
 
 

 

  
Abstract— Finding association rules is one of the most 

investigated fields of data mining. Computation and 
communication are two important factors in distributed 
association rule mining. In this problem Association rules are 
generated by first mining of frequent itemsets in distributed 
data. In this paper we proposed a new distributed trie-based 
algorithm (DTFIM) to find frequent itemsets. This algorithm is 
proposed for a multi-computer environment. In second phase 
we added an idea from FDM algorithm for candidate 
generation step. Experimental evaluations on different sort of 
distributed data show the effect of using this algorithm and 
adopted techniques. 
 

Index Terms—Frequent itemset mining, FDM, Trie 
 

I. INTRODUCTION 
The association rule mining (ARM) is very important task 

within the area of data mining [1]. Given a set of transactions, 
where each transaction is a set of literals (called items), an 
association rule is an expression of the form X Y, where X 
and Y are sets of items. The intuitive meaning of such a rule 
is that transactions of the database which contain X tend to 
contain Y. An example of an association rule is: “30% of 
transactions that contain beer also contain diapers; 2% of all 
transactions contain both of these items". Here 30% is called 
the confidence of the rule, and 2% the support of the rule. The 
problem is to find all association rules that satisfy 
user-specified minimum support and minimum confidence 
constraints. Frequent patterns discovered via mining 
processes not only themselves are interesting, but also are 
useful to other data analysis and mining tasks, including 
associative classification, clustering, cube computation and 
analysis, and gradient mining and multi-dimensional 
discriminant analysis [19]. 

The main task of every ARM algorithm is to discover the 
sets of items that frequently appear together, the frequent 
itemsets.  Finding frequent itemsets in transaction databases 
has been demonstrated to be useful in several business 
applications [14].  
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Hipp et. al. [16] provides a general survey on efficient 
mining of association rules in transaction and/or relational 
databases. AIS [17], SETM [18] and Apriori [2] can be 
considered as the first generation of association rule mining 
algorithms. Apriori algorithm is by far the most well-known 
association rule mining algorithm. AprioriTID [2] is an 
extension of the basic Apriori approach. Instead of relying on 
the raw database, AprioriTID internally represents each 
transaction by current candidates it contains. In 
AprioriHybrid both Apriori and AprioriTID approaches are 
combined [2]. 

Many algorithms have been proposed to find frequent 
itemsets from a very large database. The number of database 
scans required for the task has been reduced from a number 
equal to the size of the largest itemset in Apriori [2], to 
typically just a single scan in modern ARM algorithms such 
as Sampling and DIC [3, 4]. Efficient mining of association 
rules in transaction And/or relational databases has been 
studied substantially. [2]- [6] 

When data is saved in a distributed database, a distributed 
data mining algorithm is needed to mine association rules. 
Mining association rules in distributed environment is a 
distributed problem and must be performed using a 
distributed algorithm that doesn’t need raw data exchange 
between participating sites. Distributed association rules 
mining (DARM), has been addressed by some researches and 
number of distributed algorithms have been proposed 
[9]-[13]. 

Apriori [2] is one of the most popular data mining 
approaches for finding frequent itemsets from transactional 
datasets. The Apriori algorithm is the main basis of many 
other well-known algorithms and implementations. The main 
challenge faced by the researchers in frequent itemset mining 
has been to reduce the execution time. One of the best 
implementation of apriori algorithm is published by Bodon 
[1]. We use Bodon sequential idea to provide a distributed 
algorithm. The main reason we adopted Bodon’s 
implementation for parallel computing is because Bodon’s 
implementation using the trie data structure outperforms the 
other implementations using hash tree [6]-[8]. In this 
algorithm a Trie-based structure has been used and has been 
constructed in each local site that at the end of each iteration 
all local sites synchronized their Tries. This algorithm called 
DTFIM (Distributed Trie-based frequent itemset mining). 

In next step, one of the ideas proposed in FDM [10] has 
been used to improve our implementation. This part has been 
embedded to main algorithm. The more skewed distributed 
database, the more efficiency of the technique is. 

The rest of the paper is organized as follows. Section 2 
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introduces related work on frequent itemsets mining. Section 
3 presents our implementation for DTFIM and revised 
DTFIM. Section 4 presents the experimental results of our 
implementation on a multi computer environment. Section 5 
concludes the paper. 

