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Abstract—The security of transmitted digital information correlation near to zero; desired attractor (witlkeef
through a channel, against passive or active attaskbecomes gpace).
more and more important. The use of a 1-D chaoticignal to In [3,5], the authors show that logistic map doretify
mask useful information and to make it unrecognizate by an the ran,dolmness fi Ini2.6 h owel
eavesdropper is a field of research in full expansn. In order . properties. In [2,6], vye S ow so 9
to obtain such high-level security; chaotic generats used to chaotic maps for DS-CDMA communication systems. In
encrypt digital data, must have desirable dynamical [4], we prove the efficacy of perturbed PWLCM withr
statistical properties such as: noise-like autocoslation, encryption algorithm. Also in [7], an analysis afather
cross-correlation, uniformity, attractors, etc. In this paper; parametric PWL chaotic map and its utilization $ecure

first, we design, improve and simulate using Matlatsome 1-D transmission svstem based on the CSK principle is
chaotic generators: Logistic map, PWLCM (PieceWise provided y P P

Linear Chaotic Map) map, Perturbed PWLCM map, Frey . . L
map, perturbed Frey map, (n, t)-tailed shifts map ad In this paper, we study and improve some existing
perturbed one. Second, we show the importance of perbed techniques used to generate chaotic signals wisiredk
chaotic orbit with a comparative study of the dynanical statistical properties.

statistical properties obtained under simulation an Nist An experimental comparison of dynamical systems
tests properties for the generators under test is madegus
Matlab. Such study will permit us choosing the best
chaotic generator to be used in a cryptographitesys
Digital chaotic systems working in &"-dimensional
finite space, introduce deterministic quantizat{oound-

I INTRODUCTION off, truncated or ceiled) errors in discrete itemas, and

in Secdpeen pseudo orbits become different from theorktioas
even after a short number of iterations. Consedyent

Index Terms—Chaotic sequences generators, encryption,
dynamical degradation, perturbed chaotic orbit, searity.

Recently, chaos has been widely studied
communications [1, 2], and the idea of using dlgit . . - o
chaotic systems to construct cryptosystems has b amical degradations  of Q|g|tal chaot_|c 3'9”"?‘“‘_”
extensively studied since 1990s, and attracts nami urthermore, all pseudo orbits are possibly pedagid
more attention in the last years [3, 4]. Chaotitpati their cycle lengths are shorter ti#h To avoid the
signal of one dimensional chaotic generator is used dynamical degradation, two techniques can be used:
both confusion and diffusion operations in a crgggiem. C€ascading multiple chaotic systems and pseudo ralydo

In order to be used in all applications, chaotiquemces Perturbing the chaotic system. The second solutton

must seem absolutely random. Therefore, we need?gfter- We will explain and use it. Then, we wibh &
digital chaotic generator with good cryptographi€omparative analysis of these methods in order to
properties, such as: balance on {0, 1}; long cyefegth; Cconclude by choosing the best one. This paper is
high linear complexity;J -like autocorrelation; cross- organized as follows. The second paragraph iptg
some chaotic maps. The third part describes thposexd
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dimensional map, is a rule for getting a humbemfra m
number [3, 5, 8] QJ(@: FNL{ K.( ')l+ Z[ GX g i D+ (S)h (4)
i=1
x(n) = FX(n-1)] = px X n-1)x (@~ X m1) (1) where o
Fo (0 = x if x<2 5)
The secret key always includes the initial conditix(0) N x mod(2') otherwise

and the control parametegr within the interval (O; 4];

x(n) is in [0; 1]. The Logistic map has been well-stadieThe index u in equation (4) denotes an unsigned number.
in the past, and it had been demonstrated thatahtrol Also, all additions are modulo™2 These operators are
parametep should be greater than the accumulation poiassumed to be generally nonlinear operations.
3.569945672 in order to maintain the highly chastate. The coder uses the following particular case ofsysiem

B. PWLCM map driven by equation (4):

o m=2, G, =1, G, =2, D, =1, D, =2, as shown in figure 2.
Due to the poor balance property of Logistic mame

. . X ) ) All operations inside the loop work in the unsigned
implementations use the following Zhou's map wilitdr ) . )
balance property [8]. number representation modul) . The delivered chaotic

