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Abstract—Clustering is a widely used technique in

data mining application for discovering patterns in

underlying data. Most traditional clustering algo-

rithms are limited in handling datasets that contain

categorical attributes. However, datasets with cat-

egorical types of attributes are common in real life

data mining problem. For these data sets, no in-

herent distance measure, like the Euclidean distance,

would work to compute the distance between two cat-

egorical objects. In this article, we have described

two algorithms based on genetic algorithm and simu-

lated annealing in the field of crisp and fuzzy domain.

The performance of the proposed algorithms has been

compared with that of different well known categori-

cal data clustering algorithms in crisp and fuzzy do-

main and demonstrated for a variety of artificial and

real life categorical data sets. Also statistical signifi-

cance tests have been performed to establish the su-

periority of the proposed algorithms.

Keywords: Genetic Algorithm based Clustering, Sim-

ulated Annealing based Clustering, K-medoids Algo-

rithm, Fuzzy C-Medoids Algorithm, Cluster Validity

Indices, Statistical significance test.

1 Introduction

Genetic algorithms [1, 2, 3] are randomized search
and optimization techniques guided by the principles
of evolution and natural genetics, and have a large
amount of implicit parallelism. GAs perform search in
complex, large and multimodal landscapes, and provide
near-optimal solutions for objective or fitness function
of an optimization problem. The algorithm starts by
initializing a population of potential solutions encoded
into strings called chromosomes. Each solution has some
fitness value based on which the fittest parents that
would be used for reproduction are found (survival of
the fittest). The new generation is created by applying
genetic operators like crossover (exchange of information
among parents) and mutation (sudden small change in a
parent) on selected parents. Thus the quality of popula-
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tion is improved as the number of generations increases.
The process continues until some specific criterion is met
or the solution converges to some optimized value.
Simulated Annealing (SA) [4], a popular search algo-
rithm, utilizes the principles of statistical mechanics
regarding the behaviour of a large number of atom at low
temperature, for finding minimal cost solutions to large
optimization problems by minimizing the associated
energy. In statistical mechanics, investigating the ground
states or low-energy states of matter is of fundamental
importance. These states are achieved at very low
temperatures. However, it is not sufficient to lower the
temperature alone since this results in unstable states.
In the annealing process, the temperature is first raised,
then decreased gradually to a very low value (Tmin),
while ensuring that one spends sufficient time at each
temperature value. This process yields stable low-energy
states. Geman and Geman [5] provided a proof that
SA, if annealed sufficiently slow, converges to the global
optimum. Being based on strong theory, SA has been
applied in diverse areas by optimizing a single criterion.
Clustering [6, 7, 8, 9] is a useful unsupervised data
mining technique which partitions the input space into
K regions depending on some similarity/dissimilarity
metric where the value of K may or may not be known
a priori. The main objective of any clustering technique
is to produce a K × n partition matrix U(X) of
the given data set X , consisting of n patterns, X =
x1, x2, . . . , xn. The partition matrix may be represented
as U = [uk,j ], k = 1,. . ., K and j = 1,. . ., n, where
uk,j is the membership of pattern xj to the kth cluster.
For fuzzy clustering of the data, 0 < uk,j < 1, i.e., uk,j

denotes the degree of belongingness of pattern xj to
the kth cluster. The objective of the Fuzzy C-Means
algorithm [10] is to maximize the global compactness of
the clusters. Fuzzy C-Means clustering algorithm cannot
be applied for clustering categorical data sets, where
there is no natural ordering among the elements of an
attribute domain. Thus no inherent distance measures,
such as Euclidean distance, can be used to compute the
distance between two feature vectors [11, 12, 13]. Hence
it is not feasible to compute the numerical average of a
set of feature vectors. To handle such categorical data
sets, well known relational clustering algorithm is PAM
(Partitioning Around Medoids) due to Kaufman and
Rousseeuw [14]. This algorithm is based on finding K



representative objects (also known as medoids [15]) from
the data set in such a way that the sum of the within
cluster dissimilarities is minimized. A modified version
of PAM called CLARA (Clustering LARge Applications)
to handle large data sets was also proposed by Kaufman
and Rousseeuw [14]. Ng and Han [16] proposed another
variation of CLARA called CLARANS. This algorithm
tries to make the search for the representative objects
(medoids) more efficient by considering candidate sets
of mediods in the neighborhood of the current set of
medoids. However, CLARANS is not designed for
relational data. Finally, it is also interesting to note that
Fu [17] suggested a technique very similar to the medoid
technique in the context of clustering string patterns
generated by grammars in syntactic pattern recognition.
Some of the more recent algorithms for relational data
clustering include [18, 19, 20, 21].
All the above algorithms, including SAHN [22] generate
crisp clusters. When the clusters are not well defined
(i.e., when they overlap) we may desire fuzzy clusters.
As Krishnapuram describe an algorithm named Fuzzy
C-Medoids (FCMdd) [23] which is effective in web
document application. We have applied this algorithm
to categorical dataset and the algorithm optimize a
single objective function. Moreover motivated by this
fact, here we have used global optimization tools like
genetic algorithm and simulated annealing to optimize
the FCMdd objective function (Jm). The superiority of
the proposed methods over FCMdd clustering algorithm
has been demonstrated on different synthetic and real
life data sets.

