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Abstract— In this paper, we describes GCUCE (Grid 

Computing for Ubiquitous Computing Environment) which 
supports the unified efficient ubiquitous service interacting with 
Grid service modules using Access Grid computing, which 
provides the collaborative computing framework which allows 
the analysis, agreement and discussion among people with a lot 
of data using Computation Grid Framework (CGF) and Access 
Grid Framework (AGF). Also, we describe two mobility 
models: enterprise model and automata model. The former is 
focused on the service demand aspects, and the latter 
concentrates on the state transition. Based on those models, we 
shall show the performance of GCUCE by evaluating several 
experiments for DOWS (Distributed Object-oriented Wargame 
Simulation). The two models comprising enterprise model and 
automata model of software state suggest the formal and 
mathematical model about software mobility in GCUCE, and 
provide the overall views and direction of ubiquitous software 
development.  
 

Index Terms— Ubiquitous Computing, Ubiquitous Mobility, 
Ubiquitous Software Mobility, Access Grid, Computation Grid. 
 

I. INTRODUCTION 
The utilization and availability of resources may change 

computers and network topology when old components are 
retired, new systems are added, and software and hardware 
on existing systems are updated and modified [1]-[3]. It is 
rarely feasible for programmers to rely on standard or default 
configurations when building applications.  

Rather, applications need discover characteristics of their 
execution environment dynamically, and then either 
configure aspects of system and application behavior for 
efficient and robust execution or adapt behavior during 
program execution. Therefore, an application requirement for 
discovery, configuration, and adaptation is fundamental to 

the rapidly changing dynamic environment [4]-[8]. 
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Ubiquitous computing environments [13]-[15], [29]-[30] 
provide dynamic requirements on applications. Users want to 
grasp information quickly, navigate representations fluidly, 
and respond easily. These requirements drive systems toward 
tight integration where every component knows about all 
other components in order to simultaneously meet 
performance expectations and create a composite view that 
succinctly expresses vital information. These challenges are 
critical in a young fast-moving field like context-aware 
computing [9], [10].  

A typical system might regularly undergo the addition of 
new kinds of context sensors, modeled entity types, services, 
or end-user devices. To reduce fragile coupling among 
components, software engineering principles argue for 
anticipating future changes and introducing separation of the 
identified concerns. The mobility applications will want to 
support the dynamic execution with successive load and 
fewer losses [11]-[12]. 

While ubiquitous computing promises to make many more 
resources available in any given location, the set of resources 
that can be used effectively is subject to frequent change - 
both because the resource pool itself can change dynamically, 
and because a user may move to a new environment, making 
some resources available and others not accessible. As we 
detail later, traditional solutions normally associated with 
mobile computing [3], [13]-[16] are inadequate to solve this 
problem either because they are unable to exploit resources 
as they become available in a user’s environment, or because 
users must pay too high a price to manage those resources. 

For the solution to this problem, we insert the concept of 
Grid computing [4]-[7] into the existing concept of 
ubiquitous computing [1]-[3]. Many ubiquitous computing 
systems provide application developers with a powerful 
framework [8]; however, its design is not intended to support 
applications requiring either the many resources that are 
needed to integrate instruments, displays, computational and 
information managed by diverse organizations, or requiring 
collaborative environment by audio/video conferencing. 

The remainder of the paper is organized as follows: in 
Section Ⅱ, we describes architecture in GCUCE(Grid 
Computing for Ubiquitous Computing Environment), 
and  Section Ⅲ explains context reasoning. The Section Ⅳ 
explains enterprise model in GCUCE, and Section 
Ⅴ describes automata mobility in GCUCE. Section Ⅵ tests 
experiments in DOWS on Access Grid and Computation 
Grid.  Finally Section Ⅶ concludes. 
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II. GCUCE ARCHITECTURE  
The GCUCE is the context-aware ubiquitous computing 

[9]-[10] environment supporting grid computing [4]-[7], 
which is composed of three layers as shown in Fig.1: Grid 
Layer, Context-aware Layer, and Ubiquitous Main Layer.  
 

 
Fig.1. GCUCE Architecture 

 

A. Grid Layer 
 The Grid Layer [12], [26] is divided into two elements: 
Computation Grid Framework (CGF), Access Grid 
Framework (AGF). The CGF provides the functions of grid 
computing using a Java cog kit, which supports the fault 
tolerance and high performance computation through 
resource sharing, monitoring, and allocation. The CGF is 
composed of four managers: Resource Manager (RM), Data 
Manager (DM), Job Manager (JM), and Runtime Information 
Manager (RIM). The RM uses the resource management 
services offered by Grid, DM provides speed and reliability 
for files being transferred, JM acts as an agent for the tasks in 
a job, providing a single entity from which the tasks will 
request resources, and RIM provides the information to 
applications or middleware.  