A piecewise linear chaotic map (PWLCM) is a magignal g(n) is composed by2" quantized levels
composed of multiple linear segments (limited bregk including the interval betweefo,2" - 1], and having the
points are allowed). duration of T, seconds for each chip:

o :E:(—nl;i)]l if 0sx(n-1)<p &(n :mod{ ki (+ mO({ g (m 1 leirg g (m 2]}} (6)
P 2)
=:[x(n-1)- p]x 0'51_ 5 if psXn-1<05 where
FIL-x(n-1)] if 05<x(n-J<1 Icirc[e,(n~-2)| = mod &, (- 2)+ s, (n) (7)

and
where the positive control paramepet (0, 0.5) andk(i) €

0, 1).
C. (n, t) — tailed shifts map

A well known family of PWAM (piece Wise Affine
Markov) that generate chaotic sequences are thg (n,The carry bit functions[d plays the role of a noise

%@F{O" Bln- < (8)

1 otherwise

tailed shifts map [6, 9]. source that is correlated in a nonlinear way to the
response,(n). The input signalk,(n) plays in our
((N=1)X) modr-ty/my +1 ifosx<D7t application the role of an additional key, whichedanot
M(X) = n n ®3) allow an unauthorized eavesdropper to recover the
(t(X‘L_t))momm) generated signal. Howeverk,(n) can be used as
n

information signal to encrypt.
Using equations (6) and (7) we can rewrite equaiigras

It is known that these maps are exact and havédfarom following:

invariant probability density function [9].

D. Frey map e, (N =mod k (nN+ g(n-1)+ 2¢(m 2+ s(d (9)
An approach to generate chaos for secure

communications has been demonstrated by Frey. Twkere the system states are given by:

codec uses a non linear filter with finite precisi bits)

in conjunction with its inverse filter [1, 2]. Theon linear x(n) = e(n-1)and x,(r) = g(n-2)

function used is the left circulate function suitéal

8 ) In order to reduce the signal’s mean power, anchae
hardware implementation.

. its amplitude independent of the number of levelddct,
In figure 1, we present the s_tructure o_f Frey gawer The on N ), the generated signe|(n) is, first converted into a
generator scheme consists in a non linear funclgr{x) signed signak(n) (The indexs means «signed») in the

with a delayed feedback loop. The general equaion 5.g complement in th@" representation sefC2,2"],
defined by the following relation:

(Advance online publication: 20 November 2008)
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andthen normalized by the maximum absolute valubef @
guantized levels. Hence, the effective generatgubsis:

&(n =2 ax g, (t- nT) (10) ®_’@_’ °
with @

2N cq < 2" -1 Fig. 2: A pseudo orbit of a digital chaotic system

Then, some questions might arise: how to estimiage t
_{1 if 0<t<T,, maximal and (mean) transient lengths, cycle periuis$

ch

0 otherwise the number of limit cycles? Are the lengths largewgh
to ensure the dynamical properties of continuolsotib
systems? Unfortunately, as B.V. Chirkikov and Fvaldi

demonstrated in [11], rigorous studies of suchnesions
(especially the average lengths) are notoriousfficdlit

and the difficulties are actually from the lackaof ergodic
theory for discrete chaotic systems. Since therétmal
analysis is not possible, statistical experimenesvadely
used to explore this issue.

xtox |&(n

es(n
convertes 2

B. Perturbed chaotic orbit

To improve the dynamical degradation, a perturlpatio
based algorithm is used. Indeed, in this case as
demonstrated in appendix, the cycle length is edpdn
and so a good statistical properties are obtaih2d13].
Considering a one dimensional chaotic generatonelef

by:

Fig. 1: Frey structure generator under test x(n) = F[ X n-1)] 5[0‘1] x(n)D[O,l] n=12,.. (11)

Here, for computing precisioN, each sample can be

. PROPOSED PERTURBATION TECHNIQUE represented as:

A. On the Periodicity of chaotic orbit
Since digital chaotic iterations are constrainedain
discrete space witl2" elements, it is obvious that every

chaotic orbit will eventually be periodic [1Gnd will  The fundamental basis of the perturbing method istss
finally go to a cycle with limited length not greatthan i, that the chaotic system run away from the cydter

