

Abstract— Finding association rules is one of the most

investigated fields of data mining. Computation and
communication are two important factors in distributed
association rule mining. In this problem Association rules are
generated by first mining of frequent itemsets in distributed
data. In this paper we proposed a new distributed trie-based
algorithm (DTFIM) to find frequent itemsets. This algorithm is
proposed for a multi-computer environment. In second phase
we added an idea from FDM algorithm for candidate
generation step. Experimental evaluations on different sort of
distributed data show the effect of using this algorithm and
adopted techniques.

Index Terms—Frequent itemset mining, FDM, Trie

I. INTRODUCTION
The association rule mining (ARM) is very important task

within the area of data mining [1]. Given a set of transactions,
where each transaction is a set of literals (called items), an
association rule is an expression of the form X Y, where X
and Y are sets of items. The intuitive meaning of such a rule
is that transactions of the database which contain X tend to
contain Y. An example of an association rule is: “30% of
transactions that contain beer also contain diapers; 2% of all
transactions contain both of these items". Here 30% is called
the confidence of the rule, and 2% the support of the rule. The
problem is to find all association rules that satisfy
user-specified minimum support and minimum confidence
constraints. Frequent patterns discovered via mining
processes not only themselves are interesting, but also are
useful to other data analysis and mining tasks, including
associative classification, clustering, cube computation and
analysis, and gradient mining and multi-dimensional
discriminant analysis [19].

The main task of every ARM algorithm is to discover the
sets of items that frequently appear together, the frequent
itemsets. Finding frequent itemsets in transaction databases
has been demonstrated to be useful in several business
applications [14].

Manuscript received July 22, 2008.
Ebrahim Ansari Chelche is Msc Student of Computer Science and

Engineering Department, Shiraz University, Shiraz, Iran. (email:
ansari@cse.shirazu.ac.ir)

G.H. Dastghaibifard is assistant professor of Computer Science and
Engineering Department, Shiraz University, Shiraz, Iran. (email:
dstghaib@shirazu.ac.ir)

Morteza Keshtkaran is Msc Student of Computer Science and
Engineering Department, Shiraz University, Shiraz, Iran. (email:
mkeshtkaran@cse.shirazu.ac.ir)

Hani Kaabi. (email: hani@sei.ir)

Hipp et. al. [16] provides a general survey on efficient
mining of association rules in transaction and/or relational
databases. AIS [17], SETM [18] and Apriori [2] can be
considered as the first generation of association rule mining
algorithms. Apriori algorithm is by far the most well-known
association rule mining algorithm. AprioriTID [2] is an
extension of the basic Apriori approach. Instead of relying on
the raw database, AprioriTID internally represents each
transaction by current candidates it contains. In
AprioriHybrid both Apriori and AprioriTID approaches are
combined [2].

Many algorithms have been proposed to find frequent
itemsets from a very large database. The number of database
scans required for the task has been reduced from a number
equal to the size of the largest itemset in Apriori [2], to
typically just a single scan in modern ARM algorithms such
as Sampling and DIC [3, 4]. Efficient mining of association
rules in transaction And/or relational databases has been
studied substantially. [2]- [6]

When data is saved in a distributed database, a distributed
data mining algorithm is needed to mine association rules.
Mining association rules in distributed environment is a
distributed problem and must be performed using a
distributed algorithm that doesn’t need raw data exchange
between participating sites. Distributed association rules
mining (DARM), has been addressed by some researches and
number of distributed algorithms have been proposed
[9]-[13].

Apriori [2] is one of the most popular data mining
approaches for finding frequent itemsets from transactional
datasets. The Apriori algorithm is the main basis of many
other well-known algorithms and implementations. The main
challenge faced by the researchers in frequent itemset mining
has been to reduce the execution time. One of the best
implementation of apriori algorithm is published by Bodon
[1]. We use Bodon sequential idea to provide a distributed
algorithm. The main reason we adopted Bodon’s
implementation for parallel computing is because Bodon’s
implementation using the trie data structure outperforms the
other implementations using hash tree [6]-[8]. In this
algorithm a Trie-based structure has been used and has been
constructed in each local site that at the end of each iteration
all local sites synchronized their Tries. This algorithm called
DTFIM (Distributed Trie-based frequent itemset mining).

In next step, one of the ideas proposed in FDM [10] has
been used to improve our implementation. This part has been
embedded to main algorithm. The more skewed distributed
database, the more efficiency of the technique is.

