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The Discovery of Coherent Rules
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Abstract—Typically, before association rules are mined, a

user needs to determine a support threshold in ordeo obtain

only the frequent item sets. Having users to deterime a support
threshold attracts a number of issues. We propose na
association rule mining framework that does not regire a

pre-set support threshold. The framework is developd based
on implication of propositional logic. The experimats show
that our approach is able to identify meaningful asociation
rules within an acceptable execution time.

Index Terms—association rule mining, propositional logic,
implication, threshold free.

. INTRODUCTION

Association Rule Mining (ARM) is a learning techué
that has the advantage of discovering knowledgleoutitthe
need to undergo a training process [1]. It is usediscover

rules from a dataset, and each rule discovered itsas
importance measured against many interest meagffes

such asupportandconfidence

Although ARM technique does not involve mo
selection, it necessitates a cut-off support tholeshio be
predefined to separate frequent patterns fromrnfrequent
ones. Two item sets are said todwsociatedf they occur

together frequently above a minimum support thriesho

value. There are major disadvantages to havingaefined
threshold. Firstly, some rules are inevitably ibgte support
threshold is set inaccurately. In addition, it sually not
possible to remove the support threshold in ordefirtd

infrequent items because ARM relies on a downwhosuce

implementation of the framework and a discussiorthef
results is presented in section 4. Finally, conoluss made
in section 5.

Il. PREVIOUSWORK

Recently, mining infrequent rules start to gain neotam
as many have begun to accept that rules basedrequently
occurring items are also important because it sEmEs
knowledge not found in frequent rules, and thefedguent
rules are often interesting [3], [4], [5], [6], [7Association
among infrequent items have been relatively ignobogd
association mining algorithm mainly due to the peai of
the large search space and the consequent exploisiotal
number of association rules reported [3], [4], [6], [7], [8] ,
[9]. Some of these reported rules may in fact beelaon
noise in the data. However, there have been sotemgis
towards finding infrequent association rules, sash[10],
where a generalised association framework usinggletion
is proposed. Correlation is measured by Pearsoo&xifess
of Fit Chi Square measure. However, this chi-squagasure

delsuffers from the limitation of measuring the asation

inaccurately at small expected values, if one efdkpected
values is lower than the value five [10]. In preetithis is
often being observed. This limit the use of a Chi@g based
framework. In addition, the authors’ algorithm eslion a
modified support hence, is not really suitable iodf
infrequent rules except the ones that are aboveeshold.
[11] finds independent rules measured by inteleste(age)
and below a minimum support threshold. Authord it plso

use the measure in [12], which is derived from eation,

property ofsupport which necessitates a threshold to searcdid Necessitates a minimum confidence thresholdiniyli

for frequent item sets. That is, if an item set pasa
minimum support requirement then all its subsets glass
this requirement. This minimum support thresholdugais
used as the basis for pruning, without which miniabgs
becomes infeasible due to the exponential searabespn
summary, in traditional association rule miningneimum

support threshold is needed, and should be detedmi

accurately in order to produce useful rules forsise

below a minimum support threshold has the samel@mohs
mining above a maximum support threshold in thessehat
the threshold needs to be accurately pre-set. ditiad, the
measure used in [12] inherits the drawbacks ofreetadion
measure in [10]. [13] filters uninteresting rulesing leverage
as a measure. [14], [15] finds rules using measudh as

nIeverage or lift; these can be performed withouheot

thresholds in place. Since rules are found indepethgfrom

To overcome the above limitation, we investigate th@ minimum support threshold, theoretically all étfuent

possibility of developing a new association rulenimg
framework that works without having to determingupaport
threshold. We base our framework on the notion
implication of propositional logic. We explain oproposed
model in detail in section 3 after a discussionpr#vious
work is presented in section 2. Experiments basedio
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rules may be found. The measure of leverage, hawéve
non directional. A rule found using leverage doasimdicate
&N implication that if a rule antecedent has anaichjon the
rule consequencerice versa It denotes the number of
co-occurrences of both antecedent and consequimesét
that is above the case if both are independenath ether
[16], [17].

There is relatively little research on findiagsociation
rules that are both infrequent and interesting. Two
fundamental constraints are (i) the selection efrieasure
used and (ii) the use of this measure to searcinfi@quent
and interesting rule directly without post-procagsithe
found rules. The measure should justify the seéirok in
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implicationp—-q if and only ifQ2>Q1, Q2>Q3,
andQ2>Q4.

-X=Y is mapped to propositional logic
implication-p—q if and only ifQ3>Q1, Q3>Q2,
andQ3>Q4.

