

Abstract—The success of web service is to interact with the

applications of different domains. To achieve this

interoperability, dynamic discovery of web services is essential.

The repository of the web service needs an index of the

currently available web services on the internet, which can be

done by explicit publishing by the developers or by addition of

the web services using crawlers. There is a chance that web

services are indexed, but in real not available permanently or

temporarily due to some reasons. We propose the use of

OSIAN (Ontology based Service Index Annotator) to check

the web services as availability which can be currently used

by the service consumers. This will be of great use for the

service consumers as the time taken to search for the web

services among a large set of provisioned web services listed

out in the repository will be reduced.

Index Terms—availability, ontology, repository, web services

I. INTRODUCTION

 A Web Service is a software component that is described

via WSDL and is capable of being accessed via standard

network protocols. It can support interoperable

machine-to-machine interaction over a network. Web

services allow clients to invoke procedures, functions, and

methods on remote objects using an XML-based protocol.

SOAP, UDDI and WSDL are the three core elements of a

web service. The client queries a UDDI registry [8, 9] for

the service either by name, category, identifier, or

specification supported. Once located, the client obtains

information about the location of a WSDL document from

the UDDI registry.

Repositories are a basic part of Web Services. They make it

possible to find Web Services. Once a Web Service is

found in a repository, the repository also describes how to

use the Web Service. The owners of Web Services publish

them to the UDDI registry. Once published, the UDDI

registry maintains pointers to the Web Service description

and to the service. The UDDI allows clients to search this

registry, find the intended service and retrieve its details.

These details include the service invocation point as well as

other information to help identify the service and its

functionality. Also UDDI enables companies to advertise

the business products and services they provide, as well as

 Manuscript received January 7, 08.

 Viji Gopal is a Master of Engineering Student in

R.M.K.Engineering College, Kavaraipettai, Chennai (e-mail:

vijigopalakrishnan@gmail.com).

N.S. Gowri Ganesh is with the Center for development of

Advanced Computing, Chennai (phone: 91-44-2461 0880; fax:

91-44-2461-0898; e-mail: nsgganesh@cdac.in).

how they conduct business transactions on the Web.

 The rest of the paper is organized as follows. Section

II gives the background of the paper. Section III presents

the traditional architecture for Web service indexation and

discovery. Ontology based Service Index Annotator is

discussed in Section IV. Conclusions and future research

directions are briefly discussed in Section V.

II. BACKGROUND

In a normal keyword search the search results are based

on match between keywords present in the description of

the published services and the search string. Pure keyword

based search fails to retrieve services which are described

using synonyms of the search string. Moreover,

singular/plural word forms used in the service description

also affect the search result. The result will contain all the

services that contain the word in their interfaces. This

becomes a stumbling stone in bringing out meaningful

results. So using concepts instead of words for matching

seems to be a better idea.

A requestor will be looking for some web services that

will match his criteria. An efficient search engine is

supposed to come up with very useful and specific results

such that the requestor can easily select one or more among

the returned web services. The search engine gives the user

the references to the selected web services, once the user

selects one or more web services he can contact the vendors

of those web services and acquire the service or services

provided by them for his use. A search engine should have

the maximum precision and recall to give the best results to

the user. If most of the web service references reaching the

user are dead or not properly working at that point of time,

obviously the user will lose his trust on the web service

repository. Here we try to improve the performance of the

search engine by the use of ontology and by checking the

availability of the web services before they reach the hands

of the user.

A. Semantic Web

Current web which can be assumed to be the biggest global

database lacks the existence of a semantic structure to keep

the interdependency of its components and as a result the

information available on web is mostly human

understandable. Semantic web provides some languages

that express information in a machine process-able format.

This implies that we can take more benefit from their

processing power. A huge amount of data is conceptually

related, but much of these relationships still have to be kept

Ontology Based Search Engine Enhancer

Viji Gopal, N.S. Gowri Ganesh

in human memory and not stored in an understandable way

for machines. Ultimate goal of Semantic Web is to create

some smarter content which could be understood by

machines. When the content is understood by machine,

some assertions may come out of the content and new

pieces of information will be produced.