The rest of the paper is organized as follows. Section 2

Distributed Frequent Itemset Mining using Trie
Data Structure

E. Ansari, G.H. Dastghaibifard, M. Keshtkaran, H.Kaabi

introduces related work on frequent itemsets mining. Section
3 presents our implementation for DTFIM and revised
DTFIM. Section 4 presents the experimental results of our
implementation on a multi computer environment. Section 5
concludes the paper.

A. Notation and Problem Definition
Let ܫ ൌ ሼ݅ଵ, ݅ଶ, … , ݅௠ሽ be the items in a certain domain. An

itemset is a subset of I. A k-itemset is an itemset with k items
from I. A database DB is a list of transactions where each
transaction T is also a subset of I.

Now assume that there are n sites ଵܵ, ܵଶ, … , ܵ௡ in a
distributed system, which communicate by message passing.
Let ܤܦതതതത ൌ ሼܤܦଵ, …,ଶܤܦ , ௡ሽ be a “horizontal” partition ofܤܦ
DB into n parts (where ځ ௜௡ܤܦ

௜ୀଵ ൌ ڂ and ׎ ௜௡ܤܦ
௜ୀଵ ൌ .(ܤܦ

We allocate each ܤܦ௜ to the site ௜ܵ.
For any itemset X and transaction T we say T contains X if

and only if ܺ ك ܶ . For any itemset X and any group of
transactions A, ܵݐݎ݋݌݌ݑሺܺ, ሻ is the number of transactionsܣ
in A which contain X. We call ܵݐݎ݋݌݌ݑሺܺ, ሻ the globalܤܦ
support count of the itemset X in the database DB and
,ሺܺݐݎ݋݌݌ݑܵ ௜ሻ the local support count of X at site ௜ܵ. Forܤܦ
a given minimum support threshold s, X is globally large (or
globally frequent) if ܵݐݎ݋݌݌ݑሺܺ, ሻܤܦ ൒ ݏ ൈ where D is ,ܦ
the number of transactions in database DB; correspondingly
X is locally large (or locally frequent) at site ௜ܵ if
,ሺܺݐݎ݋݌݌ݑܵ ௜ሻܤܦ ൒ ݏ ൈ ௜ܦ , where ܦ௜ is the number of
transactions in database partition ܤܦ௜ . In the following, L
denotes the globally large itemsets in DB, and ܮሺ௞ሻ the
globally large k-itemsets in L. The essential task of a
distributed association rule mining algorithm is to find the
globally large itemsets L.

II. PREVIOUS WORK
Since its introduction in 1993 [1], many algorithms with
different approaches have been suggested for the ARM
problem. Here we review some of the related work that form
a basis for our algorithm.

A. The Apriori Algorithm
The Apriori algorithm is proposed by Agrewal in [2] and is
the basis for many other FIM algorithms.
In the first pass, the occurrences of each item is being counted
and the items with insufficient support get removed to create
 .ሺଵሻ, the collection of large 1-itemsetsܮ
A subsequent pass, say pass k, consists of two steps:

• The large (k-1)-itemsets collection ܮሺ௞ିଵሻ found in
the previous pass is used to generate ܥ௞, the list of
candidate k-itemsets; which is a superset of the set of
all large k-itemsets. A candidate is generated from
every two large (k-1)-itemsets which are similar in
their first k-2 items. Then, the candidates that have
an infrequent subset are removed from the set of
candidates.

• The database is scanned and the support count for
each candidate itemset in ܥ௞ is determined.
Removing items with support counts less than the
minimum required gives us the large k-itemsets
 .(ሺ௞ሻܮ)

B. The Trie-based Apriori
Bodon shows that using efficient data structures and

implementation is very important in improving the
performance of Apriori algorithm [6]. He proposed a fast
Apriori implementation using the trie data structure instead
of a hash tree which was used in the classical approaches.

A trie is a rooted, labeled tree. In the FIM setting each label
is an item. The root is defined to be at depth 0 and a node at
depth d can point to nodes at depth d+1. A pointer is also
referred to as edge or link. Each node represents an item
sequence that is the concatenation of labels of the edges that
are on the path from the root to the node. So a path from root
to each node represents an itemset. In this implementation,
the value of each node is the support count for the itemset it
represents. In Fig.1 a trie is displayed. The path to the node
representing itemset ሼܣ, ሽ is shown in blue. The supportܤ
count for this itemset is 7.