-X=-Y is mapped to propositional logic
implication -p—-qg if and only if Q4>Q1,

discovering rules. Such a measure must posseseriesp
that can be used to search for infrequent assouiatiles
directly. Otherwise, the measure might be theamyic
interesting but of limited practical use.

ii)

Ill. COHERENTRULES FRAMEWORK

The current section discusses the proposed thearetic
framework for coherent rules. The salient featureshe _ Q4>Q2, andQ4>Q3. S
framework are, informally, (i) a novel, strong aefion of Having mapped each are callgeudo implication By
association based on the notion of implication frorRS€udo implication, we mean that it approximatesea
propositional logic, (i) the taking into accountf o implication (according to propositional logic).i$tnot a real
frequency-based measures without requiring arbi»[ra,implication yet because there are fundamental rdiffees —
thresholds and (jii) the use of mutually reinfoggiile pairs. PSeudo implication is judged true or false based on
These features are addressed in detail below. comparison of supports, which has a range of imtegieles.

iv)

We study the frequency of occurrences between t&vo i
sets and rather than relying on a minimum suppoeshold,
we propose to compare various support values basedir
definition of association.

In our study on the definition of associationwe found
that association is defined in many ways of whien be
referred to a number and different types of retetiops
among item sets. A typical definition of associatis

On the contrary, an implication is based on binajues.
The former still depends on the frequencies of
co-occurrences between item sets (supports) intaseia
whereas the latter does not and is based on taltle vWe
again mapped pseudo implication into specific modes
implication called equivalents. Each equivalent widollow

the same truth values of the respective relationsgic. For

example, in equivalents, the negation and the

co-occurrence(1). Association can also be generalized int§1verse-negation of an implication is always falbeat is, to
correlation (10) ordependenceule [18]. Each definition has Map association rules=Y to logic equivalenx=Y, we need
their merits. For the purpose of our model, we miefi to check if the support value on its negats-Y and

association using implication of propositional lo@i that an
implication must be supported by itsiverse. Such
association rules mined has implications stronpan tthe
typical associations based on single co-occurrences

To illustrate our proposed framework, consider tdbileat
contains relations between a rule antecedent (LASgnd a

rule consequence (RHS),*@s an association rule. The rule

antecedent A consists of a combination of itemiedaan
antecedent item se&t. An antecedent item s&t may exist,
represented b¥, or absence, represented by. Similarly,
the rule consequence C may contain existence @nabof
consequence item s¥t They are represented #sand -Y.
The frequency of occurrence ¥fandy is represented @1,
X and ¥ by Q2, =X andY by Q3, finally, =X and - by Q4.
The total of occurrence oY is represented b1, the
occurrence of ¥is given byC2, whereC2=m-C1. The same
representation applied ¥and X with the statisticf\1 and
A2.

inverse-negation%=Y are lower than other support values.

Coherent rules are a pair of antecedent and coesequ
item setsX andY represented using a pair of rules following
the truth table value for equivalents. For exampie)Y,
-X=-Y, where,

i) X=Y is mapped to logic equivaleptEq if and
only if, Q1>Q2, Q1>Q3, Q4>Q2, andQ4>Q3.
i) X=-Y is mapped to logic equivalept-q if and

only if, Q2>Q1, Q2>Q4, Q3>Q1, andQ3>QA4.
=X=Y is mapped to logic equivalenp=q if and
only if, Q2>Q1, Q2>Q4, Q3>Q1, andQ3>Q4.
-X==Y is mapped to logic equivalenp=-q if
and only if, Q1>Q2, Q1>Q3 Q4>Q2, and
Q4>Q3.
(Having mapped, each rule is called pseudo impdinadf
equivalent.)

Supposel|={iy, iy, ..., h} be a set of items. And,= {t,,
t> ,..., t4 be a set of transaction records. A task-relevant
transaction recorg holds a subset of items such that |.

ii)

Table 1: Frequency of occurrences among anteceddnt a_et Ix andly be two sets of items, wheilg,cl, Iy cl, andly

consequence item set

Nly =@. And, letX be the antecedent item set of coherent

A rule consequence (RHS), C | rules, whereXc Iy andX+@, and letY be the consequence
Y Y Total item set of coherent rules, wheYe; Iy andY+@. BetweerX
Arule X Q1 Q2 Al andY, there are two coherent rules pairs of either,
antecedent =X Q3 Q4 A2 i) X=Y, -X=-Y, and (1)
(LHS), A | Total C1 C2 m i) X=AY, - X=Y
Association rules, Each coherent rules pair consists the same antecaddn
i) X=Y is mapped to propositional logic implicationconsequence item seX, and Y. We called the first pair,

p—q if and only ifQ1>Q2, Q1>Q3, andQ1>QA4.
i) X=-Y is mapped to propositional logic

! Both inverse and contrapositive have the samel totenber of
co-occurrences in transaction records.

2 Non italic

% Non italic

positive coherent rules and the latter negativeecatt rules
because it involves absentee of an item set in paebdo
implication of equivalent.

