



Abstract—The software can be developed from scratch or we can

make use of already developed software components, which can

enhance the productivity and quality. On Internet, a large

collection of software code is being offered by open-access

repositories but, how one can identify a relevant and good quality

code with minimum effort? In this paper, the domain relevancy of

software components appraised, by extracting the different

aspects processed by those software components, with help of

Probabilistic Latent Semantic Analysis. Further, structural

attributes of software components are calculated using software

metrics and quality of the software is inferred by Neuro-fuzzy

Inference engine, taking these metric values as input. The

neuro-fuzzy system is optimized by selecting initial rule-base

through ID3 decision tree algorithm. The combination of DR-value

with reusability value enables to identify a relevant or

domain-specific and good quality code automatically. It has been

found that Probabilistic Latent Semantic Analysis has provided

better results than other retrieval techniques being followed. The

reusability and domain-relevancy value determined is close to the

manual analysis used to be performed by the

programmers/repository managers. So, this kind of automation

can improve the productivity and quality of software development.

Index Terms—Location Search, Reusable component, Domain specific,

Component Based Development, Software Repository

I. INTRODUCTION

In the present era of computerization there is utmost need of

improving the productivity and quality of software as the

demand of the software is increasing day by day. To achieve

both the objectives it is always recommended to go for the

software reuse that not only saves the time taken to develop the

product from scratch but also delivers the almost error free code,

as the code is already tested many times during its earlier reuse.

But for an organization that has experience in developing

software, but not yet used the software reuse concept, there

exists the extra cost to develop the reusable components from

scratch to build and strengthen their reusable software reservoir.

The cost of developing the software from scratch can be saved

by identifying and extracting the reusable components from

already developed and existing software systems [1,2]. But the

issue of how to identify reusable components from existing

Heang-Kon Kim is with the Department of Computer Engineering, Catholic

University of Daegu Kyung San, Daegu, 712-702, Korea (corresponding author

to provide phone: 053-850-2743; fax: 053-850-2740;

 e-mail: hangkon@ cu.ac.kr).

systems has remained relatively unexplored. Our approach to

identification of reusable software is based on software models

and metrics.

In literature, Probabilistic Latent Semantic Analysis technique

is used for text-document similarity. In this paper, the domain

relevancy of software components is determined, by extracting

the different aspects processed by those software components,

with help of Probabilistic Latent Semantic Analysis.

The contribution of metrics to the overall objective of the

software quality is understood and recognized[3]. But how

these metrics collectively determine reusability of a software

component is still at its naïve stage.

A neural Network approach could serve as an economical,

automatic tool to generate reusability ranking of software [4,5].

When one designs with Neural Networks alone, the network is a

black box that needs to be defined, this is a highly

compute-intensive process. One must develop a good sense,

after extensive experimentation and practice, of the complexity

of the network and the learning algorithm to be used. Fuzzy

systems, on the other hand, require a thorough understanding

of the fuzzy variables and membership functions, of the

input-output relationships as well as the good judgment to select

the fuzzy rules that contribute the most to the solution of the

application. As for the Fuzzy inference system there is a need of

membership rules for fuzzy categories. It is difficult to deduce

these membership rules with a given set of complex data. Neural

nets and fuzzy systems, although very different, have close

relationship: they work with impression in a space that is not

defined by crisp, deterministic boundaries [6]. Neural network

can be used to define fuzzy rules for the fuzzy inference system.

A neural network is good at discovering relationships and

pattern in the data, so neural network can be used to preprocess

data in the fuzzy system. Furthermore, neural network that can

learn new relationships with new input data can be used to refine

fuzzy rules to create fuzzy adaptive system. With the objective

of taking advantage of the features of the both[5], we make use

of Neuro-Fuzzy based Inference System along with the domain

relevancy appraisal system, to identify good quality and

reusable components in existing object-oriented systems.