The AGF supplies collaboration with audio/video 
streaming and view of sharing through shared applications on 
collaborative environments [4]-[8]. The AGF consists of four 
managers: Collaboration Manager (CM), Collaboration 
Session Manager (CSM), Shared Application Manager 
(SAM), and Multimedia Manager (MM). The CM gathers the 
information about the shared stubs from the venue, CSM 
provides venue addresses that the user can access, SAM 
integrates the whole features of the shared applications used 
in the AccessGrid, and MM controls the base service of 
AccessGrid like Audio/Video streaming service.  

B. Context-aware Layer 
The Context-aware Layer [9]-[10] (called Context-Aware 

Infrastructure (CAI)) has a responsibility of functions, which 
support the gathering of context information from different 
sensors and the delivery of appropriate context information 
to applications.  

Also, the CAI supports the context model by ontology 
methods. The development of formal context models satisfies 
the need to facilitate context representation, context sharing 
and semantic interoperability of heterogeneous systems. The 
CAI provides an abstract context ontology that captures 
general concepts about basic context, and also provides 
extensibility for adding domain specific ontology in a 

hierarchical manner. In CAI, there are eight elements: 
Context Interpreter (CI), Context Aggregator (CA), Context 
Model Factory (CMF), Context Model (CM), Reasoner 
Factory (RF), Context Reasoned (CR), Reasoner Controller 
(RC), and Information Repository (IR).  

The CI gathers contextual information from sensors, 
manipulates the contextual information, and makes it 
uniformly available to the platform. The CA processes and 
aggregates the data through sensor network after context 
extraction, which provides high-level contexts by 
interpreting low-level contexts. The CMF defines a context 
based on concept of specific domain ontology through 
internal/external providers, and associates a data set with 
some reasoners to create a CM. The RF creates the specified 
reasoners, and the CR has the functionality of providing the 
deduced contexts based on direct contexts, resolving context 
conflicts and maintaining the consistency of IR, and RC starts 
and stops the specific CR. 

C. Ubiquitous Main Layer 
The Ubiquitous Main Layer [11]-[14] (called uMain) is 

responsible for shielding the user from the underlying 
complexity and variability through self-tuning environment 
by mobility and adaptation, which are weak points in CGF 
and AGF. Whenever the user moves from one place to 
another, the tasks and devices such as grid authentication, 
environment variables, video/audio device or large display 
are automatically set up or executed, keeping their 
environment.      

The uMain has six managers: Task Manager(TM), 
Environment Manager (EM), DB Manager, Context Manager, 
File Manager, and Event Manager (EVM). The TM has 
something concerned with user’s task processes. The EM 
supports services concerned with making same user’s 
environment in everywhere. Database Manager DBM 
manages the recording about user information. The CM has a 
role of detection about user’s activities such as entering or 
leaving to/from the environment. The File Manger (FM) has 
to take a charge for both remote and local file operations. The 
EVM is to send and receive messages among them locally. 

III. CONTEXT REASONING  
The basic concept of our context model is based on 

ontology [33], [35] which provides a vocabulary for 
representing and sharing context knowledge in a pervasive 
computing domain, including machine-interpretable 
definitions of basic concepts in the domain and relations 
among them. An ontology-based model for context 
information allows us to describe contexts semantically in a 
way, which is independent of programming language, 
underlying operating system or middleware. 

A. Context Ontology 
There are several reasons for developing context models 

based on ontology. The use of context ontology enables 
computational entities such as agents and services in 
ubiquitous computing environments to have a common set of 
concepts about context while interacting with one another. 

This is knowledge sharing. Based on ontology, 
context-aware computing can exploit various existing logic 



 
 

 

reasoning mechanisms to deduce high-level, conceptual 
context from low-level, raw context, and to check and solve 
inconsistent context knowledge due to imperfect sensing. By 
knowledge reuse well-defined ontologies of different 
domains, we can compose large-scale context ontology 
without starting from scratch. 

 

 
Fig. 2. Context Ontology Campus Model 

 
In Fig. 2 shows the context model, which is divided into 

two layers: abstract context ontology and campus domain 
context ontology. The abstract context model is structured 
around a set of abstract entities, each describing a physical or 
conceptual object including Person, Location, Activity, and 
Computational Entity, as well as a set of abstract sub-classes. 
Each entity is associated with its attributes (represented in 
owl:DatatypeProperty) and relations with other entities 
(represented in owl:ObjectProperty). The built-in OWL 
property owl:subClassOf allows for hierarchically 
structuring sub-class entities, thus providing extensions to 
add new concepts that are required in a specific domain. 
Besides general classes defined in abstract ontology, a 
number of concrete subclasses are defined to model specific 
context in a given environment. The campus domain 
ontology for specific domain model is depicted with 
inheritance from abstract context model (e.g., the abstract 
class GroupActivity of campus domain is classified into three 
sub-classes Class, Meeting, and Sports). 

B. Ontology Relationship 
 

 
Fig. 3. Simple Context Ontology Relationship 

 
In Fig.3 shows a simple definition of specific ontology for 

a campus application domain. The Student inherited from 

Person is engaged in Class with Notebook in EngBuilding I.  
Where each concrete values are set such as Student name, 

Class lesson, Notebook owner, and EngBuildingI 
roomnumber. 