Coherent rules are only represented using two reifite
representations following a rule antecedent A, andlle
consequence C as follows,
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i) A=C, -A=-C, and

i) A=-C, -A=C
The symbol ‘=’ comes from the representations, amerw
applied to an item set contained by A or C, it ngeilie item
is not observed in transaction records. And, sinoen two
item sets we can write a coherent rules pair, géngjuish
between coherent rules and a pair of rules thattydie
validated by calling the latter eandidate coherent rules
These can be represented differently from coherelesr
using two item sets X and Y, before they are vadiddo be
coherent rules. If the support values on thesesiterat the
binary condition of coherent rules, then they ariéten using
one of the representations. Otherwise, they remaair of

value are coherent; additional conditions

propositional logic need to be met.

following

Based on lambda, we define the interest measure for
coherent rule$l as,
HX..Y) ={/1, B(X..Y) =1

0, B(X..Y)=0

(5)

It follows from the definition that lambda only & positive
value whenever subsets of the coherent rules gonglit
equation (3) are met. These are

i) Q1>Q2, Q4>Q3

ii) Q2>Q1, Q3>Q4

item sets. We use the symbol ‘.” and a followingrhe above is demonstrated in Appendix A of [22].

representation to denote this candidate coheréas pair,

X.Y 2
In this paper, we focus on to describe the germranf
positive coherent rules.

IV. COHERENTRULES MEASURE OF INTEREST

A. Interest Measure H based on lambda

A binary measure for coherent rules trivially foll® from
the definition of coherent rules in the previoustem. Such a
measure takes the value ‘1, if candidate cohemdets meet
all the conditions of either coherent rules paind &0’
otherwise. We write this below,

B(X..Y)
1, Q1> 02,01 > Q3,04 > Q2,04 > Q3

=11, Q2>Q1,02>04,Q3>0Q1,Q3>Q4 (3)
0, otherwise

The above binary measure, however, does not diffaten
the different interest of coherent rules. We preptmsuse an

interest measuré! based on the well-known measure of

association lambda in statistics [19], [20]. Lambazasures
the association of two (nominal) variables, based e

concept called Proportional Reduction in Error (P.RE)Q

According to this concept, a variable is used tedpt the
existence of another variable. And, if this prediciperforms
better than guessing the second variable indep¢mdehe
first variable, then these two variables are deetoethe
related to each other. Otherwise, the second Jarizdn be
guessed without the need to know the first variablet is,
the concept compares two predictions together, dwtw
knowing a variable and not knowing it. Note that uge the

term variable in the sense of, e.g. [21] where, informally,

each variable contains many categories and eacyargt
corresponds to an item set.
Lambda quantifies the strength of the associatidwdzen

two variables into a value between zero and one iand

defined in [19], and can be rewrite as,
min(Q1+Q3’)—min(Q1’)—min(Q3’)

Q2+Q4 Q2 Q4
= —01+03, (4)
mm(Q2+Q4—)

For our purposes, thel, Q2, Q3, Q4ébove are computed

based on the “categories” rather than the “vargblee.

based on item sets as is traditional in data mining
Hence, all coherent rules have an arbitrary sttemgtue

of lambda but not all associations having positammbda

B. Properties of Interest Measure H

The interest measurd does not inhibit anti-monotone or
monotone properties. We show this below,

let FV be the arbitrary fixed values usedHrsuch that

FV = min(Q1+Q3, Q2+Q4) (6)
and, da, Jb, dc, anddd the delta change of support values
given byQ1, Q2 Q3 andQ4. Suppose, the functidsV(X..Y)
finds all the support values of a candidate cohendas pair
such that
SV(X..Y) = (Q1,Q2,03,Q4) (1)

Its support values of another candidate coherdes hiaving
the supersets of item is,

_(Q1—6a,Q2 — 6b,)

SV(XE..Y) = <Q3 +6¢,Q4 + 6d)
(8)

whereda+ob=dc+dd, andda,ob,oc,0d>0.

That is, the support values QfL andQ2 reduce bufQ3 and
4 increase over candidate coherent rules having the
supersets of item.

Based on the understanding of the delta changaspiport
values, we now show that coherent rules measuirgerest
does not necessary have anti-monotone or monotone
properties. The strength value of coherent rulestem
without its conditions is as follow,
03)-min(G3)
FvV

FV—min(

H(X..Y) =

(9)

If the delta changes ifia,ob=0, then the current strength
value is at least the strength valu¢HXE..Y) which exhibits
an anti-monotone property. That is,

H(X..Y)
> H(XE..Y)
. (01, . (Q3+ éc, (10)
FV_mm(QZ)_mm<Q4+6d)
FV

If the delta changes idc,6d=0, then the current strength
value is at most the strength value HEXE..Y) which
exhibits a monotone property. That is,
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C. Strategy to Avoid Generating Candidate Coherent
Rules Exhaustively - 11

H(X..Y) In the second strategy, we design two procedurémtio
< H(XE..Y) calculate and estimate the strongest possiblegttrealue of
. (Ql - 5a,> . <Q3,> (11)  the current coherent rules and a group of cohetdes with

FV —min in 8
_ Q2 —46b Q4 supersets of item. If these strength values areddhan a
FV threshold value, then we can avoid generate thsesuient

coherent rules with supersets of item. We highlitat the
However, H(XE..Y) does not necessary have both theyreshold value being compared to, is not provisked user.
assumptions obab=0, andéc,6d=0. Hence, it does not it s determined based on a parameter providedsky. We
necessary inherits both properties. That is, show this in the next section, and the opportusitieavoid

generate candidate coherent rules after it.