II. RELATED WORKS

A. Referential integrity

A system supports referential integrity if it guarantees that

resources will continue to exist as long as there are outstanding

references to the resources. The Web does not support this

property and cannot do so since the system is unaware of the

Automatic Identification of Potential Reusable

Mobile Components

 Haeng-Kon Kim

number of references that exist to a particular resource. It is

impractical to maintain every resource that has ever been

published on a particular server forever, this simply does not

scale. Resources that are no longer of value, for whatever reason,

become garbage and need to be collected. This may involve

moving the resources to backing storage, or in some cases,

deleting the resources entirely. Access pattern information,

which is currently available through examination of server logs,

is not a sufficient basis to decide whether an object is safe to

garbage collect as important though rarely used references to a

resource may exist. Safe garbage collection can only be

performed if referencing information is available [7].

 The consequences of deleting resources that are still

referenced affects both the user and the information provider.

Such broken links are the single most annoying problem faced

by browsing users in the current Web. Broken links result in a

tarnished reputation for the provider of the document containing

the link, annoyance for the document user, and possible lost

opportunity for the owner of the resource pointed to by the link.

B. Migration transparency

In addition to the problems associated with deleting Web

resources, migrating resources (either intra- or interserver) also

has the potential to break hypertext links. Using the URL

naming scheme, when a resource moves its identity also changes.

Therefore, hypertext links to the old name will now break, with

the same consequences as stated previously. A partial solution

to this problem is provided by the use of the HTTP redirect

directive, which provides a forwarding pointer to the new

location, allowing clients to rebind to the resource

(automatically in the case of redirection-aware browsers).

However, this is only a partial solution for the following

reasons: firstly, documents containing references to the old

location of the resource are not automatically updated, and so

future requests will continue to access the old location first.

Secondly, even if there were an automatic update mechanism,

the lack of referential integrity means that the redirector can

never be safely removed since it is impossible to determine

whether all of the links have been updated. There is also the

possibility that the URL may be reallocated following the

migration[8]. The disadvantage of this approach is the

performance penalty associated with name-server lookups,

updates, and access bottlenecks. Furthermore, this scheme does

not address the issue of referential integrity.

C. Resource and service management

As previously mentioned, most resource accesses through the

Web are read-only operations. Updates to the resources by the

information provider are performed using mechanisms

orthogonal to the Web; that is, using the native commands and

editing tools of the server machine. In effect Web resources

reside in two distinct domains in parallel: the traditional

structure of the file system and the complex interlinking Web of

hypertext. Within these two environments, the interfaces to the

Fig.1. Disjoint interfaces to Web resources

resources as well as the relationships between the resources are

fundamentally different, as illustrated in Figure 1.

Maintenance operations carried out by the information provider

or site maintainer typically require manipulation of the

resources within both domains. As described earlier in the

section entitled "Migration Transparency," moving a resource

within the file system has the side effect of changing its name in

the Web domain. To reflect such changes, other Web resources

must also be modified. Further, the internal state of the moved

resource may also require modification, due to the use of

relative naming [9]. At present such changes are performed

manually and are prone to mistakes and inconsistencies. This

can be seen as a result of having two parallel interfaces without

any support for maintaining consistency.

D. Quality of service

The perceived quality of service (QoS) of the Web is

influenced by many factors, including the broken link problems

already mentioned. Even if a user holds a correct reference to an

existing Web resource, it may still be unavailable due to a

number of reasons, including unavailability of the machine

serving the resource, and partitions in the network between the

client and server. Partitions may either be real, caused by breaks

in the physical network, or virtual, due to excessive network or

server load making communications between the client and

server impossible. Even if communication is possible, very poor

response characteristics may effectively make the resource

unusable. QoS will become more of an issue as the Web

continues its transformation into a commercially oriented

system

Technical solutions for improving QoS are fairly well

understood, including caching for responsiveness, replication

for availability, and migration for load balancing. Caching in the

Web is reasonably common, both through the use of browser

memory and disc caches, and also through the use of caching

servers [10]. Effective caching is not a trivial task since there are

many subtle problems that need to be addressed, including

cache consistency, accounting, etc. Current caching servers use

a heuristic approach for consistency management, where

resources can only apply coarse-grained tuning based on expiry

dates. URI working group is implementing a framework for

resource replication, but appear to only be addressing the

problem within the realm of read-only, static resources, where a

read-from-any policy is appropriate. Replicating more complex

read/write resources is much more difficult due to the problems

associated with maintaining consistency between concurrent

users and in the presence of failures.