2 Categorical Data Clustering Algo-

rithms

This section describes some Hierarchical and Partitional
clustering algorithms used for categorical data.

2.1 Complete-Linkage Clustering

The complete-linkage (CL) hierarchical clustering Algo-
rithm is also called the maximum method or the farthest
neighbor method [24]. It is obtained by defining the dis-
tance between two clusters to be the largest distance be-
tween a sample in one cluster and a sample in the other
cluster. If Ci and Cj are clusters, we define

DCL(Ci, Cj) = max
a∈Ci,b∈Cj

d(a, b) (1)

2.2 Average-Linkage Clustering

The hierarchical average-linkage (AL) clustering algo-
rithm, also known as the unweighted pair-group method
using arithmetic averages (UPGMA) [24], is one of the
most widely used hierarchical clustering algorithms. The

average-linkage algorithm is obtained by defining the dis-
tance between two cluster to be the average distance be-
tween a pont in one cluster and a point in the other clus-
ter. Formally, if Ci is a cluster with ni members and Cj

is a cluster with nj members, the distance between the
clusters is

DAL(Ci, Cj) =
1

ninj

∑

a∈Ci,b∈Cj

d(a, b). (2)

2.3 K-medoids Clustering

Partitioning around medoids (PAM), also called K-
medoids clustering [25], is a variation of K-means with the
objective to minimize the within cluster variance W(K).

W (K) =

K
∑

i=1

∑

x∈Ci

D(x, mi) (3)

Here mi is the medoid of cluster Ci and D(x, mi) denotes
the distance between the point x and mi. K denotes the
number of clusters. The resulting clustering of the data
set X is usually only a local minimum of W (K). The idea
of PAM is to select K representative points, or medoids,
in X and assign the rest of the data points to the cluster
identified by the nearest medoid. Initial set of K medoids
are selected randomly. Subsequently, all the points in X

are assigned to the nearest medoid. In each iteration,
a new medoid is determined for each cluster by finding
the data point with minimum total distance to all other
points of the cluster. After that, all the points in X are
reassigned to their clusters in accordance with the new
set of medoids. The algorithm iterates until W (K) does
not change any more.

2.4 Fuzzy C-Medoids

Fuzzy C-Medoids (FCMdd) [23] is a widely used tech-
nique that uses the principles of fuzzy sets to evolve a
partition matrix U(X) while minimizing the measure

Jm =

n
∑

j=1

K
∑

k=1

um
k,jD(zk, xj), 1 ≤ m ≤ ∞ (4)

where n is the number of data objects, K represents num-
ber of clusters, u is the fuzzy membership matrix (parti-
tion matrix) and m denotes the fuzzy exponent. Here xj

is the jth data point and zk is the center of kth cluster,
and D(zk, xj) denotes the distance of point xj from the
center of the kth cluster. In this article, the new norm
(describe in Section 3) is taken as a measure of the dis-
tance between two points.
FCMdd algorithm starts with random initial K cluster
centers, and then at every iteration it finds the fuzzy
membership of each data points to every cluster using



the following equation [23]

ui,k =
( 1

D(zi,xk) )
1

m−1

∑K

j=1(
1

D(zj ,xk))
1

m−1

, for 1 ≤ i ≤ K, 1 ≤ k ≤ n

(5)
for 1 ≤ i ≤ K; 1 ≤ k ≤ n, where D(zi, xk) and D(zj , xk)
are the distances between xk and zi, and xk and zj respec-
tively. m is the weighting coefficient. (Note that while
computing ui,k using Eqn. 5, if D(zj , xk) is equal to zero
for some j, then ui,k is set to zero for all i = 1, . . . , K,
i 6= j, while ui,k is set equal to one.) Based on the mem-
bership values, the cluster centers are recomputed using
the following equation

qi = argmin1≤j≤n

n
∑

k=1

um
i,kD(xj , xk), 1 ≤ i ≤ K (6)

and

zi = qi, 1 ≤ i ≤ K (7)

The algorithm terminates when there is no further
change in the cluster centers. Finally, each data point
is assigned to the cluster to which it has maximum
membership.

3 Distance Metric

As discussed earlier, absence of any natural ordering
among the elements of a categorical attribute domain
prevents us to apply any inherent distance measure like
Euclidean distance, to compute the distance between
two categorical objects [26]. In this article following
distance measure has been adopted for all the algo-
rithms considered. Let xi = [xi1, xi2, . . . , xip], and xj =
[xj1, xj2, . . . , xjp] be two categorical objects described by
p categorical attributes. The distance measure between
xi and xj , D(xi, xj), can be defined by the total number
of mismatches of the corresponding attribute categories
of the two objects. Formally,

D(xi, xj) =

p
∑

k=1

δ(xik, xjk) (8)

where

δ(xik , xjk) =

{

0 if xik = xjk

1 if xik 6= xjk
(9)

Note that D(xi, xj) gives equal importance to all the cate-
gories of an attribute. However, in most of the categorical
data sets, the distance between two data vectors depends
on the nature of the data sets. Thus, if a distance matrix
is precomputed for a given data set, the algorithms can
adopt this for computing the distances.