FV_ml.n(Ql—&a,>_ .n(03+66,)

Q2-6b Q4+6d
FV (12) 1) Minimum Strength Required
We proposed to mine arbitrary number of coherelasru
This means, the valug(X..Y)can be higher, lower or the with its strength value withinv% from a yet-to-know
same value ad(XE..Y) Hence, we cannot use the measure Gfirongest coherent rules strength valmax_3. That is, all
coherent rulel to avoid generating candidate coherent rulesoherent rules have strength value at least)&max_s.For
exhaustively. example, a user wants to find arbitrary numberatfecent
rules that have strength value within top 5% ofgtrengest
V. MINING COHERENTRULES coherent rules. Lat = 5%, and the strongest coherent rules
This section covers algorithms for the generatiooatferent found from transaction recordsjax_s= 0.8. Hence, all
rules. Initially we show that becausis defined in terms of coherent rules with strength value between 0.76G8dare
lambda, and lambda is an interval level of measargmitis reported. In another example, the user continuéisdoonly
necessary to fix the consequent item set while ngirfor  top 5% of the strongest coherent rules, and thesaetion

H(XE..Y) =

rules. records contain the strongest coherent rules gtroak_s=
We explain our search strategies to discover coteréd.1. As a result, all coherent rules with strengtiue
rules. between 0.095 and 0.1 are reported. These two dgamp

) have also shown that a user does not need to tadérthe
A. Search Properties of Coherent Rules Based on distributions in transaction records. They only #fyethe

Measure H needed topw% from the yet-to-know strongest coherent
It is important to highlight that the coherent siteeasure yles.

of interest, which is based on lambda is an intdexsel of

measurement. It has an arbitrary zero. That isptisitive 2) Estimating The Strongest Strength Value of A Group
value of the measurel(X..Y) is given in relation to the of Coherent Rules — Part 1
statistics of the consequence item set. As a reguls This section introduces how to calculate the strehge

meaningless to compare the measure values betwgmissible strength value of coherent rules. Thisvedé is
coherent rules that have a different consequerae set. A shown to inhibit anti-monotone property. We willeu to
consequence item set must be fixed before thegilreralue  further avoid search space. Let, the fixed value,
between coherent rules that have different antedeitm

sets can be compared. In this way, we make congaris FV = min(Q1+Q3, Q2+Q4) (13)
within the same scale.

B. Strategy to Avoid Generating Candidate Coherent We re-write interest measurewithout the conditions as,

Rules Exhaustively - |

We use the statistical condition31> Q3) within property
of coherent rules measure of intereist, to prune supersets
of item, which does not meet the condition. It dalk a
downward closure property of the statistical candit
SupposeX..Yis a candidate coherent rules pair, Xifd.Yis
another candidate coherent rules pair such thatrttezedent coherent rules that have the supersets of iteniowilg

. 5 . g .
;t(er\r; Stitx CfXItEh' If either (:.f thesfe conéjllct;otns IS EOt ”r:t b3|/anti—monotone. Hence, we could make the estimatiothe

- Y, en furiner generation of candidate conerenesru trongest value dfl over a candidate coherent rules pair and
XE..Yis not necessary. As a result, we avoid exhauytive Il the candidate coherent rules with the supersetsem.

generate all candidate coherent rules and valitieta to be There are three ways to estimate the strongesigstrealue
gohere_fn ;(r_ules(.j Fgr examfle, WtetEave 'tzr,?, l&etst,ga, t; Ct’h of coherent rules. It follows that if the strongestimated
, €} . _{C} } ;.35 no nr:ee € lconwélon, ?jn urd ®Value is lower than the arbitrary strength valuguieed, then
generating of candi aFe coherent rules witta, c, d} an we could avoid generating and validating all thesedidate
X={b, c, d} can be avoided. coherent rules
We now detail the only three ways on how these

, Coherent rules measure in itself has no anti-momoproperty. estimations are made. In each of the estimategstimated
We write the union of item selsU E asXE.

H(X..Y) = (FV - minQLQ2-min(Q3Q4) /FV  (14)

H in equation (9) gives the strongest strength valfie
coherent rules if the right hand side holds a minimvalue.
For example, ifQ1 or Q2, andQ3 or Q4 holds a zero. The
support values given @1 andQ2 decrease over candidate

(Advance online publication: 21 August 2008)



TAENG International Journal of Computer Science, 35:3, [IJCS 35 3 18

support value§2F is assumed to be zero because following
anti-monotone, candidate coherent rules that hapersets

of item will have the same or a decreasing supyaitte. By
assuming2F=0, we estimate the worst support value on the
candidate coherent rules with supersets of itermcde
estimate the strongest possible strength value gnowp of
candidate coherent rules. Within a fixed size ahsaction
records, there are three ways on how this valudegassed.
to the rest of the support values. The strongestngth value

(FV—min(%é’))

. (Q3,

S —mm(Q4)
Fv

> H(X..Y)

Similarly, the third estimate has strength valuelestst
candidate coherent rules with supersets of item.

over a group of candidate coherent rules can beenbgd Pv-min(| 621 foz)
analysing the support values. These are shown below, —min(Q 43%2])

H.(X..Y) = =
Assume thaQ2F=Q2-Q2=0, and its support values is (Fv_mm( 03, ))
transferred to support val@glF=Q1+Q2. Hence, the =\ o)) 20
first possible strongest strength valbe,(X..Y) can  (15) ] i 03+6c, (20)
be calculated from support valu@dF, Q2F, Q3, Q4. > (FV'mm(Q4+[Qzl+6d>)

Assume tha@Q2F=0, and its support values is
transferred to support valu€sSF=Q3+Q2. Hence, the
second possible strongest strength vatig(X..V),
can be calculated from support valugs Q2F, Q3F,
Q4.