IV. ENTERPRISE MODEL IN GCUCE 
 The system architecture in uMain has the components: 
ubiCore and ubiContainer as shown in Fig. 4. The ubiCore is 
responsible for the application mobility [20]. When a user 
moves from one place to another; ubiCore provides the 
automatic movement of computing environment through 
ubiContainer, which supplies the user information such like 
IP, user preference, etc. 

 

 
Fig. 4. Architecture of uMain 

 
The communication component in GCUCE uses socket, 

Java RMI (Remote Method Invocation). The socket used by 
File Manager for transferring the files. RMI is Java’s 
mechanism for supporting distributed object based 
computing, which RMI allows client/server based distributed 
applications to be developed easily because a client 
application running in a Java virtual machine at one node can 
invoke objects implemented by a remote Java virtual 
machine (e.g., a remote service) the same way as local 
objects. 

The RMI mechanism in Java allows distributed application 
components to communicate via remote object invocations, 
and RMI mechanism enables applications to exploit 
distributed object technology rather than low level message 
passing (e.g., sockets) to meet their communication needs.  
 

 
Fig. 5. Sequence Diagram of uMain 

 
In Fig. 5 shows the sequence diagram of uMain. When a 

new user enters into a new place or device, CM detects the 
entrance of the user, and TM brings the information related to 
the user, and FM makes the directory. TM copies the files 
associated with the user by File Requester. File Requester 
sends and receives messages to File Provider on remote host, 
and File Provides sends the files to File Receiver. After the 



 
 

 

end of file copies, EM executes the registered tasks through 
JobFactory, which commands the start of tasks to Task. If a 
user registers the task through the TMUI(TM user interface), 
the related files are moved to a user directory and the XML 
file is updated. 

A. Enterprise Model  
 Let us think about mobility the enterprise model of 
competitive ubiquitous grid service [8], [9], [22]. Assume a 
set G of N grid service providers. That is, 

{ }1, 2, ... , ...G n= N . Each provider can be distinguished 

by three service parameters such as { , , where  
is the response time of nth service provider for unit resource 
demand from its subscribers and is the loss probability 

experienced by that service provider, and  is the mobility 
probability accumulated by nth service provider.  

, }n n nr l m nr

nl

nm

The selection of these parameters has a significant impact 
on completion of the job of ubiquitous users within a limited 
time frame. Due to the competitiveness in between the 
service providers, the ubiquitous user gets an option to shift 
from one service provider to another for job completion at the 
earliest possible time.  

So, the nth grid service provider experiences a   demand 
, which depends not only on own response time, loss 

probability, and mobility probability but also on the response 
time, loss probabilities, and mobility probabilities, offered by 
its competitors. So,  depends upon entire response time 
vector 

nd

nd

[ ]1 2, ,..., Nr r r r= , loss probabilities vector 

[ ]2, , ...,nl l l l= N , and mobility probabilities vector 

[ ]1 2, , ..., Nm m m m= .  

The strategy of each grid service provider will be always to 
provide a response time, loss probability, mobility 
probability which are in between the maximum and minimum 
values offered by all of its competitors. Then, the strategy 
space, of nth grid service provider, as in nS
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 We assume  depends on  in the sense that if the 

value of the loss probability increases, then the service 
provider has to decrease its response time . The upper 
bound on the response time and loss probability express that 
after a certain value, the demand will be zero. 

minr nl

nr

B. Demand Model  

 For a particular grid service provider, the demand  for 

its services decreases as its response time  increases; on 
the other hand, it increases with the increase of its competitor 
response time , for m . The analogous relationship 

holds for loss probabilities, but then, increases with 

decrease of  and increase of , for m . The reverse 

relationship holds for mobility probabilities, but then,  

increases with increase of and decrease of , for 

nd

nr

mr n≠

nd

nl ml n≠

nd

nm mm
m n≠ . We now consider the case where the demand 
function ( ) is linear in all QoS parameters [12]. That is,  nd
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 where , , , , ,nm n nm n nm nα θ β δ χ η are constants, and  is 
mobility value at nth grid service provider. Here we make 
some minimal assumptions regarding the demand function.  

nm
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This results in a decrease of own demand while increasing 

those of its competitors, if a service provider increases 
response time (loss probability), assumption the demand  
is non-negative over the strategy space (i.e., response time 
and loss probability are decreasing) and negative over the 
non-strategy space (i.e. response time and loss probability are 
increasing).  Now each service provider  will charge a cost, 

, per unit of the demand provided to the ubiquitous user. 
Then the gain earned by the nth service provider is 

nd

n
cn
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We define that ε is the ratio of proportionate change in 

quantity demanded to proportionate change in cost  
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Since the revenue of nth service provider is given by 
n nG c d n= × , then taking the partial derivative of both 

sides we get, 
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Now integrating Equation (2) and considering the initial 

value to demand as k, and then we get, 
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Equation (5) represents a more generalized demand 

function by incorporating constant price elasticity model, 
which is more sensible and appropriate for our scenarios. 