 A search engine handles queries to retrieve web services

(Figure 1). It takes as input a set of input parameters of the

web services and a set of output parameters of the web

service. The search engine contains four parts: a Crawler,

an Index, a query interface, and a result interface. The

retrieved services are ranked and presented to the user via

the result interface. The crawler discovers, analyzes and

indexes semantic descriptions of Web services. The

structure of the index allows the questions above to be

answered, by indexing services according to the concepts

they relate to, and according to their relations with other

services.

Figure 1 : The architecture of a search engine for web

services

B. Ontology

 In relation to computer science, ontology refers to

computer-based resources that represent agreed domain

semantics. Ontology consists of relatively generic

knowledge that can be reused by different kinds of

applications or tasks. Computer ontology is said to be an

“agreement about a shared, formal, explicit and partial

account of a conceptualisation”. Domain rules restrict the

semantics of concepts and conceptual relationships in a

specific conceptualisation of a particular application

domain. These rules must be satisfied by all applications

that want to use ontology.

 “An ontology is a formal explicit description of

concepts in a domain of discourse (classes), properties of

each concept describing various features and attributes of

the concept (known as slots or roles or properties), and

restrictions on slots (known as facets or role restrictions).

Ontology together with a set of individual instances of

classes constitutes a knowledge base.” [2]. Semantic Web

service technologies, such as the Ontology Web Language

for Services (OWL-S), are developing the means by which

services can be given richer semantic specifications.

Richer semantics can enable fuller, more flexible

automation of service provision and use, and support the

construction of more powerful tools and methodologies.

C. Previous Works

There have been a number of research efforts along this

track. This section deals with the research work carried out

by the various researchers in the related area of the initial

phase of software development. The problems encountered

by various authors in their work and the proposed methods

for the identification of those problems are discussed.

Colin Atkinson et.al [4] argues that one of the

fundamental pillars of the web service vision is a brokerage

system that enables services to be published to a searchable

repository and later retrieved by potential users. This is the

basic motivation for the UDDI standard. But this

technology was not successful enough, and the few

websites that today attempt to provide a web service

brokerage facility do so using a simple cataloguing

approach rather than UDDI.

Atkinson and Stoll [1] states that Service Oriented

Architecture depends on the availability of accurate and

universally understandable specifications of services.

WSDL [3] is a mechanism which gives the description of

the ‘procedures’ that a service offers. The information to

invoke a service is available from its WSDL file. OWL-S

[2,5] and some other languages define the semantics of

services. But they do not change the underlying WSDL

service specification. This principle has a drawback. Much

of the information we need is context specific where

WSDL specification is not context independent. Therefore

it is good to specify a service using different abstractions

which give a more precise description of context sensitive

information. As long as there is a well defined mapping

from the specification to one of the implementations, a

specification can take any form.

Eran Toch et.al [6, 10] proposes a semantic web service

search engine called Object-PrOcedure-SemanticS Unified

Matching (OPOSSUM). It is shown that the main challenge

in service-retrieval is the lack of semantics in their interface

description for precise search. The semantic approach to

service-retrieval is based on expanding the description of

Web services with formal semantic models, such as

OWL-S [9]. These models relate the services to concepts

making it easy to retrieve them. In order to address the

current limitations of service retrieval, they had developed

OPOSSUM (Object-PrOcedure-SemanticS Unified

Matching). It is a Web-based search engine that uses

semantic methods for precise and efficient retrieval of Web

services, based on their WSDL descriptions. OPOSSUM

crawls the Web for WSDL descriptions, transforming them

into ontological-based models of the Web services. More

specifically, we propose an architecture that will facilitate

the discovery of semantic Web services with availability

checking.