(16)

Assume thaQ2F=0, and its support values is
transferred to support val@F=Q4+Q2. Hence, the
first possible strongest strength valbigy(X..Y), can
be calculated from support valu@g, Q2F, Q3, Q4F.

17)

We show the anti-monotone on the estimat#'s(K..Y),

FvV
> H.(XE..Y)

(FV—min (g;))
. (Q3,
_ (8

- FV

> H(X..Y)

The strongest possible strength value is the maximoiiadl
these estimates because we do not know exactly thew
support valuedQ?2 decreases over the candidate coherent
rules with the supersets of item but we know thadhe worse
case, it has a minimum value of zero. Hence, wecalmlate

the strongest possible strength value of a grougobg&rent

H'u(X..Y) and H'(X..Y)) in corresponding to the aboverules with supersets of item,

equations. The brackete@Z] is the total support value §f2
that is transferred int®3 or Q4 hence its delta change=0
and this not shown. The first shows the estimatestrasgth
value at least ‘real’ coherent rules strength value

rv-min (o) {oz)
—mm(Q )

HL(X..Y) = < & 18

FV—min(Q3'

Q4)

FV

FV— mln(03+6c )

Q4+6d

XY)

The second shows the second estimate has strerigthata

least candidate coherent rules with supersetewof. it

F V‘mi"([QZ?—l['QZ]))

Q3+[QZ],>

H)(X..Y) = ( &

_ (FV—min(Q3g[402]’))
- FV (19)

Q3+[Q2]+6c,)
Q4+6d

—min(

FV—min(

maxPossible_s(X..Y) =
max (H,(X..Y), H,(X..Y), H.(X..Y))

(21)

Extending from the anti-monotone properties of the
strongest possible strength value of candidatereoheules
maxPossible (X..Y), we proposed an extended approach to
estimate the strongest coherent rules value. Thpsoaph
complements the first approach and uses more dssnoa
the support values. This is explained in the nectice.

3) Estimating The Strongest Strength Value of A Group

of Coherent Rules — Part 2

Previously, there are three considerations to zbm
estimated support value Q2F. In each consideration, it still
requires scans for another two support values aw/rshn
equations 20, 21, and 22. In the current approgelestimate
all the support value®1, Q2, Q3, Q4And, the estimated
strongest possible strength value of coherent ruges
calculated based on estimated support val@ds;, Q2F,
Q3F, andQ4F without scanning for each real support value.
The estimated support vall@lF is the total number of
occurrence of an antecedent item set in the ovesalbaction
records. The estimated support valQRF is zero. The
estimated support valu@3F is calculated a€1-Q1F, and
Q4F=m-C1.This saves time to scan for real support values,
and we can estimate the strongest possible streadyile of
coherent rules, which also inhibits anti-monotdhéllows,
if the strength value is lower than the strengtlu@aeeded,
we can avoid generate candidate coherent rules igth
supersets of item before scanning for support walGéce
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this estimate consists of only the estimated supyaltes,
this estimated strongest possible strength vall@nier than
the calculated strongest possible strength valing s®me of
the actual support values in equation 23. Henée gtimate
is suitable to be used as the first check to stperating
candidate coherent rules before using the calailate in
equation 23.

possible strength values méxPossible_s and
maxEstPossible) nd the percentage to avoid generating
and validating some of the candidate coherent thisdoes
not meet the property. That is, if an item set dagshave the
estimated strongest strength value at leasf)Klmax_s then
all the subsequent candidate coherent rules wijibrsets of
item will also not.

We show the procedures how to estimate the supportThe percentage valua/) is provided by user, and can be

values.

SupposeQ2F=0 and its current support value is
transferred to support val@ F=Q1+Q2. The

estimated support vall@QF3(X..Y3C1-Q1F. And, the (22)
remaining support values out of total transaction
recordsm gives

SQFA(X..YFm-SQF1(X..Y2SQF3(X..Y)

None of the estimated support values requires a &ua
individual support valu®[Z]. The value ofQ1F is obtained
via a scan through the transaction records footeirrence
of antecedent item set X alone. Such scan is bgssnsive
than individual scan foQ1, and Q2 The estimateQ3F,

preset to be arbitrarily small. During the genemtiand
validation process, we can maintain the strongekerent
rules strength value found so far from a given deation
records. Hence, the decision to further generatelidate
coherent rules depends on this momentary stremgth s
And, coherent rules found are kept in a buffer befthe
entire search ended. As this momentary strongeshgth
values increases, some coherent rules includedhoffar
earlier (based on a lower strongest strength vplaes
discarded based on the new minimum strength value
required, (Iw)x max_s This process repeats itself, and
finally coherent rules with strength value withirettopw of
the strongest coherent rules can be discovered.