Fig.1 A sample trie

For each transaction record T in the database the trie
(containing the candidate itemsets) is recursively traversed
and the value of each leaf node will be incremented if T
contains the itemset represented by that node. The traverse of
the trie is driven by elements of T. At the end, nodes whit a
support count less than the required minimum will be pruned.

In the candidate generation phase, we just need to add a
leaf node to its left siblings to create new valid candidates,
eliminating the need for further processing. In Fig.2 shows a
trie structure before and after the new candidates are
generated.

Fig.2 Candidate generation on a trie data structure

C. The FDM Algorithm
We used an idea proposed by FDM [10] to improve
performance on CD [9]. If itemset X is globally frequent,

(a) before (b) after

7

9

A

B

there is at least one site ௜ܵ in which all subsets of X are locally
frequent. For a proof to this lemma see [10]. Therefore, if we
cannot find at least one site ௜ܵ in which all subsets of X are
locally frequent, X is not globally frequent and we can prune
it.

III. OUR IMPLEMENTATION
The point of this algorithm is that every site keeps a copy

of trie locally, and they synchronize their data so that all local
trie copies are the same at the end of each stage. After local
support is counted, all sites share their support counts and
determine the global support counts, in order to remove
infrequent itemsets from their local trie.

A. The DTFIM Algorithm
At the beginning, each site scans its local database

independently, and determines the local count of items
(1-itemsets). For this purpose, a vector is used to keep count
of every item. Each site reads its local transaction records one
by one and increase the count of items accordingly. At the
end of this stage, sites synchronize their data to determine
globally large 1-itemsets (Lሺଵሻ). Using Lሺଵሻ each site
initializes its local trie copy; thus local trie copies are all alike
at the end of the pass.

At second pass, the support counts for 2-itemsets shall be
calculated. For this purpose a two-dimensional array is
created in each site. Like Bodon, we used a triangular
structure to better utilize memory. Unlike future passes, for
each transaction record T, we determine all 2-itemsets that
are subsets of T and increase their count. At the end, the
counts are synchronized and global support count for
2-itemsets is calculated, and each site inserts large 2-itemsets
into its local trie copy.

From here on, in each pass k (k≥3) a candidate large
k-itemset collection (C୩) is created from the list of large
(k-1)-itemsets created in the previous pass (Lሺ୩ିଵሻ). Each site
generates its own local copy of C୩, and as the results are
uniform at the end of each pass, so will be the list of created
candidates. As with the sequential trie-based Apriori, we add
every leaf node to its left sibling nodes in the trie.

Now we must prune the infrequent k-itemsets from C୩. To
reach this goal, for each transaction record T in local
database, each site traverses its trie recursively and finds
leaves; if T contains the k-itemset represented by a leaf, the
support count on that node is increased.

Before we can prune infrequent itemsets from C୩ we have
to synchronize local support counts. Each site uses the same
depth-first traversal algorithm to find leaves and put their
values (local support counts) into a vector, ensuring uniform
order in all the sites. Therefore, only the new support count
values from the trie are being transferred between sites.

For the pruning step, each site does a depth-first traversal
of the trie one more time, updating the value of each leaf node
upon traversing it with the value from the global support
counts vector and removing the itemset if its support count
does not satisfy the minimum required. The output of this
step will be Lሺ୩ሻ and is uniform in every site.

Figure 3 shows a simple illustration of DTFIM algorithm.

Fig.3 A Schema of DTFIM algorithm

B. The Revised DTFIM
In DTFIM algorithm, if we can predict and remove an

infrequent itemset X from C୩ before each site starts to
calculate its local support counts, we save the time needed to
process X for every T in transaction records database on
every site, just to find out that X is an infrequent itemset later.
One technique to predict an itemset X is infrequent is
proposed by FDM and discussed in section 2.3. If X is
globally frequent, there is at least one site in which all subsets
of X are locally frequent.

We revised our algorithm to use this theorem, as it would
not impose extra processing time and would give a
considerable performance boost in most cases. We added a
local frequency indicator bit vector to each trie node, each bit
j of this vector signifying whether the corresponding itemset
is locally large in site j or not. Each site updates its own bit at
the end of every support counting step and sends it along with
local support counts. At the candidate generation step we do
not candidate a k-itemset if by examining the local frequency
indicators of its subset (k-1)-itemsets we find out there is no
site in which all of the subsets are frequent.