4 Genetic Algorithm based Clustering:

GAC

4.1 Basic Principle

The searching capability of GAs has been used in this
article for the purpose of appropriately determining a
fixed number K of cluster centers in <n; thereby suit-
ably clustering the set of n unlabelled points. The clus-
tering metric that has been adopted is the sum of the
distances of the points from their respective cluster cen-
ters. Mathematically, the clustering metric ζ for the K
clusters C1, C2, ..., CK is given by

ζ(C1, C2, . . . , CK) =

K
∑

i=1

∑

xj∈Ci

D(xj , zi), (10)

where D is the distance metric. The task of the GA is to
search for the appropriate cluster centers z1, z2, . . . , zK

such that the clustering metric ζ is minimized. The basic
steps of GAs, which are also followed in the GA-clustering
(GAC) algorithm. These are now described in detail.

4.2 Chromosome representation

Each chromosome has K genes and each gene of the
chromosome has an allele value chosen randomly from
the set {1, 2, . . . , n}, where K is the number of clusters
and n is the number of points. Hence a chromosome is
represented as a vector of indices of the points in the
data set. Each point index in a chromosome implies that
the corresponding point is a cluster medoid.

Example 1. Let K = 6, i.e., Then the chromosome

51 72 18 15 29 32

represents the indices of six points qualified for cluster
medoids. A chromosome is valid if no point index occurs
more than once in the chromosome.

4.3 Population initialization

The K cluster medoids encoded in each chromosome are
initialized to K randomly chosen points from the data set.
This process is repeated for each of the P chromosomes
in the population, where P is the size of the population.

4.4 Fitness computation

The fitness computation process consists of two phases.
In the first phase, the clusters are formed according to the
centers encoded in the chromosome under consideration.
This is done by assigning each point xi, i = 1, 2, . . . , n to
one of the clusters Cj with center zj such that

D(xi, zj) < D(xi, zp), p = 1, 2, . . . , K, and p 6= j, (11)



where D is the distance metric. All ties are resolved arbi-
trarily. After the clustering is done, the cluster medoids
encoded in the chromosome are replaced by the points
having minimum total distance to the points of the re-
spective clusters. In other words, for cluster Ci, the new
medoid is point xt where,

xt = argminxj∈Ci

∑

xk∈Ci

D(xj , xk). (12)

Hence the ith gene in the chromosome is replaced by t.
Subsequently, the clustering metric ζ computed as fol-
lows:

ζ =

K
∑

i=1

ζi, (13)

where,

ζi =
∑

xj∈Ci

D(xj , zi). (14)

The fitness function is defined as f = ζ, so that mini-
mization of the fitness function leads to minimization of
ζ, indicating highly compact clusters.

4.5 Selection

The selection process selects chromosomes from the mat-
ing pool directed by the survival of the fittest concept
of natural genetic systems. In the proportional selec-
tion strategy adopted in this article, a chromosome is
assigned a number of copies, which is proportional to its
fitness in the population, that go into the mating pool
for further genetic operations. Tournament selection is
one common technique that implements the proportional
selection strategy.

4.6 Crossover

Crossover is a probabilistic process that exchanges in-
formation between two parent chromosomes for generat-
ing two child chromosomes. In this article single point
crossover with a fixed crossover probability of µc is used.
For chromosomes of length l, a random integer, called the
crossover point, is generated in the range [1, l-1]. The
portions of the chromosomes lying to the right of the
crossover point are exchanged to produce two offspring
chromosomes.

4.7 Mutation

Each chromosome undergoes mutation with a fixed prob-
ability µm. The mutation operation has been defined as
following: From the string to be mutated, a random el-
ement is chosen and it is replaced by a different index
of point in the range {1, . . . , n} such that no element is
duplicated in the string.

4.8 Termination criterion

In this article the processes of fitness computation, se-
lection, crossover, and mutation are executed for a fixed
number of iterations. The best string seen upto the last
generation provides the solution to the clustering prob-
lem. We have implemented elitism at each generation by
preserving the best string seen upto that generation in
a location outside the population. Thus on termination,
this location contains the centers of the final clusters.
Fig. 1 shows the steps of GAC algorithm.

1) Encoding

2) Initial population creation.

Generation=100

while( i<Generation)

3) Fitness value calculation.

4) Selection.

5) Crossover with probability = 0.8.

6) Mutation with probability = 0.1.

i=i+1;

End while

Figure 1: GAC Algorithm

5 Simulated Annealing based Clustering:

SAC

Simulated annealing (SA) [4] is an optimization tool
which has successful applications in a wide range of com-
binatorial optimization problems. This fact has moti-
vated researchers to use SA in simulation optimization.
However SA still needs to evaluate the objective function
values accurately, and there have been few theoretical
studies for the SA algorithm when the objective function
is estimated through simulation. There are some appli-
cations of SA in clustering [27, 28]. In this article, we
have used SA for designing a categorical data clustering
method. The algorithm is named as simulated annealing
clustering (SAC). This algorithm is described below.