The search for coherent rules hence does not reguiser

however, can give negative values on its suppoltieva to specify the minimum strength value for coheretes. The

(wheneverQ1F>C1). We need to make further adjustmentpercentage valuew supplied by a user

WhenevelSQF1(X..Yhas value larger thabl, we zero the
estimate support valueSQF3(X..Y30, and transfer the
differences t@Q4. We show this below,

Let Diff=C1-Q1F
If (Diff <0)
Q3F=0
Q4F=m-Q1F Diff
Else
Q3F= Diff
QA4F=MmQ1FQ3F
End

(23)

Based on these estimates, we can now calculasrthregest
possible strength value of coherent rules withoahsing the
individual support values. We show the anti-monetofithis
new estimate,

F V‘mi"(on—F[ZZ])
()
FV

Qur)

maxEstPossible_s(X..Y) = (

(FV—min(

FV
C€1-Q1-Q2,
m—Cl—Ql—QZ))
FV

(FV—min(

(24)

S (FV—min(QSF-'-&'))

Q4F+6d
FV

> maxEstPossible_s(XE..Y)

(FV—min(Ql,QZ))
> -min(Q3,Q4)

FV

> H(X..Y)

We use both the calculated and the estimated stsbng

should be
distinguished from a minimum strength value reqlifer
coherent rules. Setting the latter too high or k@ has
adverse effect discussed in Section Il. The exadtreeeded
minimum value varies across given transaction @s;aand
is typically unknown. Whereas, the former is aae#inge of
strength value from the arbitrary strongest stiengtue in
given transaction records.

VI. COHERENTRULES SEARCHALGORITHM

In this section, we present the internal detailthefproposed
algorithm to generate coherent rules. The algoritloes not
require a minimum support threshold in advance. dilg
user-specified parametenis which is a percentage such that
rules generated will have strength value withinttpy% of
the strongest strength value of coherent rules doun
Typically, we are interested in a small subset bpassible
rules which have the highest strength values o$ehihat
exist. We argue that nominating a desired percents
above is much more conceptually appealing thaniriegu
the user to nominate a support threshold. The dis#dges
of pre-setting a support threshold have been hyjptdd in
Section I.

The algorithm, calledgenerateNextCRis presented as
Algorithm 1. This is a recursive algorithm that rvoked
after initially settingR to null, Iy to the complete item set
except for the consequelyy; andPVy, to zero,PVy to the
index of the consequence item set, aR®h. to the
cardinality ofly, T to the transaction record®Ato null, and a
set of coherent rules four@R to null. The indexe$Vyy,
PVy, and the buffer for indexeRA are used to refer to an
antecedent item set of coherent rules. The iftdéxefers to
the index of consequence item set that is of calitjn'l’.
The index PVy.x Sets the termination criteria for the
recursion, i.e. if the inde®Vy; equals toPVya. Support
values are scanned from transaction rec®rdgith coherent
rules found are kept iBR

The algorithm proceeds to systematically explore the

(Advance online publication: 21 August 2008)
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powerset ofly, but does not need to generate the complefdgorithm generateNextCR(candidateCoherentRul&s
powerset as that would be infeasible. The feagibdf the items Iy, itemindex PV, itemindex PV, itemindex PV,
algorithm is ensured in two ways. Firstly, if a datate itemindex PVya, subltemsT, orderedSet<index:RA
coherent rule pair does not meet the anti-monotoriRuleSetCR)
properties, then coherent rules containing a sepaits //Initial//
item set are not generated (see Lines 4.15 — 4.t6.4, PVi, > 1
Algorithm 1). Secondly, as a logical consequenethe 11 PV, := PVy, PV =1
cardinality of the antecedent item set of a cartdidaherent > E|se
rule pair that does not meet the anti-monotone ggp 2.1 P\4,:= PVyax
consists only of a single item, then this item barremoved 3, End if
from Iy ( see Lines 4.1.5.3.2 and 4.1.6.2 ). Clearly, sach
removal cuts down the cardinality of the power lseing
explored by a factor of 2.

The algorithm also articulates subset of all possibéd. While (PVx; < PVyy)
coherent rules, which have the highe8t strength values 4.1 If (PVxy = PVy)
within those that exist (see Lines 4.1.5.2.3 and5214). 4.1.1 RA< concatenat&{Vxi, RA
Interestingly, it does not have to calculate thersjth values ~ 4.1.2 X & {ilLERA

/IGenerating candidate coherent rules by enumeratin
antecedent item set X//

of all possible coherent rules in order to find tighestwo 4.1.3  LetR be the set of candidate coherent rules
strength values. The algorithm calculates and etsnthe corresponding toX, V) such thaR=(X=Y,
strongest possible strength value for a group oidickate X=-Y)

coherent rules with supersets, if they are cohendet (see //START of Conditions for Efficient Generations//

Lines 4.1.4 and 4.1.5.1). Since the strength valfiesherent )
rules with supersets are lower than the strongessiple 414 g(rzg;gustg;naxEstPos&ble_s, Q1F, QEiased on

t th val Possibl d EstPossible, sif . :
STENg™ velussmaxrossivie,sand maxtst 0Ssive, S 415 If (Q1F>Q3F) And (maxEstPossible smin_9

either one is lower than the required strengthejallien we N -
do not have to generate these candidate coherésg. ru 4151 gﬁgﬁgszzga@ossmle_s, Q1, @2, Q3, Qding

Finally, strength values are computed for thosedickte 4.15.2 If (Q1>Q3) And (maxPossible_g min_3
coherent rules that pass the conditions (see Lih&.2.1). 4 1 5 21 vr € R computeH, and storeit
.1.5.2. .