C. Gain maximization 
 The revenue maximization problem is 
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In the above formulation, the cost and demand variable 
( ), ,nd r l m  are both present. We will find it convenient to 

replace the price variable by Equation 6 and retain only the 
demand variables. The optimum price may be recovered from 
the demands in the solution. Transforming the objective 
function gives: max 
 

( ) ( ) ( )
1/

,
, ,           

, ,max
n n

n n
c d n

kG d r l
d r l m

ε
⎛ ⎞

= ×⎜ ⎟⎜ ⎟
⎝ ⎠

m  

( )
-1

1/                , ,                         (9)nk d r l m
ε

ε ε= ×  

 

D. Lagrange multipliers  
1) Introduction 

In mathematical optimization problems, the method of 
Lagrange multipliers [34], [39], [45] named after Joseph 
Louis Lagrange, is a method for finding the extrema of a 
function of several variables subject to one or more 
constraints; it is the basic tool in nonlinear constrained 
optimization. Simply put, the technique is able to determine 
where on a particular set of points (such as a circle, sphere, or 
plane) a particular function is the smallest (or largest).  

The RMI mechanism in Java allows distributed application 
more formally; Lagrange multipliers compute the stationary 
points of the constrained function. By Fermat’s theorem, 
extrema occur either at these points, or on the boundary, or at 
points where the function is not differentiable. It reduces 
finding stationary points of a constrained function in n  
variables with constraints to finding stationary points of an 
unconstrained function in variables.  

k
n k+

The method introduces a new unknown scalar variable 

(called the Lagrange multiplier) for each constraint, and 
defines a new function in terms of the original function, the 
constraints, and the Lagrange multipliers. Consider a 
two-dimensional case. Suppose we have a function, 

( , )f x y , to maximize, subject to the constraint 
( , ) ,g x y c=  where is a constant. c

 We can visualize contours of f given by 

 
( , ) .                                                      (10)nf x y d=

 
For various values of , and the contour of g given 

by
nd

( , )g x y c= . Suppose we walk along the contour line 
with g c= . In general the contour lines of f  and  may 
be distinct, so traversing the contour line for

g
g c=  could 

intersect with or cross the contour lines of f . This is 
equivalent to saying that whilst moving along the contour 
line for g c=  the value of f can vary. Only when the 
contour line for g c=  touches contour lines of f  
tangentially, we do not increase or decrease the value of 
f that is, when the contour lines touch but do not cross. 

 This occurs exactly when the tangential component of the 
total derivative vanishes:  which is at the constrained 
stationary points of 

0df =
f  (which include the constrained local 

extrema, assuming f is differentiable). Computationally, 
this is when the gradient of f is normal to the constraint(s): 
when f gλ∇ = ∇ for some scalar λ .  

A familiar example can be obtained from weather maps, 
with their contour lines for temperature and pressure: the 
constrained extrema will occur where the superposed maps 
show touching lines. Geometrically we translate the tangency 
condition to saying that the gradients of f and g are parallel 
vectors at the maximum, since the gradients are always 
normal to the contour lines.  

Thus we want points ( ),x y where, and, further, 

( , )g x y c= . To incorporate both these conditions into one 
equation, we introduce an unknown scalar, λ  and solve 

 
( ), , , , 0                                          (11)x y F x yλ λ∇ =

 

( ) ( ) ( )( ), , , , ,              (12)F x y f x y g x y cλ λ= + −
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2) Justification 

As discussed above, we are looking for stationary points 
of f seen while traveling on the level set ( , )g x y c= . This 
occurs just when the gradient of f has no component 
tangential to the level sets of g. This condition is equivalent to  



 
 

 

( ) ( ), ,, ,                             (14)x y x yf x y g x yλ∇ = ∇  

for some λ . Stationary points ( ), ,x y λ  of F also satisfy 

as can be seen by considering the derivative 
with respect to

( , )g x y c=
λ . 

3) Caveat: extrema versus stationary points 

Be aware that the solutions are the stationary points of the 
Lagrangian , and are saddle points: they are not necessarily 
extrema of .  is unbounded: given a point (

F
F F ),x y  that 

doesn't lie on the constraint, letting λ → ±∞ makes  
arbitrarily large or small. However, under certain stronger 
assumptions, as we shall see below, the strong Lagrangian 
principle holds, which states that the maxima of 

F

f maximize 
the Lagrangian globally. 

4) A more general formulation: the weak Lagrangian 
principle 

Denote the objective function by ( )f x and let the 

constraints be given by ( ) 0kg x = , perhaps by moving 

constants to the left, as in ( ) ( )k k kh x c g x− = . The 

domain of f should be an open set containing all points 

satisfying the constraints. Furthermore, f  and the  must 
have continuous first partial derivatives and the gradients of 
the  must not be zero on the domain. 

kg

kg

 Now, define the Lagrangian, Λ , as  

 
( ) .,                                       (15)k k

k
x y f gλΛ = + ∑

 
k  is an index for variables and functions associated with a 

particular constraint, . k λ  without a subscript indicates the 
vector with elements kλ , which are taken to be independent 
variables.  