5.1 String representation

In this article, a configuration (string) is represented in
similar way a chromosome is represented in GAC, i.e.,
the string has length K and Each element of the string
is chosen randomly from the set {1, 2, . . . , n}, where K

is the number of clusters and n is the number of points.
Hence a string is represented as a vector of indices of the
points in the data set. Each point index in a string in-
dicates that the corresponding point is a cluster medoid.
A string is valid if no point index occurs more than once
in it.



5.2 Fitness computation

The fitness of a string is computed similarly as in GAC,
i.e., first the encoded medoids are used for cluster as-
signments and the string is updated using new medoids.
Thereafter the fitness (K-medoid error function) is com-
puted as per Eqn. 10.

5.3 Perturbation

The current string undergoes perturbation as follows: the
position of perturbation is chosen randomly and the value
of that position is replaced by some other value chosen
randomly from the set {1, 2, . . . , n}. This way, perturba-
tion of a string yields a new string. The steps of SAC
algorithm is shown Fig. 2.

1) q = Random initial string.

T = T_{max}.

2) E(q,T) = Fitness of q.

while( T >= T_{min} )

for i = 1 to k

3) s = Perturb ( q ).

4) E(s,T) = Fitness of s.

if (E(s,T) - E(q,T) < 0 )

5) Set q = s and E(q,T) = E(s,T) .

else

6) Set q = s and E(q,T) = E(s,T) with

probability exp-( E(s,T) - E(q,T) )/T

End for

T= T*r. /* 0 < r < 1 */

End while

Figure 2: SAC Algorithm

6 The Proposed Genetic Algorithm

based Fuzzy Clustering: GAFC

In this section, we describe the use of GA for evolv-
ing a fuzzy partition matrices. FCMdd [23] measure
are considered as the objective functions that must be
minimized. The technique of Chromosome representa-
tion (Section 4.2), Population initialization (Section 4.3),
Selection (Section 4.5), Crossover (Section 4.6), Muta-
tion (Section 4.7), Termination criterion (Section 4.8) are
same only the Fitness computation described below in de-
tail.

6.1 Fitness computation

In this article the FCMdd measure are taken as the
objective that need to be optimized. For computing
the measures, the centers encoded in a chromosome are
first extracted. Let these be denoted as v1, v2, . . . , vK .
The membership values ui,k, i = 1, 2, . . . , K and k =

1, 2, . . . , n are computed as follows

ui,k =
( 1

D(vi,xk) )
1

m−1

∑K
j=1(

1
D(vj ,xk) )

1

m−1

, for 1 ≤ i ≤ K, 1 ≤ k ≤ n

(15)
where D(vi, xk) and D(vj , xk) are as described earlier. m

is the weighting coefficient. (Note that while computing
ui,k using Eqn. 15, if D(vj , xk) is equal to zero for some
j, then ui,k is set to zero for all i = 1, ......., K, i 6= j,
while uj,k is set equal to one.) Subsequently, the centers
encoded in a chromosome are updated using the following
equations

qi = argmin1≤j≤n

n
∑

k=1

um
i,kD(xj , xk), 1 ≤ i ≤ K (16)

and
vi = qi, 1 ≤ i ≤ K (17)

and the cluster membership values are recomputed. The
FCMdd measure Jm is defined as follows:

Jm =

n
∑

j=1

K
∑

k=1

um
k,jD(zk, xj), 1 ≤ m ≤ ∞ (18)

where m is the fuzzy exponent.

7 The Proposed Simulated Annealing

based Fuzzy Clustering: SAFC

Here we are described the technique of Fitness Computa-
tion of SAFC algorithm, rest of the part of this algorithm
is same with the Section 5.1, Section 5.3.

7.1 Fitness computation

The fitness of a string is computed similarly as in GAFC,
i.e., first the encoded medoids are used for membership
value calculation and the string is updated using new
medoids. Thereafter the fitness (FCMdd error function)
is computed as per Eqn. 18.

8 Experimental Results

The performance of the proposed algorithms has been
evaluated on synthetic data sets (Cat01 and Cat02)
and real life data sets (Soybean, Zoo, Votes, Balance-
Scale, Tic-tac-toe and Car). The proposed clustering
schemes have been compared with different algorithms,
viz., Complete-linkage, Average-linkage, K-medoids and
FCMdd. Each algorithm has been run for 20 times. The
average of different indices (described later) has been re-
ported.

8.1 Synthetic Categorical Data Sets

Cat01: The ‘Cat01’ is a synthetic data set which con-
sists of 20 instances with 5 features. The data set has 2



clusters.
Cat02: The ‘Cat02’ data is also a synthetic data set
which consists of 132 instances with 5 features. This data
set has 3 clusters. The synthetic data sets are generated
using a web based data generation tool1.