III. TRADITIONAL SYSTEM

 In a traditional system (figure 2), service providers

describe the interface to their web service using WSDL,

and publish their services in a UDDI repository by

providing appropriate “meta data” such as provider identity

(white pages), a categorization of the provider’s industry

(yellow pages) and technical information necessary to

invoke the service (green pages). Developers interested in

using web services are then meant to be able to find

components suitable for their needs by browsing the

registry or using the keyword-based UDDI search facilities.

 To make the search much context specific and

meaningful, semantic techniques can be made use of. A web

crawler collects semantic web service descriptions from the

ontology-oriented UDDI registries, Web sites hosting these

services etc and creates and maintains a semantic web

service repository. Once a service request is received from

a client, the broker in the system can invoke a matching

algorithm and a set of web service references are returned

to the user.

IV. ONTOLOGY BASED SERVICE INDEX ANNOTATOR

A. The architecture

 To improve the response time and reliability of web

service repositories, we introduce a new strategy based on

ontologies. Ontology based Service Index Annotator

(OSIAN) is a module that can work in association with a

search engine [11]. It acts as a mediator between the user

and the search engine. Its main purpose is to ease the job of

the search engine and to give quick results to the user.

OSIAN comprises of two parts:

• An availability checker

• RTub (Recent Tub)

The availability checker checks whether a web service is

still alive. If yes, it adds the service to the RTub. The web

services which are in the RTub as well as in the search

engine output will not be checked by the availability

checker. RTub is a tub of web services which have been

recently checked for availability. RTub is an ontology

which has different classes for various domains, for

example travel, conferences, pay rules etc. Based on the

user input, the services from the corresponding domain are

forwarded to the user.

Once a service is added to the RTub, it will automatically

removed from the tub after a specified amount of time that

is considered to be a reasonable time in which chances are

very less for a web service to shut down. This time interval

is called the lifetime of a service entry in the RTub. If at all

a web service shuts down just after it has been entered in

the RTub, it will remain there only for this time interval and

it will be quickly removed when its life time expires.

OSIAN will act as a front end of the search engine. It

acts as a mediator between the user and the search engine.

But OSIAN will use the input user interface and output user

interface of the search engine. Client posts the search

criteria to the interface from where OSIAN absorbs it. Now

OSIAN searches its RTub for matches. User can specify the

input concept and/or output concept of the services that he

needs. In RTub services are associated with their input and

output concepts or ontologies. A search on the basis of the

associated ontology is performed. If matches are available,

it is returned to the output interface.

Figure 3 : The role of OSIAN in the Web Service Retrieval

System

Else the search engine is invoked to search for matching

web services in its repository. The search gives an output

which is the input of OSIAN. Now OSIAN checks for the

availability using its availability checker. The available web

services are inserted in the RTub under the proper category.

Now they are returned to the output interface so that the

user can view them and make a selection from among the

set of web services that he/she is presented with. Figure 3

shows how Ontology based Service Index Annotator

connects the client to the search engine.

OSIAN has the following advantages:

• The system is able to automatically check the

availability of the web services in the repository

without user intervention

• The system is able to provide a cache effect when users

access the services from the repository, making the

response very fast

• The system is able to reduce the use of resources like

processor time etc. by reducing the number of disk

access needed

• The system is able to increase the overall performance

of the search engine using it.

Figure 4 shows the structure of Ontology based Service

Index Annotator system. We can test the availability of a

potential web service by invoking one of its methods using

randomly generated test data. This can be stored in a

database and used for later periodic re-evaluation of the

web service’s availability. The receipt of any valid SOAP

response can be interpreted as an indication that the service

Figure 2 : Traditional system

is at least responding and can be regarded as being “live”

[4].

 When a user gives a query, we must search for specific

operations that are similar rather than similar web service

names. Even though the web service names are similar,

their services may differ. So user comes to know whether a

web service is of any use only when he checks it in detail.

Two operations are considered to be similar if they take

similar input, give similar output and the inputs and outputs

have similar relationship between them. This brings out

several web services which are of interest to the user.