Observe that both the optimization criteria and constraints 
 are compactly encoded as stationary points of the 

Lagrangian: 
kg x

0 if and only if ,x x k
k

x kf gλ∇ Λ = ∇ = − ∇∑  

x∇ means to take the gradient only with respect to each 

element in the vector X , instead of all variables,  and 

0 implies 0.kgλ∇ Λ = =   

Collectively, the stationary points of the Lagrangian, 
 give a number of unique equations totaling the 

length of 
0,∇Λ =

X plus the length of λ . This often makes it 
possible to solve for every x and kλ , without inverting 

the . For this reason, the Lagrange multiplier method can 

be useful in situations where it is easier to find derivatives of 
the constraint functions than to invert them. Often the 
Lagrange multipliers have an interpretation as some salient 
quantity of interest. To see why this might be the case, 
observe that: 

kg
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kg

λ∂Λ
=
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So, kλ  is the rate of change of the quantity being 

optimized as a function of the constraint variable. As 
examples, in Lagrangian mechanics the equations of motion 
are derived by finding stationary points of the action, the time 
integral of the difference between kinetic and potential 
energy. Thus, the force on a particle due to a scalar potential, 
F V= −∇ , can be interpreted as a Lagrange multiplier 
determining the change in action (transfer of potential to 
kinetic energy) following a variation in the particle's 
constrained trajectory.  

 In economics, the optimal profit to a player is calculated 
subject to a constrained space of actions, where a Lagrange 
multiplier is the value of relaxing a given constraint.  Here we 
use a Lagrange multiplier λ , associated with the constraint 
implied by demand satisfaction in (9) to form the Lagrange 
expression 
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Now the first-order condition for maximization of 

( )( ), ,nL d r l λ  is found by equating the partial derivative 

of L to zero. Thus, 
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So, the strategy of each grid service provider are will be 

always to provide a response time, loss probability, mobility 
probability which are in between the maximum and minimum 
values offered by all of its competitors. 

V. AUTOMATA MODEL FOR MOBILITY IN GCUCE 
Mobile Grid service in grid computing is a new paradigm 

of Grid service. Grid Mobile Service [19] provides a series of 
standard interfaces and intelligent mobile code service to 
computation. It is extension software agent and Grid 
technologies. In GCUCE, the software mobility is supported. 



 
 

 

When sensor detects any signal such as entrance of person, 
related software is moved into new place, and then executed. 
The physical happenings can be made into formal automata. 
 

 

 
Fig. 6. Automata of Software Mobility 

 
Fig. 6 illustrates the software mobility state transition. The 

initial state is software state beginning the system, running 
state is software execution state, migration state is the state of 
transfer from a host to another host, and stop (frozen) state is 
the stopped state of software, and finally end state is the 
termination state of software.  

A. Automata Mobility 
1) Automata vocabulary 

The basic concepts of symbols, words, alphabets and 
strings are common to most descriptions of automata. 
Symbol is an arbitrary datum that has some meaning to or 
effect on the machine. Symbols are sometimes just called 
"letters". Word is a finite string formed by the concatenation 
of a number of symbols. Alphabet is a finite set of symbols. 
An alphabet is frequently denoted by , which is the set of 
letters in an alphabet.  

∑

Language is a set of words, formed by symbols in a given 
alphabet. May or may not be infinite. Kleene closure a 
language may be thought of as a subset of all possible words. 
The set of all possible words may, in turn, be thought of as the 
set of all possible concatenations of strings. Formally, this set 
of all possible strings is called a free monoid. It is denoted as 

, and the superscript * is called the Kleene stare.  ∗∑
2) Formal description 

The 5-tuple represents an automaton, 0, , , ,Q qδ∑ F  

where is a finite set of symbols, that we will call the 
alphabet of the language the automaton accepts. 

∑
δ  is the 

transition function, that is 
  

: .                                                   (19)Q Qδ × ∑ →
  

For non-deterministic automata, the empty string is an 
allowed input.  is the start state, that is, the state in which 
the automaton is when no input has been processed yet 
( Obviously, 

0q

0q Q∈ ). F  is a set of state of Q  (i.e. , 
called accept states. Given an input letter, one may write the 
transition function as, using the simple trick of currying, that 
is, writing 

)F Q⊆

( , ) ( )aq a qδ δ=  for all .  q Q∈
This way, the transition function can be seen in simpler 

terms: it’s just something that "acts" on a state in , yielding 
another state. One may then consider the result of function 
composition repeatedly applied to the various functions 

Q

,a bδ δ , and so on. Repeated function composition forms 
monoid. For the transition functions, this monoid is known as 
the transition monoid, or sometimes the transformation 
semigroup.  