8.2 Real Life Categorical Data Sets

Soybean: The Soybean data set contains 47 data points
on diseases in soybeans. Each data point has 35 categori-
cal attributes and is classified as one of the four diseases,
i.e., number of clusters in the data set is 4.
Zoo: The Zoo data consists of 101 instances of ani-
mals in a zoo with 17 features. The name of the ani-
mal constitutes the first attribute. This attribute is ne-
glected. There are 15 boolean attributes corresponding to
the presence of hair, feathers, eggs, milk, backbone, fins,
tail; and whether airborne, aquatic, predator, toothed,
breathes, venomous, domestic and catsize. The charac-
ter attribute corresponds to the number of legs lying in
the set 0, 2, 4, 5, 6, 8. The data set consists of 7 different
classes of animals.
Congressional Votes: This data set is the United
States Congressional voting records in 1984. Total num-
ber of records is 435. Each row corresponds to one
Congress mans votes on 16 different issues (e.g., educa-
tion spending, crime etc.). All attributes are boolean
with Yes (that is, 1) and No (that is, 0) values. A classi-
fication label of Republican or Democrat is provided with
each data record. The data set contains records for 168
Republicans and 267 Democrats.
Balance-Scale: This is a weight and distance Database.
The Balance-Scale data set contains 625 data points.
Each data point has 4 categorical attributes. Number of
clusters in the data set is 3. The Information about the
attribute of this data set are Left-Weight, Left-Distance,
Right-Weight and Right-Distance. Attributes are given
in numerical from such as 1 to 5.
Tic-tac-toe: The Tic-tac-toe data consists of 958 in-
stances of legal tic-tac-toe endgame boards with 10
features where each corresponding to one tic-tac-toe
square. Out of this 10 features last one is a class iden-
tifier. Others are corresponding to the top-left-square,
top-middle-square, top-right-square, middle-left-square,
middle-middle-square, middle-right-square, bottom-left-
square, bottom-middle-square and bottom-right-square.
Those squares are identified by x = player x has taken or
o = player o has taken or b = blank.
Car: The Car data consists of 1728 instances. All in-
stances completely cover the attribute space. Out of this
7 features last one is a class identifier. Others are corre-
sponding to the Buying ( vhigh, high, med, low.), Maint (
vhigh, high, med, low.), Doors ( 2, 3, 4, 5 more.), Persons
( 2, 4, more.), Lug boot ( small, med, big.), Safety ( low,
med, high.). Class identifier has four distinct members,
those are unacc, acc, good and vgood.

1http://www.datgen.com

The real life data sets mentioned above were obtained
from the UCI Machine Learning Repository2.

8.3 Input Parameters

The GAC and GAFC algorithms is executed for 100 gen-
erations with population size=20. The crossover and mu-
tation probabilities are taken to be 0.8 and 0.1, respec-
tively. The parameters of the SAC and SAFC algorithm
are as follows: Tmax=100, Tmin=0.01, r=0.9 and k=100.
The FCMdd and K-medoids algorithms are run for 100
iterations unless they converge before that.

8.4 Performance Metric

For evaluating the performance of the clustering algo-
rithms, Minkowski score [29], I index [30], Silhouette in-
dex [31] and Adjusted Rand Index [32] are used for both
artificial and real life categorical data sets, respectively.

8.4.1 Minkowski score

Minkowski score (MS) is define as follows : A clustering
solution for a set of n elements can be represented by an
n × n matrix C, where Ci,j = 1 if point i and j are in
the same cluster according to the solution, and Ci,j = 0
otherwise. The Minkowski score of a clustering result C

with reference to T , the matrix corresponding to the true
clustering, is defined as

MS(T, C) =
‖ T − C ‖

‖ T ‖
(19)

where

‖ T ‖=

√

∑

i

∑

j

Ti,j

The Minkowski score is the normalized distance between
the two matrices. Lower Minkowski score implies bet-
ter clustering solution, and a perfect solution will have a
score zero.

8.4.2 I index

A cluster validity index I [30], proposed recently as a
measure of indicating the goodness/validity of cluster so-
lution, is defined as follows:

I(K) = (
1

K
×

E1

EK

× DK)p, (20)

where K is the number of clusters. Here,

EK =

K
∑

i=1

n
∑

k=1

ui,k ‖ zi − xk ‖, (21)

2http://www.ics.uci.edu/∼ mlearn/MLRepository.html



Table 1: Average values of Indices for Crisp Algorithms.
DataSets Mesure CL AL K-medoids GAC SAC

Indices
MS 0.9953 0.9492 0.6617 0.0302 0.0000

Cat01 I 1.5302 3.2201 4.2125 5.0263 9.6319
s(C) 0.4632 0.5010 0.5519 0.8561 1.0000
ARI 0.5563 0.6151 0.7751 0.8708 1.0000
MS 1.3520 1.1384 0.9425 0.4522 0.4922

Cat02 I 1.0042 2.2341 3.1682 6.9508 5.0234
s(C) 0.4231 0.5003 0.5983 0.7781 0.7205
ARI 0.4905 0.5518 0.7906 0.9183 0.8901
MS 1.3954 1.2432 0.7851 0.2522 0.2982

Soybean I 4.6322 7.3256 10.6329 15.9326 13.0659
s(C) 0.4829 0.5621 0.6212 0.7851 0.7535
ARI 0.5162 0.5966 0.7174 0.9063 0.8832
MS 1.1642 1.1262 0.6920 0.5332 0.4840