Parameter names in an operation can be grouped into

meaningful concepts when a search is invoked. It improves

the precision and recall.

Figure 5 is the block diagram of the structure of

Ontology based Service Index Annotator system.

B. A simple algorithm

 A simple algorithm that describes the availability

checking of OSIAN is as follows:

Let x be a web service reference returned by the search

engine for the repository.

Input: a web service reference from the search engine

Output: the information that the web service is live or not.

Algorithm IV. 1

The attributes of the web service in RTub are the

following:

1) Service

2) Associated concept

3) A timestamp

4) Type of the concept (input or output)

The Service is of type Result. Result is a class which

indicates a single service returned by the search engine in

response of a query. It contains functions to get the unique

ID and name of a service, its WSDL link, description, rank

etc.[6]

The timestamp is nothing but the time of availability

check on the web service. The system time at the time of

availability checking can be used as the timestamp. When

the difference between this timestamp and the current

system time is equal to the specified lifetime of the web

service entry, the web service entry expires and is

removed from RTub. This ensures the least number of dead

or non-working web service references in the search result.

Concept is a string. It is one of the concepts to which the

service is associated to. Type of the concept is an Integer. It

indicates whether a concept is an input concept or an output

concept to the web service.

 We can illustrate it with an example. The user gives the

input “input : Car output : Cost” to know the price of a car

to purchase it. A normal search engine searches the

repository using some matching algorithm and comes up

with a number of web services which have Car and cost

in its description. It may contain web services that calculate

the market price of the car, the raw material cost of the car,

the human resource cost involved etc. Some of them may

be dead too. When the same input is given to Ontology

based Service Index Annotator, it searches RTub and

checks any web services are there under the car-cost

category of ontology models in the RTub. If it finds such

web services, that set is immediately returned to the user.

As the web services have been checked for liveness

recently, the user is sure to get live web services. If the

matching web services are not available, the search is

extended to the repository. A matching algorithm finds out

matches and returns the result to the availability checker

which in turn checks for the availability of each of the web

services and returns only those that are live. This result is

then updated in the RTub and forwarded to the user. Again

Figure 5: The Structure of OSIAN

Figure 4: The architecture of OSIAN

it is assured that all the services that reach the user are live.

A web service W that was once removed from RTub can be

placed in RTub at a later time when a user queries for that

kind of web services and W is still alive.

C. Working of OSIAN: A swimlane diagram

 The swimlane diagram of the message exchange in

OSIAN is shown in figure 5. There are two cases to be

considered: In case 1, we will describe the case where the

RTub has the data required by the user. As it already has the

data ready with it, it can directly supply the data to the user.

The web services in the RTub need not be checked for

availability. So the time for availability checking can be

saved and the user gets quick reply.

 In case 2, we describe the case where the RTub does not

have the data required by the user. Now the control is

handed over to the search engine and the usual search

procedure is carried out. The result is passed to OSIAN and

it checks the availability of the web services in the result

returned by the search engine. Available web services get

qualified to enter the RTub and to be displayed to the user.

Figure 6 : Swimlane diagram of OSIAN’s

performance

OSIAN has the following advantages:

1. For a highly demanded area, OSIAN decreases the

number of availability checking by a large amount

2. Almost all web services that reach the user are active.

This increases the user’s trust on the repository and

avoids any wastage of time spent on non-working

services.

V. STRUCTURE OF MAJOR SUBSYSTEMS

A. Service Retrieval Subsystem

Figure 7. Service Retrieval

As shown in Figure 7, once a query has been given to the

system, it checks its RTub. If matching services are found,

it is immediately returned to the user. If matching services

are not found, it goes and checks the tables on the disk

(repository). The retrieved services are checked for

availability and available services are added in the RTub.

Next time when same query comes, it is directly answered

back from the fast memory which stores the services for

later use.

RTub contains instances of the class RTubEntry. Each

instance has a unique ID, a service name, a concept

associated with it, a type number showing if it’s the input

concept/output concept of the service and a timestamp

which indicates the time of the last availability checking.