Given a pair of letters, , one may define a new 

function, 

,a b∈ ∑

δ̂ , by insisting that âb a bδ δ δ= , where denotes 
function composition. Clearly, this process can be 
recursively continued, and so one has a recursive definition 
of a function ω̂δ  that is defined for all wordsω ∗∈ ∑ , so 
that one has a map 

 
ˆ :                                              (20)Q Qδ ∗× ∑ →  

 
The construction can also be reversed: given a δ̂ , one can 

reconstruct a δ , and so the two descriptions are equivalent. 
The triple , ,Q δ∑  is known as a semiautomaton. 

Semiautomata underlay automata, in that they are just 
automata, where one has ignored the starting state and the set 
of accept states.  

The additional notions of a start state and an accept state 
allow automata to do something the semiautomata cannot: 
they can recognize a formal language. The language L  
accepted by a deterministic finite automaton is:  

 

{ }0
ˆ| ( , )                               (21)L q Fω δ ω∗= ∈ ∑ ∈  

 
That is, the language accepted by an automaton is the set of 

all words ω , over the alphabet ∑ , that, when given as input 
to the automaton, will result in its ending in some state from 

. Languages that are accepted by automata are called 
recognizable languages. When the set of states Q  is finite, 
then the automaton is known as a finite state automaton, and 
the set of all recognizable languages are the regular 
languages. In fact, there is a strong equivalence: for every 
regular language, there is a finite state automaton, and vice 
versa.  

F

As noted above, the set Q need not be finite or countable; 
it may be taken to be a general topological space, in which 
case one obtains topological automata. Another possible 
generalization is the metric automata. In this case, the 
acceptance of a language is altered: instead of a set inclusion 
of the final state in , the acceptance criteria 
are replaced by a probability, given in terms of the metric 

0
ˆ( , )qδ ω ∈ F



 
 

 

distance between the final state 0
ˆ( , )qδ ω  and the set F . 

Certain types of probabilistic automata are metric automata, 
with the metric being a measure on a probability space.  

B. Relationship between Automata and Enterprise 
Demand Model  
Fig. 6 describes automata of software mobility using Table. 

There is a response time and loss probability parameters are 
related to running and abnormal running state. The two 
parameters are measured on that state. The mobility 
parameter is related to migration state. In the case, we 
describe the relationship of three parameters.  In the 
running/abnormal running state, the response time and loss 
probability are main factors, and mobility is important factor 
when the software is transferred. The automata model is 
software state transition on ubiquitous computing. The 
combination of two models provides the system 
characteristics which software is best on ubiquitous 
computing environment.  

VI. EXPERIMENT 
In this section, we test two cases [21]-[26]. In the first case, 

the completion time is measured as the number of task is 
increased when a user leaves out a lab and enters into another 
lab. The completion time means the loading and execution of 
task, and Microsoft PowerPoint is used as task.  

In the second case, the test of Shows that the completion 
time of general tasks with registration of AGF is larger than 
result. For the test, DOWS on AG is used through AGF as 
graphic mode. The completion time and frame rate is 
evaluated. Each evaluation shows the superiority of GCUCE. 

A. Task Completion Time 
Test of loading and execution of tasks as the number of 

task goes up in Fig. 7 shows. There is John who is a military 
analyst. Let us suppose that John is working the tasks at lab A 
(at Room A in Building A), and he registers his general tasks, 
which can be, used everywhere. He goes out lab A, and 
moves lab B (at Room B in Building B). We measure the 
completion time about loading and execution of task when 
John arrives at lab B as the number of task is increased. 

B. Evaluation with Enterprise Model 
Like scenario in Fig. 7, John wants to know the result 

when DOWS simulation [14], [17]-[18], [35] ends while he 
moves around building, and continues to do other works such 
as meeting, eating, etc.  

Currently, John is at lab B and registers DOWS and RTI on 
computation Grid, and executes the DOWS on RTI. After 
execution, he leaves out the lab, and will go into the meeting 
room (Room C in Building C) where is off 30 minutes away. 
The simulation will end 20 minutes later after execution, and 
is transferred to GCUCE as text result. When John will arrive 
at Room C in Building C, he will receive and analyze the 
result file. Access Grid is used. John is at Room C in Building 
C. Now, he joins into collaboration on AG and registers the 
SharedDOWS on AGF on GCUCE. 

He wants to see SharedDOWS and discusses the 
simulation states with other military analysts through 
multimedia conferencing. At the moment after some 
discussion, John must go to other place (Room D in Building 
D). When John moves to Room D in Building D, GCUCE 

makes the computing environment same at Room C in 
Building C that AG is executed and SharedDOWS is 
provided to him. For experiments, we used the AGTk2.4 and 
OpenGL, which are constructed on window-based system, 
while servers are based on Linux. Our implementation is 
accomplished on 6 PCs as clients, and 2 servers (Pentium IV 
1.7GHz). 

 

 
Fig. 7. Test of Shard DOWS on GCUCE 

 
The demand in GCUCE is increasing because the response 

time in automatic distribution test is shorter, loss rate in 
dynamic migration test is smaller, and mobility rate in 
dynamic migration test is higher. GCUCE is superior as the 
scale of simulation is increasing, although the time 
consumption of initialization has an effect on the state of 
small forces. GCUCE can utilize abundant computing power 
and adapt for various environments, as well as provide 
convenient user interface. This brings a fast response time, 
and the demand becomes larger. To verify the dynamic 
migration service, we execute a second experiment.  