Zoo I 11.6310 16.7255 21.0632 25.5316 27.5981
s(C) 0.4261 0.5516 0.6882 0.7219 0.7433
ARI 0.5852 0.6355 0.6827 0.7441 0.7939
MS 1.1192 0.9747 0.7401 0.6452 0.6618

Votes I 5.3216 7.5353 9.6363 17.6291 15.5271
s(C) 0.4322 0.4891 0.6182 0.7431 0.7102
ARI 0.5150 0.5726 0.7278 0.8556 0.8233
MS 1.2024 1.0871 0.7113 0.4315 0.4207

Balance-Scale I 7.3241 9.0935 12.0631 16.5032 18.0233
s(C) 0.4853 0.5233 0.6635 0.6855 0.7361
ARI 0.6033 0.6462 0.7582 0.8287 0.8592
MS 1.4503 1.0520 0.6372 0.4512 0.5001

Tic-tac-toe I 9.0302 12.4631 19.0638 26.4242 23.4762
s(C) 0.4853 0.5263 0.5728 0.6172 0.6053
ARI 0.5162 0.5321 0.6457 0.7601 0.7472
MS 1.3215 1.1127 0.7218 0.4686 0.4635

Car I 15.5326 20.0673 26.5373 28.6372 31.9251
s(C) 0.3882 0.4671 0.5051 0.7236 0.7751
ARI 0.5781 0.6363 0.7071 0.8242 0.8441

and

DK = maxi6=j‖ zi − zj ‖, (22)

The power p is used to control the contrast between the
different cluster configurations. In this article, we have
taken p = 2.

8.4.3 Silhouette index

Silhouette index [31] is a cluster validity index that is used
to judge the quality of any clustering solution C. Suppose
a represents the average distance of a point from the other
points of the cluster to which the point is assigned, and
b represents the minimum of the average distances of the
point from the points of the other clusters. Now the
silhouette width s of the point is defined as:

s =
b − a

max{a, b}
(23)

Silhouette index s(C) is the average Silhouette width of
all the data points and it reflects the compactness and
separation of clusters. The value of Silhouette index
varies from -1 to 1 and higher value indicates better clus-
tering result.

8.4.4 Adjusted Rand Index

Suppose T is the true clustering of a data set based on do-
main knowledge and C a clustering result given by some
clustering algorithm. Let a, b, c and d respectively de-
note the number of pairs belonging to the same cluster in
both T and C, the number of pairs belonging to the same
cluster in T but to different clusters in C, the number of
pairs belonging to different clusters in T but to the same
cluster in C and the number of pairs belonging to differ-
ent clusters in both T and C. The adjusted Rand index



Table 2: Average values of Indices for Fuzzy Algorithms.
DataSets Mesure CL AL FCMdd GAFC SAFC

Indices
MS 0.9953 0.9492 0.2393 0.0041 0.0032

Cat01 I 1.5302 3.2201 4.3277 5.0765 8.4341
s(C) 0.4632 0.5010 0.6212 0.8769 0.9061
ARI 0.5563 0.6151 0.8761 0.9091 0.9362
MS 1.2520 1.1384 0.7205 0.4161 0.4284

Cat02 I 1.0042 2.2341 3.2012 7.8184 6.0232
s(C) 0.4231 0.5003 0.6631 0.8513 0.7805
ARI 0.4905 0.5518 0.8607 0.9447 0.9225
MS 1.3954 1.2432 0.7821 0.1203 0.1130

Soybean I 4.6322 7.3256 12.3246 16.6602 19.6051
s(C) 0.4829 0.5621 0.6322 0.8321 0.8605
ARI 0.5162 0.5966 0.7345 0.9237 0.9522
MS 1.1642 1.1262 0.5549 0.4312 0.4762

Zoo I 11.6310 16.7255 24.5632 32.4646 28.4921
s(C) 0.4261 0.5516 0.7351 0.7808 0.7533
ARI 0.5852 0.6355 0.7562 0.8708 0.8066
MS 1.1192 0.9747 0.7329 0.6344 0.6261

Votes I 5.3216 7.5353 10.3219 18.5030 20.6304
s(C) 0.4322 0.4891 0.6388 0.7632 0.7982
ARI 0.5150 0.5726 0.7678 0.8653 0.8861
MS 1.2024 1.0871 0.6809 0.3872 0.4125

Balance-Scale I 7.3241 9.0935 14.9131 21.0391 19.0908
s(C) 0.4853 0.5233 0.6952 0.7682 0.7452
ARI 0.6033 0.6462 0.7805 0.9222 0.8703
MS 1.4503 1.0520 0.5353 0.4273 0.4502

Tic-tac-toe I 9.0302 12.4631 21.3092 28.4504 26.0359
s(C) 0.4853 0.5263 0.6032 0.6645 0.6346
ARI 0.5162 0.5321 0.6955 0.8073 0.7651
MS 1.3215 1.1127 0.7106 0.4302 0.4581

Car I 15.5326 20.0673 26.4343 35.5347 32.6233
s(C) 0.3882 0.4671 0.6235 0.8053 0.7869
ARI 0.5781 0.6363 0.7526 0.8815 0.8545

ARI(T, C) is then defined as follows:

ARI(T, C) =
2(ad − bc)

(a + b)(b + d) + (a + c)(c + d)
(24)

The value of ARI(T, C) lies between 0 and 1 and higher
value indicates that C is more similar to T . Also,
ARI(T, T ) = 1.