Fig.4 (a) shows how the local frequency indicator for an
itemset is created. Each site contributes its own bit. In Fig.4
(b) local frequency indicators for all 3-itemset subsets of an
example itemset ሼA, B, C, Dሽ is displayed. In this case there is
site 1 in which all of these subsets are frequent, so ሼA, B, C, Dሽ
is a candidate large itemset.

Pass 1

Pass 2

Pass K

…

Pass 1

Pass 2

Pass 3

…

Process 1 Process n . . .

DTFIM

Fig.4 Local frequency indicator creation and usage

IV. EXPERIMENTAL RESULTS
We have implemented all programs in C++ using Visual

Studio 2005. The implementations have been tested on a
workstation for which Windows XP is running on every
node. This workstation consists of eight 3.4GHz Pentium IV
PC with 512 MB of main memory, which are interconnected
via 10M/100M hub. Parallel message passing software
MPICH 2(.Net version) is used here [15]. To empirically
evaluate the effect of using proposed technique several tests
are performed on the datasets kosarak, accident and
T40I10D100K. These datasets are available on FIM
repositoryi.

Proposed algorithm is implemented and tested in our
environment. The communication and computation are
measured with various numbers of nodes and various
minimum support values. In every experiment the original
dataset is horizontally divided in a number of fragments, each
of them is assigned on a node.

In Table 1, 2 and 3 experimental results for three samples
database is shown. Each column shows the result of
algorithm for various numbers of sites and every row
illustrates one minimum support. "1 site" column represents
sequential results.

In fig.5, fig.6 and fig.7, there are three experimental result
diagram of our implementation in various numbers of sites to
show speed up. First figure show results on kosarak database
by support threshold equals to 0.00171. And second figure
illustrate the results by database T40I10D100K and support
0.0009. Third figure, fig.7, shows result for database accident
with support threshold equal to 0.49973.

V. CONCLUSION
Frequent itemsets mining is one of the most important

areas of data mining. Bodon presented an implementation
that solved frequent itemsets mining problem in most cases
faster than other well-known implementations. In this paper,
we used the Bodon’s ideas for design an algorithm to

distributed computing in a no shared memory multi computer
environment. The proposed algorithm is revised with some
FDM algorithm ideas. In some cases these adopted
techniques causes more efficiency. Our experimental results
show the efficiency of proposed algorithm. These results
show Trie data structure can be used for distributed
association rule mining not just for sequential algorithms.

Table 1 Execution times of DTFIM for database kosarak
minimum

support
1 site 2 sites 4 sites 8 sites

0.04848 16.91 8.61 4.33 2.22

0.00303 22.38 11.31 5.8 3

0.00202 34.81 17.75 9.16 4.98

0.00171 89.25 45.6 24.49 14.13

0.000121 173.75 92.02 49.93 29.25

0.00091 552.137 287.29 165.67 101.7

Table 2 Execution times of DTFIM for database
T40I10D100K

minimum

support
1 site 2 sites 4 sites 8 sites

0.03 9.52 4.80 2.44 1.28

0.01 37.90 20.03 11.32 6.90

0.009 119.91 63.17 36.73 23.08

0.008 148.62 77.82 45.96 29.23

0.0058 297.91 156.90 94.17 62.01

Table 3 Execution times of DTFIM for database
accident

minimum

support
1 site 2 sites 4 sites 8 sites

0.61731 21.85 11.22 5.85 3.11

0.49973 33.55 19.53 11.60 7.02

0.41154 119.74 74.47 45.62 27.59

ACKNOWLEDGMENT
The Authors thank ITRC (Iranian Telecommunication

Research Center) for their financial support. And thanks
F.Alimardani for her assistance.

1 0 1 0

Site 3 Site 2 Site 1 Site 0

Itemset is frequent
at site 3

frequent not frequent not frequent

(a)

1 0 1 0

0 0 1 0

1 1 1 0

0 0 1 1

(b)

{A,B,C}

{A,B,D}

{A,C,D}

{B,C,D}

Fig.5 Execution times for database kosarak with minimum

support threshold of 0.00171

Fig.6 Execution times for database T40I10D100K with

minimum support threshold of 0.0009

Fig.7 Execution times for database accident with minimum

support threshold of 0.49973

REFERENCES
[1] R.Agrawal, T.Imielinski and A.Swami. Mining association rules

between sets of items in large databases. In Proc. of the ACM
SIG-MOD Conference on Management of Data, 1993, pp 207-216.

[2] R. Agrawal and R. Srikant, Fast Algorithms for Mining Association
Rules, Proceedings of the 20th International Conference on Very
Large Data Bases, 1994, pp. 487-499.