In this test, we measured accumulated received packets 
updated by 600 forces per 30 second. One packet has the size 
of 100 bytes. In 70 minutes, we intentionally made a failure 
on one server. The information related to execution like 
object information is stored periodically, and then the 
application resigns from the execution. The application sends 
the stop message to applications before resignation. RM 
gathers the information, and DM sends the application to a 
selected host. The application sends the restart message to all 
applications and receives the data stored before failure. 
GCUCE can fulfill its mission after the failure, while the 
original DOWS is halted. The enterprise model shows that 
responses time and loss probability are decreased, mobility is 
increased, and the demand of this service is increased. 

C. Computation Grid Framework 
We use DOWS (Distributed Object-oriented Wargame 

Simulation) on RTI (RunTime Infrastructure) on Grid [18]. 
DOWS is an object-oriented simulation system based on a 
director-actor model, which can be mapped efficiently on 
object-oriented and distributed simulation. The existing RTIs, 
the software of HLA (High Level Architecture), do not 
consider coordinating and managing the resource for 
distributed simulation to complete the simulation efficiently 
and effectively. The RTI on Grid is a grid-enabled 
implementation of RTI solving the problems. 

Like the scenario in Fig. 7, John wants to know the result 
when DOWS simulation ends while he moves around the 



 
 

 

building, and continues to do other tasks.  Currently, John is 
at lab B and registers DOWS and RTI on computation Grid, 
and executes the DOWS on RTI. After execution, he leaves 
the lab, and will go into the meeting room (Room C in 
Building C), which is 30 minutes away. The simulation will 
end 20 minutes after execution, and is transferred to GCUCE 
as text result. 

When John arrives at Room C in Building C, he will 
receive and analyze the result file. For test, the 
implementation is accomplished on 4 PCs as clients, and 10 
clusters (5: Pentium IV 1.7GHz, 5: Pentium III 1.0GHz Dual) 
and one 486 computer as servers on a VO. Our experiments 
are accomplished to confirm key services of CGF. The first 
experiment is for the automatic distribution service. 

We organize the system, which has five servers (we 
assume that 486 computer is included as server, because of 
the limitation in local condition), and the GCUCE, which has 
a VO (Virtual Organization) of 11 servers (10 clusters and 
486 PC). Then, we estimated the complete time of simulation 
as the number of forces increases. As we expected, the 
resource selection of the GCUCE did not choose the 486 
computers. 

D. Access Grid Framework 
The DOWS system was modified and upgraded into 

SharedDOWS, which provides the shared view to all DOWS 
participants. The Access Grid [4], [6] supports shared 
applications sharing channel such as events channel for 
collaboration. Having event channel, the client of Access 
Grid can interact through communicating messages each 
other. Therefore, we needed shared application so that 
Shared DOWS combining DOWS into Access Grid is 
implemented. The Event Channel and the Application 
Service enable the Venue to provide a mechanism for 
discovery, coherence, and synchronization among 
application clients. 

1) Architecture of Shared DOWS 
When events are appeared, application client transfers 

their event information through events channel. After 
receiving the event information of other client, Shared 
Applications parse the information to apply to their state.  
  

 
Fig. 8. Architecture of Shared DOWS 

 
 
Moreover, the AGTk provides developers with a Shared 

Application Client; implemented in the SharedAppClient 

class creating shared applications. Shared applications 
should be run as one of the Venue Client Applications. In 
order to solve the problem, we also implemented a Relay 
Station, which has some handlers and message passing 
method as collaboration method between DOWS and Access 
Grid [4], [27]. 

In Fig. 8, we can show both Venue Server and Venue 
Client. It has to provide people many services such as 
synchronizing, authorizing and registering users and 
broadcasting data. In this project, two venues called Blue 
Team Venue and Red Team Venue are shown in the Venue 
Client. Entering team venue, you can show a process of 
simulation of your team using Shared DOWS. 

2) Tests on Access Grid 
In Fig. 9 shows the comparison between DOWS and 

SharedDOWS about the simulation completion time and 
frame rate. The result shows the almost same values, which 
prove the same system. However, SharedDOWS provides 
more additional functions than functions of DOWS. The 
SharedDOWS gives the additional functions of multimedia 
(audio, video) function and sharing view. The multimedia 
function makes the military join into the virtual spaces with 
audio and video, and conference with other military. The 
sharing view supplies that the military in other host can see 
the sharing view of applications on another host. 

 

 
Fig. 9. Performance Comparison between DOWS and SharedDOWS 

 
If a military want to see the 3D visualization of DOWS, it 

is possible to see the DOWS visualization through 
SharedDOWS. While the additional functions are added for 
SharedDOWS, the evaluation result is almost same as 
DOWS result. 