8.5 Results

Each algorithm is executed for 20 times. Average val-
ues obtained for different indices in 20 consecutive runs
of the algorithms are reported for different data sets in
Tables 1 and 2. It is evident from the tables, as well as
from the Figs. 3 and Fig. 4 that both the GAC, SAC in
crisp domain and GAFC, SAFC in fuzzy domain consis-
tently outperform the hierarchical clustering, K-medoids
and FCMdd algorithms. The performances of GAC, SAC
and GAFC, SAFC are comparable to each other.
It can be noticed from the Table 1 (for crisp domain) that

for the Zoo data set, SAC algorithm provides best result
for all the performance indices. The algorithm produces
the average values of 0.4840, 27.5981, 0.7433 and 0.7939
for MS, I, s(C) and ARI, respectively. It is also evident
from Table 1 that for Tic-tac-toe data set, GAC algo-
rithm has outperformed other algorithms. Similarly, for
example, GAFC algorithm of Table 2 (for fuzzy domain)
provides the different average indices values of 0.4302,
35.5347, 0.8053 and 0.8815, respectively for the Car data
set. It shows that the GAFC algorithm performs bet-
ter than the other algorithms for this data set. Also for
the data set like Votes, the SAFC algorithm works bet-
ter compared to the other algorithms. Overall it is found
that GAC and SAC in crisp domain, and GAFC and
SAFC in the fuzzy domain consistently outperform the
other algorithms for all the data sets. Another interesting
observation is that GAFC and SAFC algorithms outper-
form GAC and SAC for all the data sets. This indicates
the utility of incorporating fuzziness in the algorithms.
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Figure 3: Boxplots of Minkowski scores for different crisp algorithms on (a) Cat01 (b) Cat02 (c) Soybean (d) Zoo
(e) Votes (f) Balance-Scale (g) Tic-tac-toe (h) Car .
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Figure 4: Boxplots of Minkowski scores for different fuzzy algorithms on (a) Cat01 (b) Cat02 (c) Soybean (d) Zoo
(e) Votes (f) Balance-Scale (g) Tic-tac-toe (h) Car .



Table 3: Median values of the Minkowski Score for the Datasets over 50 consecutive runs of different crisp Algorithms.
Algorithm Cat01 Cat02 Soybean Zoo Votes Balance-Scale Tic-tac-toe Car

CL 0.9953 1.3520 1.3900 1.1600 1.1301 1.1842 1.4500 1.3209
AL 0.9492 1.1384 1.2400 1.1200 0.9481 1.1246 1.0500 1.1681

K-medoids 0.6480 0.9354 0.7900 0.7662 0.7102 0.7321 0.6372 0.7431
GAC 0.0625 0.4458 0.2900 0.5766 0.6483 0.4219 0.4512 0.4218
SAC 0.0602 0.4922 0.2900 0.5000 0.6742 0.4325 0.5001 0.4492

Table 4: Median values of the Minkowski Score for the Datasets over 50 consecutive runs of different fuzzy Algorithms.
Algorithm Cat01 Cat02 Soybean Zoo Votes Balance-Scale Tic-tac-toe Car

CL 0.9953 1.3520 1.3900 1.1600 1.1192 1.3643 1.4500 1.3215
AL 0.9492 1.1384 1.2400 1.1200 0.9747 1.0871 1.0500 1.1193

FCMdd 0.2577 0.7200 0.7900 0.5261 0.7329 0.6654 0.6372 0.7106
GAFC 0.0525 0.4100 0.2016 0.4300 0.6344 0.3872 0.4200 0.4428
SAFC 0.0073 0.4200 0.1100 0.4850 0.6261 0.4125 0.4500 0.4581

Table 5: P − values produced by Wilcoxon’s Rank Sum test comparing GAC with other Algorithms.
DataSet P-value

CL AL K-medoids SAC
Cat01 5.5111e-005 5.4332e-005 1.4118e-004 0.8717
Cat02 5.3477e-005 5.3067e-005 1.4462e-004 0.4182

Soybean 5.9802e-005 5.9002e-005 1.6211e-004 0.3459
Zoo 5.7633e-005 5.7033e-005 1.6091e-003 0.1062

Votes 5.2983e-005 5.0743e-005 1.7082e-004 0.2873
Balance-Scale 5.7427e-005 5.7104e-005 1.6871e-004 0.5291
Tic-tac-toe 5.5111e-005 5.5111e-005 1.6091e-003 0.1669

Car 5.8641e-005 5.5801e-005 1.6094e-004 0.6603

Table 6: P − values produced by Wilcoxon’s Rank Sum test comparing SAC with other Algorithms.
DataSet P-value

CL AL K-medoids GAC
Cat01 5.5111e-005 5.4211e-005 1.4418e-004 0.8717
Cat02 5.5121e-005 5.3911e-005 1.4504e-004 0.4182