The value of the timestamp is updated every time an

availability check is performed.

Query

Query Query

Link to service

Services Services

 User

RTub

Repository

Available status

Concept

Matcher

Availability

Checker

B. Periodic Availability Checking

Figure 8. Availability Checker

As shown in Figure 8, the purpose of this feature is to

detect the non-working services in the repository and

remove them. Input is the link to the WSDL of the service

and based on the output, service is retained in RTub or

removed from RTub. TubConnector is a module that

initiates Updator in a periodic basis. Updator module

retrieves services in the RTub and invokes the

AvailabilityChecker module. Available services are

retained in the RTub, others are deleted.

VI. EXPERIMENTAL EVALUATION

In this section, we evaluate our approach in two ways

1. Improvement in response time

2. Automatic availability checking

A. Improvement in Response Time

Evaluation was based on an implementation of OSIAN

using Java and a MySQL server. A dedicated personal

computer running Windows XP with 1.256GB RAM was

used for all the experiments. The services and ontologies

are all locally stored in the disk. When launched in World

Wide Web, the time for network traffic will be added up.

But this will be same for both the benchmark product and

our product. So we can neglect it without affecting the

performance comparison result.

We compared the response time values of OSIAN with

those of OPOSSUM by running several queries. Our results

show that we succeeded in improving the response time of

the search engine compared to that of basic OPOSSUM.

The basic search engine and the enhanced search engine

vary considerably in query response time.

Table 1. The query response time of OSIAN vs.

OPOSSUM (measured in milliseconds)

Query No .of time

the query

is

evaluated

OPOSSUM OSIAN

Input: quotes and

Output : greet

1 14 40

Input: quotes 1 8 1

 Output : greet 1 6 1

Greet 1 12 1

Quotes 1 9 1

Greet 2 15 1

quotes 2 13 1

Input: quotes and

Output : greet

2 14 1

Table 1 presents a comparison of response time of

OSIAN and OPOSSUM to different queries. The results

clearly show the benefits of a direct memory storage

mechanism for answering repeated queries, which improves

the performance of the query evaluation and response time.

From Table 1, it is clear that once result of a query has

been stored in the fast primary memory then there needs no

more disk reading or availability checking for the same

query or for a similar query. The first time a query is given,

OSIAN takes some time to check for the availability of

those services which are in the result set, but not in the

RTub. So it will be good for the service provider to run a

query which will retrieve the newly deployed service. Once

it has taken its place in the RTub, next time when a user

gives a similar query, OSIAN will skip the time for

availability checking. Of course all the above specified data

is not constant whenever you run the machine. It changes

slightly depending on the machine’s current load.

Nevertheless, OSIAN’s response time has shown no

changes around 95% of the time we ran the test (except for

a query’s first evaluation).

A service’s availability is checked again in a specified

interval when its safe life span is over. This is done by the

availability checker. This process can be scheduled for

Used

by

Available services

Calls

Initiate

TubCo-

nnector

Availability

Checker

RTub

Entry
 RTub

 Updator

Gets

entries

some low traffic time like midnight to avoid unnecessary

delay.

0

10

20

30

40

50

1 3 5 7 9 11 13 15 17 19

number of repetition

T
im
e
 (
in
 m
ill
is
e
c
o
n
d
s
)

OPOSSUM

OSIAN

Figure 9: Response Time Comparison for Multiple

Executions of Single Query

A query searching for all services which give quotes as

output is given to both OPOSSUM and OSIAN. Figure 9

shows how each of them respond to the same query each

time.

Figure 10 shows the response time of both on giving

different queries searching for entirely different result sets.

Five random queries were run 20 times each, the response

time at each time was noted down and their average was

calculated. The experiments show that OSIAN is

particularly useful in databases which are queried for

similar services. As number of repetitions increase, its

efficiency increases.