Based on the real strength values, thewép of coherent 41522 Updatemin_s based on user-specified
rules is maintained in line 4.1.5.2.2. T and the strongest, found

41523 If (H,>min_$

VII. EXPERIMENTS ANDDISCUSSIONS 415231 CR=CRUR
We have conducted a number of experiments. Inpdyer, 4.1.5.2.3.2 toRemove { cr:cr € CR andH,, <
we report the results of three main categoriexpéement. min_s}
In the first category, we want to show that ouroagstion 4.1.5.2.3.3 CR =CR —toRemove
rule mining framework can find infrequent associatthat 41524 End
may be difficult to find in traditional associatioale mining. 4.1.5.3 Else _
The zoo data set is used in this experiment. Thensec 4.1.5.3.1 itemToRemove {X: Xis the antecedent
experiment shows that our proposed framework requéss item set of some € R and|X| =1}

41532 [=1—-itemToRemove
4.1.5.4 End
416 Else
4.1.6.1 itemToRemove {X: Xis the antecedent item
set of some- € R and|X| =1}

post-processing in generating the rule comparedh&®
traditional association mining algorithm. That isstead of
finding too many rules, our algorithm finds smalfemrmber
of rules. The experiment for this purpose is conglidh the
mushroom data set. I__astlly, we measure the. perforenahc 4162 [ = —itemToRemove
our framework by testing its scalability. For tpesrformance

e 4.1.7 End
test, we created three sparse artificial dataseid,another - o _
three dense artificial datasets. In both zoo anghmom //End of Conditions for Efficient Generations//
dataset, we use thdassesas the consequences in orderto , g | (PVy, > 1)

find association rules directly from data. On &idfly 4.1.8.1 (R,1,PVyy, PVys, PVy, PVigars RA) =
generated datasets we use the last items as censegu generateNextCR “
A. Zoo dataset (R, I, PVx1, PVxy, PVy, PVyqyx, RA)
419 End

200 Qataset [2.3] s a collecﬂop of a”'ma.' charastes 4.1.10 RA € (RA — PVy,) /lremove an item from the
and their categories in a zoo. This dataset is chbseause buffer of ant. item set//

animal characteristics in each category are velyykmewn. 42 End

As a result, it is easier to verify the correctnes®l 43 py, .= py,, + 1 /iincrease the first pointer value//
interestingness of rules mined. Zoo dataset comtséven ¢ ppq

categories of animals includingammaliaand amphibian )

While mammalia type of animal such as elephantfalms, Algorithm 1: Generate Coherent Rules

and goats are frequently observed in this zoo, #rghtype

of animal such as frog and toad are relatively.rare

(Advance online publication: 21 August 2008)
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We run our search algorithm without setting a mimim
support threshold to obtain all rules within a wamdof a top
5%, and each rule contains not more than five iteWis
report the results as follows,

A total of 16 rules are found on mammalia typerdfrals.
All rules have strength of 1.0 out of 1.0. We wverthe
correctness of these rules based on known knowledgleis
category of animal. For example, all mammalia saglgoat

support threshold, it finds all necessary rules.

On execution time wise, each running time takes flean
3 seconds on a notebook computer Pentium Cent@idz1l
with 1.5G of main memory and running Windows XP Hom
Edition. Zoo dataset contains 101 transactions @den
sets. The search space on a targef'i®2 (2™V- 1) where
2201 s the total number of both positive and negatives,
and (2"V- 1) is the total number of positive rules using a

has no feather but has milk and backbone therefosegle consequence item set as a target. In this, cao

feather(0), milk(1), and backbone(1) are reportesbaiated
with mammalia(1). We list all rules contains notrmaohan
four items (due to length of paper) in table 2.

Table 2: Rules describrammalia

Antecedent Conseq.
ltem Set Iltem Set
milk(1) = | mam(l)

feathers(0),milk(1) = | mam(l)
milk(1),backbone(1) = | mam(l)
feathers(0),milk(1),backbone(1) = | mam(1)
milk(1),breathes(1) = | mam(l)
feathers(0),milk(1),breathes(1) = | mam(1)
milk(1),backbone(1),breathes(1) | = | mam(l)
milk(1),venomous(0) = | mam(l)
feathers(0),milk(1),venomous(0) | = | mam(l)
milk(1),backbone(1),venomous(0) | = | mam(1)
milk(1),breathes(1),venomous(0) | = | mam(1)

dataset contains 2E+25 combinations of item setsu¥gean
optimistic assumption to grasp the size of thedeapace;
we assume only one computation cycle time (1 / 1)Gkiz
needed to form and to validate a combination afiget in a
single transaction. Based on this optimistic asgiomp it
follows that a search without pruning would requatdeast
6E+10 years to complete. In comparison, our seanuh is
feasible. From these two experiments, we concludg t
association rule pairs are useful to discover kedgé (both
frequent and infrequent) from dataset.