E. Component repository

Component repository is a library system that supports to find,

provide and manage components for building a business

application. So it is a kind of tool that store, register and manage

the all artifacts produced in component life cycle based on

component architecture, and support a “Reuse with component”

in CBD process through performing advanced retrieval and

browsing of information. Most of all, component repository is a

central mediator for component generation and utilization. So,

analyzing and applying consistent meta data and user feedback

information can establish CBD process including creation,

verification, configuration management and circulation of

component[11].

III. NEURO-FUZZY SYSTEM’S ARCHITECTURE

With the increase in the complexity of the problem being

modeled and unavailability of the precise relationship among

various constituents for measuring the reusability, has led to

rely on another approach which is mostly known as neuro-fuzzy

or fuzzy-neuro approach. The neuro-fuzzy hybrid system

combines the advantages of fuzzy logic system, which deal with

explicit knowledge that can be explained and understood, and

neural networks, which deal with implicit knowledge, which

can be acquired by learning.

A fuzzy system can be considered to be a parameterized

nonlinear map, called f [5], which can be expressed as in

equation (1).

 

  

 

 

 




















m

l
i

n

i

m

l
i

n

i

l

x

xy

A

A

l
i

l
i

xf

1 1

1 1
)(





(1)

Where y
l
 is a place of output singleton if Mamdani reasoning

is applied or a constant if Sugeno reasoning is applied. The

membership function µAi
l
(xi) corresponds to the input x=[x1, x2,

x3,… xm] of the rule l . The “and” connective in the premise is

carried out by a product and defuzzification by the

center-of-gravity method. Consider a Sugeno type of fuzzy

system having the rule base

Rule1: If x is A1 and y is B1, then f1= p1x + q1y + r1

Rule2: If x is A2 and y is B2, then f2= p2x+ q2y + r2

Fig.2. (a). A two-Input First-Order Sugeno Fuzzy Model with to rules

(b). Equivalent Neuro-Fuzzy System

Let the membership functions of fuzzy sets Ai, Bi, i=1,2, be ,

µAi , µBi .

1. Evaluating the rule premises results in wi =µAi(x) * µBi (y)

where i = 1,2 for the rule rules stated above.

2. Evaluating the implication and the rule consequences

gives equations (1)-(4).

ww

fwfw
f

21

2211






 (2)

Let

ww

w
w

i

i
21

 (3)

then f can be written as

fwfwf
2211  (4)

These all computations can be presented in a diagram form as

shown in the figure 2(a) and 2(b).

A two-tier approach is proposed for evaluation of the

domain-specific reusable code. In the first Tier, it is tried to find

the Domain-Relevancy or usefulness of the Component and in

the second tier Neuro-fuzzy system can be used to evaluate the

software component’s code reusability by analyzing structural

properties of the component.

A. Domain-Relevancy Appraisal

Following steps are proposed to find the DR-value of

potential reusable components using training software

components.

Training Phase

a)Extract identifiers from Training software belonging to

different domains.

b) Create identifier-by-software matrix

c) Remove useless identifiers and perform Normalization to

obtain n(d, w) matrix.

d) Initialize the P(w|z) and P(d |z) randomly with numbers

between [0,1] and normalize them to sum to 1 along rows. P(z)

is also initialize randomly.

e) Apply EM algorithm and iterate it until convergence or

iterations are less than maximum number of iterations. The

convergence means the maximization of log-likelihood function.

The output of the Training phase is the probability of finding

words in different latent classes, i.e. P(w|z) and probability of

finding documents in different latent classes, i.e. P(d |z).

Estimating Domain-Relevancy value (DR-value)

a) Extract the features from q, the potential reusable

components and FV is mapped according to occurrence

matrix’s keyword list.

b) Find different aspects’ values in Query Software

Components

After training, the estimated P(w|z) parameters are used to

estimate P(q|z) for query software components, q , through a

“folding-in” process. In the “folding-in” process, EM is used in

a similar manner to the training process: the E-step is identical,

the M-step keeps all the P(w|z) constant and only re-calculates

P(q|z), which shows the level of different aspects in Query

Software Components i.e. DR-value.