Average Response Time

0

2

4

6

8

10

12

14

greet fibonacci input :

add

output :

quotes

input :

name

and

output :

address

query

T
im
e
 (
in
 m
il
li
s
e
c
o
n
d
s
)

OPOSSUM

OSIAN

Figure 10: Average Response Time

B. Automatic Availability Checking

Automatic availability checking needed no comparison

because we could not find any product in the market which

does the same. So, only a console output of the background

work has been shown here just to illustrate its working. It

shows the console output when user gave the query

“quotes” two times in a row. In real, this part is not visible

to the user.

QUERY FROM PARSER : quotes

The query took 39 milliseconds

final content given is : QuoteOf Day

final content given is : publish quotes

final content given is : NiceQuoteService

Initiating the scheduler

- Job execution threads will use class loader of thread:

http-8080-Processor25

- Quartz Scheduler v.1.6.0 created.

- RAMJobStore initialized.

- Quartz scheduler 'DefaultQuartzScheduler' initialized

from default resource file in Quartz package:

'quartz.properties'

- Quartz scheduler version: 1.6.0

- Scheduler

DefaultQuartzScheduler_$_NON_CLUSTERED started.

 Entered the scheduled class

Services in RTub : 3

service : QuoteOf Day lifetime : 763

service : publish quotes lifetime : 760

service : NiceQuoteService lifetime : 760

 QUERY FROM PARSER : quotes

The query took 1 millisecond

final content given is : QuoteOf Day

final content given is : publish quotes

final content given is : NiceQuoteService

 Entered the scheduled class

Services in RTub : 3

service : QuoteOf Day lifetime : 45743

lifetime > safe life span

now deleting : RTubEntry@103c29b

Service available..!!!

service : publish quotes lifetime : 45740

lifetime > safe life span

now deleting : RTubEntry@1dd7bc5

Service available..!!!

service : NiceQuoteService lifetime : 45740

lifetime > safe life span

now deleting : RTubEntry@1e8c585

Service available..!!!

II. CONCLUSIONS AND FUTURE RESEARCH

There are many service search engines

available to search and retrieve web services. The

traditional system depends on keyword matching of service

descriptions which has been proved to be very inefficient

for service retrieval. Those who use semantic strategies

have clearly shown an improvement in their precision and

recall. OPOSSUM is one such search engine which has

been selected as a platform for this project OSIAN. None

of the present service search engines do any availability

checking which is an important factor that decides the

reliability of the repository and thereby user satisfaction.

OSIAN is a module that works with a search engine

improving its reliability and response time by using an

availability checker and a fast memory which keeps track of

recently used services. It ensures that the number of disk

accesses is minimum, which saves a lot of time while

searching for services. Similar queries have been run in

both OPOSSUM and OSIAN and the results were

compared. Our results show that we succeeded in

improving the response time performance compared to

those of OPOSSUM. Also OSIAN’s availability checker

checks for the availability of services before they are

delivered to the user. This ensures that all the services

reaching the user’s hands are in proper working condition.

It improves user satisfaction which is an important criterion

of evaluating today’s competitive business world. Increased

user trust on the search engine justifies the overhead of

adding a verifier. It is proved that OSIAN can improve the

performance by a great deal by giving a cache effect to the

retrieval part of the search engine and by automatically

checking the availability of the services.

This work can further be enhanced in the following

ways:

Even when a rich set of ontologies is built the ontology

engineering process is not terminated. The next problem we

should deal with is the issue of ontology aging. Ontologies

are concepts. Concepts change as time changes. Changes

can happen due to changing inference rules, changing

semantic rules and arrival of new ontologies. Results,

extracted from an out-of-dated ontology can not be used in

a totally meaningful way. There should be some mechanism

to detect ontology aging and to update it time to time.

Multilingual support is recognized as one of the most

important challenges of Semantic Web. Nowadays English

is the predominating language and about 70 percent of

Internet content is in English, but only about 44 percent of

Internet users are native English speakers. Especially in

India, this issue is quite essential and the diversity of

languages needs to be taken into consideration. One

method to handle this problem is by establishing relevant

inter-ontology translators that map ontologies and content

to other languages.