 

 
Fig. 10. Comparison of completion time to AGF 

 



 
 

 

Fig. 10 shows that the completion time of general tasks 
with registration of AGF is larger than result. This means that 
the loading and execution of AG environment takes one 
second more, and as the number of general tasks is increased, 
the loading and execution of AG environment takes more 
time. 

E. Evaluation with AGF  
Like scenario in Fig. 7, John wants to know the result 

when DOWS simulation [24]-[26] ends while he moves 
around building, and continues to do other works such as 
meeting, eating, etc.  

Currently, John is at lab B and registers DOWS and RTI on 
computation Grid, and executes the DOWS on RTI. After 
execution, he leaves out the lab, and will go into the meeting 
room (Room C in Building C) where is off 30 minutes away. 
The simulation will end 20 minutes later after execution, and 
is transferred to GCUCE as text result. 

When John will arrive at Room C in Building C, he will 
receive and analyze the result file. Access Grid is used. John 
is at Room C in Building C. Now, he joins into collaboration 
on AG and registers the SharedDOWS on AGF on GCUCE. 

 

 

 
Fig.11. Evaluation and result of GCUCE 

 
As shown in the result of experiment, the demand in 

GCUCE is increasing because the response time in automatic 
distribution test is shorter, loss rate in dynamic migration test 
is smaller, and mobility rate in dynamic migration test is 
higher. In Fig. 11 (a), GCUCE is superior as the scale of 
simulation is increasing, although the time consumption of 
initialization has an effect on the state of small forces. 
GCUCE can utilize abundant computing power and adapt for 
various environments, as well as provide convenient user 
interface. This brings a fast response time, and the demand 
becomes larger. To verify the dynamic migration service, we 
execute a second experiment.  

In this test, we measured accumulated received packets 
updated by 600 forces per 30 second. One packet has the size 
of 100 bytes. In 70 minutes, we intentionally made a failure 
on one server. The information related to execution like 
object information is stored periodically, and then the 
application resigns from the execution. The application sends 
the stop message to applications before resignation. RM 
gathers the information, and DM sends the application to a 
selected host. The application sends the restart message to all 
applications and receives the data stored before failure.  

As shown Fig. 11 (b), GCUCE can fulfill its mission after 
the failure, while the original DOWS is halted. The enterprise 
model shows that responses time and loss probabilities are 
decreased, mobility is increased, and the demand of this 
service is increased. 

VII. CONCLUSION 
We first have described the architecture of GCUCE that is 

the unified ubiquitous computing environment using grid 
computing. For collaborative computing, we develop the 
collaborative computing framework by supporting the real 
time video and audio stream using high-speed network, it can 
remote conference.  

After explanation of architecture, we suggested the 
enterprise model of software and automata model of software 
state. Two models for GCUCE provide the system 
characteristics, which are designed with the philosophy that 
supports software mobility among a number of devices for 
ubiquitous computing makes the system vastly more 
complex.           

The development for solution of the requirements as 
ubiquitous infrastructure is needed, and we have developed 
the GCUCE as the core module, which provides the 
automatic computing environment, and makes applications 
or services used everywhere.  

The enterprise model compares the service aspects among 
software, and provides the direction of good service. The 
automata model describes the software state transition on 
ubiquitous computing. The combination of two models 
provides the system characteristics which software is best on 
ubiquitous computing environment.  

For the traditional distributed computing model, we have 
developed two frameworks based on grid computing: 
Computation Grid Framework (CGF) and Access Grid 
Framework (AGF). For a large computation application, 
CGF provides the high performance-computing framework, 
which processes the real time data with high-speed 
computation through distributed resources using 
computation grid. For collaborative computing, AGF 
supplies the collaborative computing framework, which 
co-works the analysis, agreement and discussion among 
people with a lot of data using Access Grid. The framework 
gives the merits of collaboration with multimedia functions. 

The AGF is based on Venue, VenueClient, and Node. We 
have developed frameworks based on grid computing: 
Access Grid Framework (AGF) on DOWS system. For a 
large computation application, AGF supplies the 
collaborative computing framework, which co-works the 
analysis, agreement and discussion among the military with a 
lot of data using Access Grid. The framework gives the 
merits of collaboration with multimedia functions.  



 
 

 

The DOWS system was modified and upgraded into 
SharedDOWS, which provides the shared view to all DOWS 
participants. The Access Grid supports shared applications 
sharing channel such as events channel for collaboration. 
Having event channel, the client of Access Grid can interact 
through communicating messages each other.  

Therefore, we needed shared application so that Shared 
DOWS combining DOWS into Access Grid is implemented. 
Which is designed with the philosophy that supports 
application mobility among a number of devices for 
ubiquitous computing makes the system vastly more complex. 
The development for solution of the requirements as 
ubiquitous infrastructure is needed, and we have developed 
the GCUCE as the core modules, which provide the 
automatic computing environment, and makes applications 
or services, used everywhere.  

For GCUCE superiority, we did several experiments based 
on two models with military application on AG, including 
completion time, packet bytes, and frame rate. As a result, the 
experiments showed the good result of the performance. 
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