 Cluster-analysis

Nearest-neighbor-based, agglomerative, hierarchical,

unsupervised conceptual clustering can be used to create a

hierarchy of clusters grouping of software of similar semantic

structure. Clustering starts with a set of singleton clusters, each

containing a single software di Є D, where i =1, ..., N, where D

equals the entire set of documents and N equals the number of

all software. The two most similar clusters over the entire set D

are merged to form a new cluster that covers both. This process

is repeated for each of the remaining N-1 software components.

A complete linkage algorithm is applied to determine the

overall similarity of document clusters based on the document

similarity matrix. Merging of document clusters continues until

a single, all-inclusive cluster remains. At termination, a uniform,

binary hierarchy of document clusters is produced.

B. Structural Analysis

Structural Analysis of the query component is performed

using Neuro-fuzzy Inference system to evaluate the software

component’s code reusability using following steps:

Selection of Software Metrics

Following set of metrics are found to be true representative of

different dimensions of structural attributes necessary for

finding the quality of a reusable software component. Most of

these metrics are also supported by recent findings of Selby in

[8].

(1) Cyclometric Complexity Using Mc Cabe’s Measure

According to Mc Cabe [12], the value of Cyclometric

Complexity can be obtained using the following formula as

shown in equation (5).

 Cyclometric Complexity = Number of Predicate

nodes + 1

(5)

Where predicate nodes are the nodes of the directed graph,

made for the component, where the decisions are made i.e.

predicate nodes should have more than one arrow coming out of

it. If the complexity is low then reuse of component will not

repay the cost. Otherwise high value of complexity indicates

poor quality, high development cost, low readability, poor

testability and prone to errors i.e. high rate of failure[3].

Hence the value of Cyclometric Complexity of a software

component should be in between upper and lower bounds as an

contribution towards reusability. If Cyclometric complexity is

high with high regularity of implementation then there exists

high functional usefulness.

Regularity

The notion behind Regularity is “How well we can predict

length based on some regularity assumptions”. As actual length

(N) is sum of N1 and N2. The estimated length is shown in

equation (6).

 222121
loglog N (6)

The closeness of the estimate is a measure of the

Regularity(r) of Component coding is shown in equation (7).

N

N

N

NN
gularity





1Re

(7)

The above derivation indicates that Regularity is the ratio of

estimated length to the actual length. High value of Regularity

indicates the high readability, low modification cost and

non-redundancy of the component implementation.

Hence, there should be some minimum level of Regularity of

the component to indicate the reusability of that component.

C. Halstead Software Science Indicator

According to this metric volume of the source code of the

software component is shown in equation (8).

Volume = (N1 + N2) log2 (η1+ η2) (8)

Where n1 = the number of distinct operators that appear in the

program

n2 = number of distinct operands that appear in the program

N1 = The total number of operator occurrences

N2 = The total number of operand occurrences

If the volume is high means that software component needs

more maintenance cost, correctness cost and modification cost.

On the other hand less volume increases the extraction cost,

identification cost from the repository and packaging cost of the

component. So the volume of the reusable component should be

in between the two extremes.

Reuse Frequency

Reuse frequency is calculated by comparing number of static

calls addressed to a component with number of calls addressed

to the component whose reusability is to be measured. Let N

user defined components are X1, X2 … XN in the system, where

S1, S2 … SM are the standard environment components e.g.

printf in C language.





M

i
iS

M

C
Frequencyuse

0

)(
1

)(
Re





(9)

Equation (9) shows that the “Reuse frequency” is the measure

of function usefulness of a component. Hence there should be

some minimum value of “Reuse Frequency” to make software

component really reusable.

Coupling

Functions/methods that are loosely bound tend to be easier to

remove and use in other contexts tan those that depend heavily

on other functions or non-local data.

Different types of coupling effects reusability with different

extent. Depending on the type of interface between two

functions coupling can be classified in following categories:

 Data Coupling

Data coupling exists between two functions when functions

communicate using elementary data items that are passed as

parameters between the two.