A. Notation and Problem Definition 
Let ܫ ൌ ሼ݅ଵ, ݅ଶ, … , ݅௠ሽ be the items in a certain domain. An 

itemset is a subset of I. A k-itemset is an itemset with k items 
from I. A database DB is a list of transactions where each 
transaction T is also a subset of I. 

Now assume that there are n sites ଵܵ, ܵଶ, … , ܵ௡  in a 
distributed system, which communicate by message passing. 
Let ܤܦതതതത ൌ ሼܤܦଵ, …,ଶܤܦ ,  ௡ሽ be a “horizontal” partition ofܤܦ
DB into n parts (where ځ ௜௡ܤܦ

௜ୀଵ ൌ ڂ and ׎ ௜௡ܤܦ
௜ୀଵ ൌ  .(ܤܦ

We allocate each ܤܦ௜ to the site ௜ܵ. 
For any itemset X and transaction T we say T contains X if 

and only if ܺ ك ܶ . For any itemset X and any group of 
transactions A, ܵݐݎ݋݌݌ݑሺܺ,  ሻ is the number of transactionsܣ
in A which contain X. We call ܵݐݎ݋݌݌ݑሺܺ,  ሻ the globalܤܦ
support count of the itemset X in the database DB and 
,ሺܺݐݎ݋݌݌ݑܵ  ௜ሻ the local support count of X at site ௜ܵ. Forܤܦ
a given minimum support threshold s, X is globally large (or 
globally frequent) if  ܵݐݎ݋݌݌ݑሺܺ, ሻܤܦ ൒ ݏ ൈ  where D is ,ܦ
the number of transactions in database DB; correspondingly 
X is locally large (or locally frequent) at site ௜ܵ  if 
,ሺܺݐݎ݋݌݌ݑܵ ௜ሻܤܦ ൒ ݏ ൈ ௜ܦ , where ܦ௜  is the number of 
transactions in database partition ܤܦ௜ . In the following, L 
denotes the globally large itemsets in DB, and ܮሺ௞ሻ  the 
globally large k-itemsets in L. The essential task of a 
distributed association rule mining algorithm is to find the 
globally large itemsets L. 

 

II. PREVIOUS WORK 
Since its introduction in 1993 [1], many algorithms with 
different approaches have been suggested for the ARM 
problem. Here we review some of the related work that form 
a basis for our algorithm. 

A. The Apriori Algorithm 
The Apriori algorithm is proposed by Agrewal in [2] and is 
the basis for many other FIM algorithms. 
In the first pass, the occurrences of each item is being counted 
and the items with insufficient support get removed to create 
 .ሺଵሻ, the collection of large 1-itemsetsܮ
A subsequent pass, say pass k, consists of two steps: 

• The large (k-1)-itemsets collection ܮሺ௞ିଵሻ found in 
the previous pass is used to generate ܥ௞, the list of 
candidate k-itemsets; which is a superset of the set of 
all large k-itemsets. A candidate is generated from 
every two large (k-1)-itemsets which are similar in 
their first k-2 items. Then, the candidates that have 
an infrequent subset are removed from the set of 
candidates. 

• The database is scanned and the support count for 
each candidate itemset in ܥ௞ is determined. 
Removing items with support counts less than the 
minimum required gives us the large k-itemsets 
 .(ሺ௞ሻܮ)

B. The Trie-based Apriori 
Bodon shows that using efficient data structures and 

implementation is very important in improving the 
performance of Apriori algorithm [6]. He proposed a fast 
Apriori implementation using the trie data structure instead 
of a hash tree which was used in the classical approaches. 

A trie is a rooted, labeled tree. In the FIM setting each label 
is an item. The root is defined to be at depth 0 and a node at 
depth d can point to nodes at depth d+1. A pointer is also 
referred to as edge or link. Each node represents an item 
sequence that is the concatenation of labels of the edges that 
are on the path from the root to the node. So a path from root 
to each node represents an itemset. In this implementation, 
the value of each node is the support count for the itemset it 
represents. In Fig.1 a trie is displayed. The path to the node 
representing itemset ሼܣ,  ሽ is shown in blue. The supportܤ
count for this itemset is 7. 
 