Also we are planning to extend the current research such

that the search engine can identify trusted service providers

because trustworthiness is something that is given very high

importance in today’s business world.Another issue that

comes to light is that UDDI limits the service discovery

only to functional requirements. Different web services that

satisfy the same requirements can have different Quality of

Service (QoS). We can improve the service discovery if we

can retrieve services with high QoS. We plan to incorporate

this concept as our future work. We can represent QoS

specifications using ontology based on XML which enables

services to be matched semantically and dynamically. This

will allow the user to match the provider’s advertised value

of a QoS to their own preferences.

REFERENCES

[1] Colin Atkinson, Philipp Bostan, Oliver Hummel and Dietmar Stoll.

A Practical Approach to Web Service Discovery and Retrieval.

2007 IEEE International Conference on Web Services (ICWS 2007).

July 2007.

[2] Birgit Hofreiter, Christian Huemer, Wolfgang Klas. ebXML: Status,

Research Issues, and Obstacles. Proceedings of the 12th Int’l

Workshop on Research Issues in Data Engineering: Engineering

e-Commerce/ e-Business Systems (RIDE’02).

[3] Atkinson, C. and Stoll, D. and Acker, H. and Dadam, P. and Lauer,

M. and Reichert, M.U. (2006) Separating Per-client and Pan-client

Views in Service Specification. In: Proceedings of the 2006

International Workshop on Service-oriented Software

 Engineering, 27 - 28 May 2006, Shanghai, China. pp. 47-53.

[4] Eyhab Al-Masri and Qusay H. Mahmoud. Interoperability among

Service Registry Standards. Published by the IEEE Computer

Society. IEEE INTERNET COMPUTING. May-June 2007.

[5] Joseph Chiusano (Booz|Allen|Hamilton). UDDI and ebXML

Registry: A Co-Existence Paradigm. March 2003.

[6] Eran Toch, Iris Reinhartz-Berger, Avigdor Gal, and Dov Dori.

OPOSSUM: Bridging the Gap between Web Services and the

Semantic Web. Proceedings of Next Generation Information

Technologies and Systems. July 4-6, 2006. pp. 357-358.

[7] Natalya F. Noy and Deborah L. McGuinness (2001) “Ontology

Development 101: Guide to Creating Your First Ontology”

http://protege.stanford.edu/publications/ontology_development/

ontology101.html

[8] Farquhar, A. (1997). Ontolingua tutorial.

http://ksl-web.stanford.edu/people/axf /tutorial.pdf

[9] David Martin, Massimo Paolucci, Sheila McIlraith, Mark

Burstein,Drew McDermott, Deborah McGuinness, Bijan Parsia,

Terry Payne, Marta Sabou, Monika Solanki, Naveen Srinivasan,

Katia Sycara. Bringing Semantics to Web Services: The OWL-S

Approach.

www.daml.org/services/owl-s/OWL-S-SWSWPC2004-CameraRead

y.doc

[10] Wenli Dong. QoS Driven Service Discovery Method Based on

Extended UDDI. Third International Conference on Natural

Computation (ICNC 2007). pp. 317-324

[11] Xin Dong Alon Halevy Jayant Madhavan Ema Nemes Jun Zhang.

Similarity Search for Web Services. Proceedings of the 30th VLDB

Conference, Toronto, Canada, 29 August - 3 September 2004.

Pages: 372 – 383

[12] Eran Toch, Avigdor Gal, Iris Reinhartz-Berger, and Dov Dori, A

Semantic Approach to Approximate Service Retrieval. ACM

Transactions on Internet Technology, Vol. 8, No. 1, pp. 2:1-2:30,

November 2007.

[13] Berners-Lee, T., Hendler, J., Lassila, O., The Semantic Web,

Scientific American, 284(5), 2001, pp. 34-43