 Stamp Coupling

When two functions communicate using composite data

item e.g. structure in C language then that kind of coupling

is called Stamp Coupling.

 Control Coupling

If data from one function is said to direct the order of

instruction execution in another function then Control

Coupling is there between those functions. In other words

functions share data items upon which control decisions are

made.

 Common Coupling

In case of Common Coupling the two functions share global

data items. Weight of coupling increases from “a” to “d” means

Data coupling is lightest weight coupling, whereas Content

Coupling is the heaviest one. Let

 ai = number of functions called and Data Coupled with

function “i”

bi = number of functions called and Stamp Coupled with

function “i”

ci = number of functions called by function “i” and Control

Coupled with function “i”

di = number of functions Common Coupled with function

“i” . Then total lack of coupling measure mc for function “i” can

be calculated as in equation (10).

dwcwbwaw
m

iiii
c

K

4321 


(10)

As lack of coupling(mc) decreases, there is decrease in

understandability and maintainability, so there should be some

maximum value of the coupling associated with a software

component, beyond which the component becomes

non-reusable i.e. there should be minimum value for the lack of

coupling measure(mc).

IV. IMPLEMENTATION AND RESULTS

As a software implementation of the discussed concept, a

deployable Component Object Model (COM) based

Component, which is Microsoft's binary standard for object

interoperability, is developed. The developed component’s

objects can be accessible through Visual Basic, C++, or any

other language that supports COM. Sample data is collected

from various Reusable Repositories of C components then we

ran the program for the 62 components belonging to different

domains and six unobserved latent variables are selected. The

Training phase is run and P(w|z) is obtained as 718 * 6

dimensional matrix. Thereafter, 22 components are picked up

as “q” and P(z|q) is calculated, as shown in figure 3. The figure

shows different aspect or concept or unobserved latent variable

levels in the software components and these values gives

indication of the DR-values of the software component.

Bendrogram plots the hierarchical tree information as a

graph is shown in figure 3, where the numbers along the

horizontal axis represent the indices of the objects or

components in the original data set and the links between

objects are represented as upside-down U-shaped lines. The

height of the U indicates the distance between the objects. This

height is known as the cophenetic distance between the two

objects or components.

Fig. 3. Snapshot of Calculated P(z |q) values

Fig.4. Bendrogram showing the Distance between the Components

Clustering analysis is performed on the P(z |q) and the

software components are clustered in different clusters

according to their latent variable values as shown in figure 4.

Let’s take the case of cluster:4, in which the components that

are having concepts of “hardware device utility” and in

cluster:6 most of the components contain strong “graphics

concept”.

There is a need to calculate value of the P(w|z), once with

help of training data and later on, it can be used to calculate the

DR-value of any number of potential reusable components.

It is tried to evaluate the system using Evaluation of precision

and recall. Let S be a set of all software systems contained in a

repository. Precision and recall are defined in equations (11) to

(15).

Precision =
||

)(

S

sprecision
Ss soft 

(11)

Where

)(sprecision soft =
|)(|

|)()(|

sC

sCsC

Actual

IdealActual 

(12)

And

Recall =
||

)(

S

srecall
Ss soft 

(13)

Where

)(srecall soft =
|)(|

|)()(|

sC

sCsC

Ideal

IdealActual 

(14)

Fig.5. Result of the cluster analysis performed on P(z |q)

Fig.6. Neural Network incorporating the fuzzy inference system

Where Cactual(s) is a set of clusters containing software “s”,

generated by our software and CIdeal(s) is a set of clusters

containing input software “s”, determined manually by the

Domain Experts. Using Precision and Recall values we have

calculated F-value as a measure of performance evaluation i.e.

F-Value =
rp

pr



2

(15)

Where p is the Precision and r is the Recall of the system. The

best F-Value for the system is 0.75.