Soybean 5.4699e-005 5.4099e-005 1.5116e-004 0.3459
Zoo 6.1582e-005 6.1082e-005 3.1472e-004 0.1062

Votes 5.5111e-005 5.6281e-005 1.3218e-004 0.2873
Balance-Scale 5.4517e-005 5.4352e-005 1.6529e-004 0.5291
Tic-tac-toe 5.5111e-005 5.4811e-005 6.3633e-004 0.1669

Car 5.5874e-005 5.5111e-005 1.4418e-004 0.6603

Table 7: P − values produced by Wilcoxon’s Rank Sum test comparing GAFC with other Algorithms.
DataSet P-value

CL AL FCMdd SAFC
Cat01 5.5111e-005 5.5111e-005 1.4504e-004 0.6280
Cat02 5.4477e-005 5.2067e-005 1.4762e-004 0.1562

Soybean 5.4699e-005 5.4699e-005 1.5116e-004 0.9844
Zoo 5.1633e-005 4.7033e-005 3.6128e-003 0.5008

Votes 5.4055e-005 5.7761e-005 1.7609e-004 0.7663
Balance-Scale 5.6544e-005 5.3221e-005 1.3371e-004 0.6354
Tic-tac-toe 5.5111e-005 4.6111e-005 3.5814e-004 0.1567

Car 5.9142e-005 5.4699e-005 1.7752e-004 0.4552



Table 8: P − values produced by Wilcoxon’s Rank Sum test comparing SAFC with other Algorithms.
DataSet P-value

CL AL FCMdd GAFC
Cat01 5.5111e-005 5.4711e-005 1.4504e-004 0.6280
Cat02 5.5221e-005 5.0311e-005 2.6645e-004 0.1562

Soybean 5.5019e-005 5.2079e-005 1.5205e-004 0.9844
Zoo 5.3609e-005 4.7092e-005 2.446e-003 0.5008

Votes 5.3221e-005 5.7705e-005 1.7532e-004 0.7663
Balance-Scale 5.4463e-005 5.6542e-005 1.6554e-004 0.6354
Tic-tac-toe 5.5111e-005 5.1111e-005 6.3633e-004 0.1567

Car 5.7302e-005 5.4081e-005 1.4432e-004 0.4552

8.6 Statistical Significance

A non-parametric statistical significance test called
Wilcoxons rank sum test for independent samples [33] has
been conducted at the 5% significance level. Five groups
each from crisp and fuzzy domain corresponding to the
five algorithms, have been created for each data set. Each
group consists of the Minkowski scores (MS) for the data
sets produced by 50 consecutive runs of the correspond-
ing algorithm. The median values of each group for all
the data sets are shown in Table 3 and Table 4.
As a null hypothesis (H0), it is assumed that there are
no significant differences among the median Minkowski
scores produced by all the algorithms.

H0 : ∀i, j : i 6= j =⇒ µi = µj (25)

The alternative hypothesis (H1) is that there are signifi-
cant differences in median Minkowski scores for at least
two methods.

H1 : ∃i, j : i 6= j =⇒ µi 6= µj (26)

where µi denotes the median Minkowski score of the ith
group.
It is evident from Table 3 and Table 4 that the median MS
values for GAC, SAC in crisp domain and GAFC, SAFC
in fuzzy domain are better than that for other algorithms.
To establish that this goodness is statistically significant,
Tables 5-8 reports the P-values produced by Wilcoxons
rank sum test for comparison of two groups (group corre-
sponding to one of GAC, SAC, GAFC and SAFC and a
group corresponding to some other algorithm) at a time.
All the P-values reported in the table are less than 0.05
(5% significance level). For example, the rank sum test
between the algorithms GAC or SAC and K-Medoid for
Zoo provides P-values of 0.0016 and 3.1472e-004, respec-
tively, which are very small and it is also the case for
fuzzy domain. This is strong evidence against the null
hypothesis, indicating that the better median values of
the performance metrics produced by GAC, SAC in crisp
domain and GAFC, SAFC in fuzzy domain are statis-
tically significant and have not occurred by chance. It
is also evident from Tables 5-8 that GAC, SAC in crisp

domain and GAFC, SAFC in fuzzy domain are both ac-
cepting the null hypothesis when they are compared with
each other (as P-values are greater than 0.05). This in-
dicates GAC and SAC as well as GAFC and SAFC pro-
vide comparable solutions. Similar results are obtained
for all other data sets and for all other algorithms com-
pared to GAC, SAC in crisp domain and GAFC, SAFC
in fuzzy domain, establishing the significant superiority
of the proposed technique.

9 Conclusions

In this article, genetic algorithm and simulated annealing
based clustering algorithms for categorical data have been
proposed in crisp and fuzzy domain. The proposed algo-
rithms effectively optimize the K-medoids and FCMdd
error function globally. The performance of the proposed
algorithms have been demonstrated for different synthetic
and real life data sets and also compared with that of
other well-known clustering algorithms used for categor-
ical data clustering. The results indicate that the pro-
posed genetic algorithm and simulated annealing based
algorithms can be efficiently used for clustering different
categorical data sets.
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