 
Fig.1  A sample trie 

 

For each transaction record T in the database the trie 
(containing the candidate itemsets) is recursively traversed 
and the value of each leaf node will be incremented if T 
contains the itemset represented by that node. The traverse of 
the trie is driven by elements of T. At the end, nodes whit a 
support count less than the required minimum will be pruned. 

In the candidate generation phase, we just need to add a 
leaf node to its left siblings to create new valid candidates, 
eliminating the need for further processing. In Fig.2 shows a 
trie structure before and after the new candidates are 
generated. 
 

 
Fig.2  Candidate generation on a trie data structure 

 

C. The FDM Algorithm 
We used an idea proposed by FDM [10] to improve 
performance on CD [9]. If itemset X is globally frequent, 

(a) before (b) after 
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there is at least one site ௜ܵ in which all subsets of X are locally 
frequent. For a proof to this lemma see [10]. Therefore, if we 
cannot find at least one site ௜ܵ in which all subsets of X are 
locally frequent, X is not globally frequent and we can prune 
it. 
 

III. OUR IMPLEMENTATION 
The point of this algorithm is that every site keeps a copy 

of trie locally, and they synchronize their data so that all local 
trie copies are the same at the end of each stage. After local 
support is counted, all sites share their support counts and 
determine the global support counts, in order to remove 
infrequent itemsets from their local trie. 

A. The DTFIM Algorithm 
At the beginning, each site scans its local database 

independently, and determines the local count of items 
(1-itemsets). For this purpose, a vector is used to keep count 
of every item. Each site reads its local transaction records one 
by one and increase the count of items accordingly. At the 
end of this stage, sites synchronize their data to determine 
globally large 1-itemsets ( Lሺଵሻ ). Using Lሺଵሻ  each site 
initializes its local trie copy; thus local trie copies are all alike 
at the end of the pass. 

At second pass, the support counts for 2-itemsets shall be 
calculated. For this purpose a two-dimensional array is 
created in each site. Like Bodon, we used a triangular 
structure to better utilize memory. Unlike future passes, for 
each transaction record T, we determine all 2-itemsets that 
are subsets of T and increase their count. At the end, the 
counts are synchronized and global support count for 
2-itemsets is calculated, and each site inserts large 2-itemsets 
into its local trie copy. 

From here on, in each pass k (k≥3) a candidate large 
k-itemset collection (C୩) is created from the list of large 
(k-1)-itemsets created in the previous pass (Lሺ୩ିଵሻ). Each site 
generates its own local copy of C୩, and as the results are 
uniform at the end of each pass, so will be the list of created 
candidates. As with the sequential trie-based Apriori, we add 
every leaf node to its left sibling nodes in the trie. 

Now we must prune the infrequent k-itemsets from C୩. To 
reach this goal, for each transaction record T in local 
database, each site traverses its trie recursively and finds 
leaves; if T contains the k-itemset represented by a leaf, the 
support count on that node is increased. 

Before we can prune infrequent itemsets from C୩ we have 
to synchronize local support counts. Each site uses the same 
depth-first traversal algorithm to find leaves and put their 
values (local support counts) into a vector, ensuring uniform 
order in all the sites. Therefore, only the new support count 
values from the trie are being transferred between sites. 

For the pruning step, each site does a depth-first traversal 
of the trie one more time, updating the value of each leaf node 
upon traversing it with the value from the global support 
counts vector and removing the itemset if its support count 
does not satisfy the minimum required. The output of this 
step will be Lሺ୩ሻ and is uniform in every site. 

Figure 3 shows a simple illustration of DTFIM algorithm. 
 

 
 

Fig.3 A Schema of DTFIM algorithm 
 

B. The Revised DTFIM 
In DTFIM algorithm, if we can predict and remove an 

infrequent itemset X from C୩  before each site starts to 
calculate its local support counts, we save the time needed to 
process X for every T in transaction records database on 
every site, just to find out that X is an infrequent itemset later. 
One technique to predict an itemset X is infrequent is 
proposed by FDM and discussed in section 2.3. If X is 
globally frequent, there is at least one site in which all subsets 
of X are locally frequent. 