A network-type structure similar to that of a neural network,

which maps inputs through input membership functions and

associated parameters, and then through output membership

functions and associated parameters to outputs, can be used to

interpret the input/output map is shown in the figure 6. In the

neuro-fuzzy inference system using a given input/output data set,

we have constructed a fuzzy inference system (FIS), whose

membership function parameters are tuned (adjusted) using

stochastic gradient descent rule with momentum for the

parameters associated with the input membership functions. The

initial rule-base for the Neuro-fuzzy system can be obtained

using of the ID3 decision tree Generation algorithm. As a result,

the training error decreases, at least locally, throughout the

learning process. The training will stop after the training data

error remains within this tolerance. This is set to 0 as we don’t

know how training error is going to behave.

During the testing phase, when NEURO-FUZZY SYSTEM

is tested against the testing data and the Average Testing error

obtained equal to 4.1318%. The plot for the tested data between

the actual output versus the expected output is shown in figure 7.

 Fig.7. Plot between the actual output and expected output for Testing data

V. CONCLUSION AND FUTURE WORKS

As the actual outputs produced by the Domain-Relevancy

module and neuro-fuzzy inference system are close to the

expected output, so the developed deployable COM based

Component system, can be recommended for Automatic

identification of potential reusable components from the legacy

systems and evaluating the quality of developed or developing

reusable components for better productivity and quality.

ACKNOWLEDGMENT

“ This work was supported by the Korea Science and

Engineering Foundation (KOSEF) grant funded by the Korea

government (MEST) (No. R01-2008-000-20607-0) “

REFERENCES

[1] Dan Gildea and Thomas Hofmann, “Topic Based Language Models

Using EM,” Proceedings of 6th European Conference On Speech

Communication and Technology (Eurospeech'99), 1999, pp.

2167-2170.

[2] G. Boetticher and D. Eichmann, “A Neural Network Paradigm for

Characterizing Reusable Software,” Proceedings of the 1st Australian

Conference on Software Metrics, Nov. 1993, pp. 18-19.

[3] Guttorm Sindre, Reidar Conradi, Even-André Karlsson, “The

REBOOT approach to software reuse,” Journal of Systems and

Software, vol. 30(3), Sep. 1995, pp. 201-212.

[4] G. Caldiera and V. R. Basili, “Identifying and Qualifying Reusable

Software Components,” IEEE Computer, February 1991.

[5] J-S. R. Jang and C.T. Sun, “Neuro-fuzzy Modeling and Control,”

Proceeding of the IEEE, Mar. 1995.

[6] M. H. Halstead, “Elements of Software Science,” Elsevier

North-Holland, 1977.

[7] Roger S. Pressman, “Software Engineering: A Practitioner’s

Approach,” 5th ed. McGraw-Hill Publications, 2005.

[8] Richard W. Selby, “Enabling Reuse-Based Software Development of

Large-Scale Systems,” IEEE Trans. on Software Engineering, vol. 31,

no. 6, June. 2005, pp. 495-510.

[9] S. V. Kartalopoulos, “Understanding Neural Networks and Fuzzy

Logic-Basic Concepts and Applications,” IEEE Press, 1996, pp.

153-160.

[10] Thomas Hofmann, Jan Puzicha and M. Jorden, “Unsupervised

Learning from Dyadic Data,” Advances in Neural Information

Processing systems, vol. 11, 1999.

[11] Thomas Hofmann, “Probabilistic Latent Semantic Indexing,”

Proceedings of the 22nd International Conference on Research and

Development in Information Retrieval (SIGIR'99), Berkeley, 1999, pp.

35-44.

[12] T. MaCabe, “A Software Complexity measure,” IEEE Trans.

Software Engineering, vol. SE-2, Dec. 1976, pp. 308-320.

Dr. Haeng-Kon Kim is currently a professor in the Department of

Computer Engineering and was a dean of Engineering College at

Catholic University of Daegu in Korea. He received his M.S and Ph.D

degree in Computer Engineering from Chung Ang University in 1987

and 1991, respectively. He has been a research staff in Bell Lab. in 1988

and NASA center 1978-1979 in U.S.A. He also has been reserched at

Central Michigan University in in 2000-2002 and 2007-2008 in U.S.A.

He is a member of IEEE, KISS and KIPS. Dr. Kim is the Editorial

board of the international Journal of Computer and Information

published quarterly by ACIS. His research interests are Component

Based Development, Component Architecture & Frameworks for

Mobile Applications and Components embedded systems .