[3] H. Toivonen, T.M. Vijayaraman, A.P. Buchmann, C. Mohan, and N.L.
Sarda, Sampling large databases for association rules, In Proceedings
22nd International Conference on Very Large Data Bases, 1996, pages
134–145.

[4] S. Brin, R. Motwani, J.D. Ullman, and S. Tsur. Dynamic itemset
counting and implication rules for market basket data. In Proceedings
of the 1997 ACM SIGMOD International Conference on Management
of Data, Vol.26(2) of SIGMOD Record, 1997, pp 255–264.

[5] J.Han, J.Pie,Y.Yin and R.Mao. Mining frequent pattern without
candidate generation: A frequent-pattern tree approach. Data Mining
and knowledge discovery, 2003.

[6] F. Bodon, “A Fast Apriori Implementation,” In B. Goethals and M. J.
Zaki, editors, Proceedings of the IEEE ICDM Workshop on Frequent
Itemset Mining Implementations, Vol. 90 of CEUR Workshop
Proceedings, 2003.

[7] F. Bodon, “Surprising Results of Trie-based FIM Algorithm,” In B.
Goethals, M. J. Zaki, and R. Bayardo, editors, Proceedings of the IEEE
ICDM Workshop on Frequent Itemset Mining Implementations, Vol.
90 of CEUR Workshop Proceedings, 2004.

[8] F. Bodon, A Survey on Frequent Itemset Mining, Technical Report,
Budapest University of Technology and Economic, 2006.

[9] R.Agrawal and J.Shafer. Parallel mining of association rules. IEEE
Transaction on Knowledge and Data Engineering, Vol.8, No.6, 1996,
pp 962-969.

[10] D. W. Cheung, and et al, A Fast Distributed Algorithm for Mining
Association Rules. In Proc. Parallel and Distributed Information
Systems, IEEE CS Press, 1996, pp 31-42.

[11] A. Schuster and R. Wolf, Communication-Efficient Distributed Mining
of Association Rules, In Proc. ACM SIGMOD International
Conference on Management of Data, ACM Press, 2001, pp 473-484.

[12] A. Schuster, R. Wolf, and D. Trock. A High-Performance Distributed
Algorithm for Mining Association Rules, Knowledge And Information
Systems (KAIS) Journal, Vo.7, No.4, 2005.

[13] M. Z Ashrafi, D. Taniar and K. Smith, ODAM: an Optimized
Distributed Association Rule Mining Algorithm, IEEE Distributed
Systems Online, Vol. 5, No.3, 2004.

[14] M. S. Chen, J. Han, and P. S. Yu, “Data Mining: An Overview from a
Database Perspective, IEEE Transactions on Knowledge and Data
Engineering, Vol. 8, No. 6, 1996, pp. 866-883.

[15] M. Snir, S. Otto, S. Huss-Lederman, D.Walker, J. Dongarra, MPI: The
Complete Reference, The MIT Press, 1996

[16] J. Hipp, Ulrich Güntzer, Gholamreza Nakhaeizadeh, Algorithms for
association rule mining - a general survey and comparison, ACM
SIGKDD Explorations Newsletter, 2000, Volume 2, Issue 1, pages
58-64

[17] R. Agrawal, T. Imielinski, A. Swami, Mining association rules
between sets of items in large databases, in: Proceedings 1993 ACM
SIGMOD Intl. Conf. on Management of Data, Washington, DC, May
1993, pp. 207–216.

[18] Maurice Houtsma, Arun Swami, Set-oriented data mining in relational
databases, Data & Knowledge Engineering, Volume 17, Issue
3, December 1995, Pages 245-262

[19] Jiawei Han, Hong Cheng, Dong Xin, Xifeng Yan, Frequent pattern
mining: current status and future directions, Data Mining and
Knowledge Discovery, Volume 15, 2007, 55-86

i http://fimi.cs.helsinki.fi/data/

0

10

20

30

40

50

60

70

80

90

100

1 Site
(Sequential)

2 Sites 4 Sites 8 Sites

Ex
ec
ut
io
n
ti
m
e
(s
)

0

20

40

60

80

100

120

140

1 Site
(Sequential)

2 Sites 4 Sites 8 Sites

Ex
ec
ut
io
n
ti
m
e
(s
)

0

5

10

15

20

25

30

35

40

1 Site
(Sequential)

2 Sites 4 Sites 8 Sites

Ex
ec
ut
io
n
ti
m
e
(s
)