We revised our algorithm to use this theorem, as it would 
not impose extra processing time and would give a 
considerable performance boost in most cases. We added a 
local frequency indicator bit vector to each trie node, each bit 
j of this vector signifying whether the corresponding itemset 
is locally large in site j or not. Each site updates its own bit at 
the end of every support counting step and sends it along with 
local support counts. At the candidate generation step we do 
not candidate a k-itemset if by examining the local frequency 
indicators of its subset (k-1)-itemsets we find out there is no 
site in which all of the subsets are frequent. 

Fig.4 (a) shows how the local frequency indicator for an 
itemset is created. Each site contributes its own bit. In Fig.4 
(b) local frequency indicators for all 3-itemset subsets of an 
example itemset ሼA, B, C, Dሽ is displayed. In this case there is 
site 1 in which all of these subsets are frequent, so ሼA, B, C, Dሽ 
is a candidate large itemset. 
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Fig.4 Local frequency indicator creation and usage 

IV. EXPERIMENTAL RESULTS 
We have implemented all programs in C++ using Visual 

Studio 2005. The implementations have been tested on a 
workstation for which Windows XP is running on every 
node. This workstation consists of eight 3.4GHz Pentium IV 
PC with 512 MB of main memory, which are interconnected 
via 10M/100M hub. Parallel message passing software 
MPICH 2(.Net version) is used here [15]. To empirically 
evaluate the effect of using proposed technique several tests 
are performed on the datasets kosarak, accident and 
T40I10D100K. These datasets are available on FIM 
repositoryi. 

Proposed algorithm is implemented and tested in our 
environment. The communication and computation are 
measured with various numbers of nodes and various 
minimum support values. In every experiment the original 
dataset is horizontally divided in a number of fragments, each 
of them is assigned on a node. 

In Table 1, 2 and 3 experimental results for three samples 
database is shown. Each column shows the result of 
algorithm for various numbers of sites and every row 
illustrates one minimum support. "1 site" column represents 
sequential results. 

In fig.5, fig.6 and fig.7, there are three experimental result 
diagram of our implementation in various numbers of sites to 
show speed up. First figure show results on kosarak database 
by support threshold equals to 0.00171. And second figure 
illustrate the results by database T40I10D100K and support 
0.0009. Third figure, fig.7, shows result for database accident 
with support threshold equal to 0.49973. 

 

V. CONCLUSION  
Frequent itemsets mining is one of the most important 

areas of data mining. Bodon presented an implementation 
that solved frequent itemsets mining problem in most cases 
faster than other well-known implementations. In this paper, 
we used the Bodon’s ideas for design an algorithm to 

distributed computing in a no shared memory multi computer 
environment. The proposed algorithm is revised with some 
FDM algorithm ideas. In some cases these adopted 
techniques causes more efficiency. Our experimental results 
show the efficiency of proposed algorithm. These results 
show Trie data structure can be used for distributed 
association rule mining not just for sequential algorithms. 

 
Table 1  Execution times of  DTFIM for database kosarak 
minimum

support 
1 site  2 sites  4 sites  8 sites 

0.04848  16.91  8.61  4.33  2.22 

0.00303  22.38  11.31  5.8  3 

0.00202  34.81  17.75  9.16  4.98 

0.00171  89.25  45.6  24.49  14.13 

0.000121  173.75  92.02  49.93  29.25 

0.00091  552.137  287.29  165.67  101.7 

 

Table 2  Execution times of  DTFIM for database 
T40I10D100K 

minimum

support 
1 site  2 sites  4 sites  8 sites 

0.03  9.52  4.80  2.44  1.28 

0.01  37.90  20.03  11.32  6.90 

0.009  119.91  63.17  36.73  23.08 

0.008  148.62  77.82  45.96  29.23 

0.0058  297.91  156.90  94.17  62.01 

 

Table 3  Execution times of  DTFIM for database 
accident 

minimum

support 
1 site  2 sites  4 sites  8 sites 

0.61731  21.85  11.22  5.85  3.11 

0.49973  33.55  19.53  11.60  7.02 

0.41154  119.74  74.47  45.62  27.59 
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Fig.5 Execution times for database kosarak with minimum 

support threshold of 0.00171 
 
 

 
Fig.6 Execution times for database T40I10D100K with 

minimum support threshold of 0.0009 
 
 

 
Fig.7 Execution times for database accident with minimum 

support threshold of 0.49973 
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