

[10] W. G Griswold, R. Boyer, S.W Brown, T.M. Truong, “A component
architecture for an extensible, highly integrated context-aware
computing infrastructure,” Software Engineering, 2003. Proceedings.
25th International Conference, 3-10 May 2003 Page(s): 363 – 372.

[11] T. Kindberg, A. Fox, System software for ubiquitous computing,”
Pervasive Computing, IEEE, Volume 1, Issue 1, Jan.-March 2002
Page(s): 70 – 81.

[12] N. Roy, S.K Das, K. Basu, M. Kumar, “Enhancing Availability of Grid
Computational Services to Ubiquitous Computing Applications,”
Parallel and Distributed Processing Symposium, 2005 Proceedings.
19th IEEE International 04-08 April 2005 Page(s): 92a - 92a.

[13] N. Roy,“Providing Better QoS Assurance to Next Generation
Ubiquitous Grid Users”, MS Thesis, University of Teaxs at Arlington,
USA, Apr 2004.

[14] IEEE Standard for Modeling and Simulation, “High Level Architecture
(HLA) Federate Interface Specification,” IEEE Std 1516.1-2000.

[15] John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman - Introduction
to Automata Theory, Languages, and Computation (2nd Edition)

[16] Michael Sipser (1997). Introduction to the Theory of Computation.
PWS Publishing. ISBN 0-534-94728-X. Part One: Automata and
Languages, chapters 1–2, pp.29–122. Section 4.1: Decidable
Languages, pp.152–159. Section 5.1: Undecidable Problems from
Language Theory, pp.172–183.

[17] James P. Schmeiser, David T. Barnard (1995). Producing a top-down
parse order with bottom-up parsing. Elsevier North-Holland.

[18] P. Ghosh, N. Roy, S. K. Das and K. Basu, “A Game Theory based
Pricing Strategy for Job Allocation in Mobile Grids”, Proceedings of
18th International Parallel and Distributed Processing Symposium,
Snata Fe, New Mexico, Apr 2004.

[19] G. Shang-Fen, Z. Wei, M. Dan and Z. Wen-Li, “Grid Mobile Service:
Using Mobile Sofeware Agent Grid Mobile Service,” Machine
Learning and Cybernetics, Proceedings of 2004 International
Conference on Publication Date: 26-29 Aug. 2004 Volume: 1, page(s):
178- 182.

[20] H. Lamehamedi, S. Zujun, B. Szymanski, E. Deelman, “Simulation of
dynamic data replication strategies in Data Grids,” Parallel and
Distributed Processing Symposium, 2003. Proceedings. International,
22-26 April 2003 Page(s): 10 pp.

[21] Sun Microsystems: “Documentation Center”, Available:
http://www.sun.com.

[22] Microsoft: “Microsoft Technical Resources”, Available:
http://www.microsoft.com/net/technical.

[23] Java 2 Platform, Enterprise Edition (J2EE). Available:
http://java.sun.com/j2ee.

[24] U.S. Department of Defense (DMSO): “High Level Architecture Inter
face Specification, Rules, Object Model Template, and Run-Time I n f
rastructure (RTI) Programmer's Guide Version 1.3 ” http://hla.dmso.mi
l, 1998.

[25] K. H. Kim and Juqiang Liu: “QoS-driven Resource Management in Re
al-Time Object Based Distributed Computing Systems”, Proceedings
of the Eighth IEEE Workshop on Future Trends of Distributed Compu
ting Systems (FTDCS.01).

[26] I. Foster, C. Kesselman, “Globus: A Metacomputing Infrastructure To
olkit,” Intl J. Supercomputer Applications, 11(2): 115-128, 1997.

[27] M.Jern, S.Palmberg and M.Ranlof, "A robust and easy approach to col
laborative visualization" Proceedings of the Sixth International Confer
ence on Information Visualisation (IV’02), IEEE Press, 2002.

[28] G. F. Simmons, Differential Equations. New York: McGraw-Hill, 197
2 Page(s): 367.

[29] Abowed, G.D, “Software engineering issues for ubiquitous
computing,” Software Engineering, 1999. Proceedings of the 1999
International Conference on, 16-22 May 1999 Page(s): 75 – 84.

[30] Tim Kindberg, A. Fox, “System software for ubiquitous computing,”
Pervasive Computing, IEEE, Volume 1, Issue 1, Jan.-March 2002
Page(s): 70 – 81.

[31] N. Davies, A. Friday and O. Storz, “Exploring the grid's potential for
ubiquitous computing,” Pervasive Computing, IEEE Volume 3, Issue 2,
April-June 2004 Page(s): 74 – 75.

[32] G. Arfken, "Lagrange Multipliers." §17.6 in Mathematical Methods for
Physicists, 3rd ed. Orlando, FL: Academic Press, 1985
Page(s):945-950.

[33] R. El Azouzi, E. Altman and L.Wynter “Telecommunications Network
Equilibrium with Price and Quality-of-Service Characteristics”,
Proceedings of the ITC, Berlin, Sept 2003.

[34] J. Tsujii, “Domain ontology and top-level ontology: how can we
co-ordinate the two?” Natural Language Processing and Knowledge
Engineering, 2003. Proceedings. 2003 International Conference on
26-29 Oct. 2003 Page(s): 814.

[35] Hsin-Chuan Ho and Chao-Tung Yang Chi-Chung Chang," Building an
Elearning Platform by Access Grid and Data Grid Technologies",
Proceedings of the 2004 IEEE International Conference on
e-Technology, e-Commerce and e-Service (EEE’04), IEEE Press,
2004.

[36] R. Harrison, D. Obst, C.W. Chan, “Design of an ontology management
framework,” Cognitive Informatics, 2005. (ICCI 2005). Fourth IEEE
Conference on 8-10 Aug. 2005 Page(s): 260 – 266.

[37] D. Zwillinger, (Ed.). "Lagrange Multipliers." §5.1.8.1 in CRC Standard
Mathematical Tables and Formulae, 31st Ed. Boca Raton, FL: CRC
Press, 2003 Page(s): 389-390.

http://www.accessgrid.org/
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=9459
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=9459
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=9459
http://www.sun.com/
http://www.microsoft.com/net/technical
http://java.sun.com/j2ee

	I. Introduction
	II. GCUCE Architecture
	A. Grid Layer
	B. Context-aware Layer
	C. Ubiquitous Main Layer

	III. Context Reasoning
	A. Context Ontology
	B. Ontology Relationship

	IV. Enterprise Model In GCUCE
	A. Enterprise Model
	B. Demand Model
	C. Gain maximization
	D. Lagrange multipliers
	1) Introduction
	2) Justification
	3) Caveat: extrema versus stationary points
	4) A more general formulation: the weak Lagrangian principle

	V. Automata Model for Mobility In GCUCE
	A. Automata Mobility
	1) Automata vocabulary
	2) Formal description

	B. Relationship between Automata and Enterprise Demand Model

	VI. Experiment
	A. Task Completion Time
	B. Evaluation with Enterprise Model
	C. Computation Grid Framework
	D. Access Grid Framework
	1) Architecture of Shared DOWS
	2) Tests on Access Grid

	E. Evaluation with AGF

	VII. Conclusion
	Reference