B. Mushroom dataset

In our next experiment, we run our search algorithm
mushroom dataset [24] which contains 8124 tranmas@nd
119 items. To grasp the search space, if one cotiqruta
cycle time is needed to form a combination, it takéleast
3E+58 years to complete. Our search for both poissand
edible mushrooms is completed within 17 secondé it
rules found. We list these rules in Table 3(a) and&&(b).

Table 3(a): Rules describe edible mushroom

We found these rules describe mammalia correctlfadt,
the first and the shortest rulg

milk = mammalia describe a fundamental characteris

of a mammalia explicitly. From literature reviewetsecond
rule may be deemed redundant in comparison witHitsie

Antecedent Conseq.
] Item Set Item Set
ic odor.almond = Edible
odor.almond, > Edible
stalk-color-below-ring.orange

rule because inclusion of an additional item seatter(0),
which cannot further increase the strength of rdlee

Table 3(b): Rules describe poisonous mushroom

strength of the first rule is already at its maximat 1.0; any
further inclusion of items may be redundant. Such

consideration however is application dependent. dMead
use both items, feathers(0) and milk(1) to desanibenmalia
more comprehensively at the same strength of hét i§, an
animal of mammalia does not have feather but niilkve

discard feather(0), we loss this item as a deseept

We run the search for amphibian, and found a tftaB6
rules. Again, we could not find any incorrect rul@hese
rules have strength 1.0. While studying at thefesywe are

surprised by the fact that amphibian like frogasthed! We
confirm this via answer.com, and this is indeedexr That
is, frog in this zoo is toothed.

Comparing the two experiments, there is a largemihce
in their total number of occurrence in the ovenahsaction
records. 41% of transaction records contain mananaii
comparison, only 4% of transaction records contal
amphibian. That is, search for amphibian is a $edoc

a Antecedent Conseq.
Iltem Set ltem Set
cap-color.green, = | Poisonous
odor.spicy,
gill-attachment.free
cap-color.green, = | Poisonous
odor.spicy,
gill-attachment.free,
stalk-color-below-ring.orange
cap-color.green, = | Poisonous
gill-attachment.free,
stalk-color-below-ring.cinnamon
cap-color.green, = | Poisonous

gill-attachment.free,
ns stalk-color-below-ring.orange,

stalk-color-below-ring.cinnamon

infrequent association rules, which is often misbgdnost
association rule mining technique that demandsranmoim
support threshold. If we set minimum support thoédto be
higher than 4% and use a typical association rulang
technique, we loss rules describing amphibian.
comparison, our technique does not necessitatenamonn

(Advance online public

We leave the correctness of these results to doaxgierts
since we are no expert. The strengths of theses rate
around 0.77 out of 1.0, this suggests that therg exdst
I8ome exceptional cases besides these strongest rule

In comparison, a typical association rule mininchtaque
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such aspriori reports more than 100 thousands of rules wittmplication of propositional logic is a good altative for the
confidence value at 100%. Some of these rules ate rdefinition on association.

interesting, and one way to filter these are t@aehigh
confidence rules with positive leverage values.eRukith
positive leverage are rules that are dependenadh ether.
However, after filtering high confident rules witfositive
leverage, it still left us more than 100 thousaofirules for
this dataset. Among these rules, it contains ourues. We
conclude from these observations that our apprpemtuces
rules that are concise and easier to apply.

C. Artificial datasets

We follow to generate a following three dense rtf
datasets with an increase in complexity using tB# |
synthetic data generator [25]. The symbols used
representing a dataset are explained below,

D: number of transactions in 000s

T: average items per transaction

N: number of items

L: number of patterns

I: average length of maxima pattern

The stronger definition of association also resintshe
discovery of knowledge that is vital from transantrecords
represented by coherent rules. These are a pailed that
can be mapped to a pair of logical equivalents haf t
propositional logic, which means that the rulesf@ice each
other. While coherent rules found are importarg, ititerest
of these rule pairs is further quantified using ex@mt rules
measure of interest. Coherent rules have positaheeg for
the interest measure and imply that the antecetdentset of
a coherent rule pair is needed in predicting itsseguence
item set, and is better than a guess without tiradno

Rules based on this definiton may be searched and

tiscovered within feasible time. This can be doneohy
proposed strategy of finding the strongest posssbiength
value of a group of candidate coherent rules angpeoing it
to the minimum strength value required, which iastantly
updated based on a parameter specified by a user.
experimental results show that it is feasible tarsle for
coherent rules when the size of transaction redomeases.

The dense datasets have an average length of maxima

pattern (1) close to average items per transa¢fignbesides
having a low number of patterns (L). These densaseéts
have an increase number of items as follows,

i) D100T10N100L5019,

ii) D100T10N500L5019,

iii) D100T10N1000L5019
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