2" (Fig. 2). Generally, each digital chaotic orbitludes iterations, i.e. the chaotic system having entexemycle

two connected parts: can be driven to leave the cycle immediately by a
X, %00 ANA X, %4, %4, » Which are respectively perturbance. The choose of the perturbance is done

called “transient branch” and “cycle”. Accordinglyand @ccording to the following principles: it should vea
n+1 are respectively called “transient length” and cley controllable long cycle length ano_l u_nlform disttilon; it
period”, andl+n is called “orbit length”. Conceptually, Should not degrade the good statistical propediehaos
there is only a small number of limit cycles forpdeudo- dynamics, so the magnitude of the perturbing sigmast

orbits, which means the digital phase space wititest be much smaller than that of the chaotic signale Th

o signal-to-noise ratio is defined as:
to an attractor whose size is smaller tB¥n Apparently,

such a collapsed phase space will destroy the @igodf

. maximum magnitude of chaotic signal
the continuous systems. SNR=10x logt—— a SNt (13)
maximum magnitude of perturbing signe

X(0) = 0. (1) % (0. X(D-.. % (1) LR eI RPN
i=12,..N
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A suitable candidate for the perturbing signal getor is Figure 3 shows the first cycle length of perturbed
the maximal length LFSR because its generated segge PWLCM versusA with two different keys. The primitive
have the following advantages: 1) definite cyclegii (2 polynomial is given by>é +x¢ + 2+ x*+1 (k =8). In this

- 1) (kiis the polynomial degree); 2) uniform distributionfigyre, the continuous line presents the minimatley
3) delta like autocorrelation function; 4) easyangth that is proportional to delta as verifiedsection 3.

implementation;  5) ~ controllable  maximum signairhe experimental results of cycle length are alwtzigger
magnitude given b x (2°- 1) when used iMN-precision o equal to the expected one. Figure 4 shows tioge cy

system. _ _ ) length of perturbed PWLCM (*) and the (n,t)-tailshifts
The pertgrblng bit for every clock time can be generateqnap (+) versus the perturbation degree k. Clearé/can
as following: see that the experimental results verify the thezakone.

We found a very large cycle length with a lower bdu
QuM=Q(N=6Q(A0 gq NIJ..0 g (N (14) 9iven by equation (17) and represented by the coatis
withn=0,12,... curve. The perturbation of Frey map gives a largeec
length (>16) with different values of k and\. In the
Where O represents ‘exclusive or'g, g,...g,_, are the other handto verify the balance property, a set of 500

tap coefficients of the primitive polynomial genera Seduences for each chaotic generator are compesed,

ando, o,.q_, are the initial register values of which afeduence containing 100000 chaotic valiess already
verified that the balance property of PWLCM is bett

least one is non zero. - : :
The perturbance starts at 0, and the next ones occurthan the case of Logistic map [3], being slightlifedent

periodically everyAiterations (A is a positive integer), from utmform fone. F|gu(;es 5(a)f?3nvc\i/u?/l(b) jhowt tfg)ed
with n=1x A, I=1,2,..., The perturbed sequence is giver‘?ercen ages ot zeros and ones o and periurbe

by the equation (15): one, and verify that the sequences based on theGhNVL
' map have a visibly larger percentage of ones.

= JFDx(n=1)] 1<sisN-k (15) Also for perturbed Frey map and (n,t)-tailed shiftap,
% () Flx(n-1)] O Qy_(n N- k+l< is N the percentage of zeros and ones is closely thes.sam
Then, perturbed maps have a much better uniformity
where F[x(r)] represents thigh bit of F[x(r)] . relatively to the original maps. In figure 6(a)getlkross-
) ) correlation of two sequences with identical initial
The perturbance is applied on the labits ofF[x(n)] . conditions but slightly different control parameteris
Whenn # [ XA, no  perturbance  occurs, andyiven for the perturbed Frey map. And it is the saesult
thenx(n) = F[ X n-1)] . for the other maps. Perturbed Frey generator gilese
The system cycle length is given by the followirdation results as perturbed PWLCM, its attractor showfigare
(see appendix): 6.c contains more free space than that of the ertu
T:axAx(zk—]) (16) PWLCM and (n, t)- tailed shifts map and shownigufe

5.b and 5.d, and then redundancy code can be used.

where o is a positive integer. The lower bound of the x 10°
system cycle length is:

TminzAx(Zk_]) (17) 2r

V. EXPERIMENTAL RESULTS il

In order to verify the proposed method and compare osr
cryptographic properties of different generatoreme
experiments were performed. The finite computing
precision isN =16 bits. Both initial conditions and control
parameters are generated randomly. A large number g

o 10 20 30 40 50 60 70 80 90 100

Fig. 3: Perturbed PWLCM cycle length vergusvith two
fferent keys; (-): Theoretical results. (*): Expaental results

sampled values are simulated (100000 samples). with an initial condition equal to 0.4 and contpairameter equal
For all generators under tests, we found that the t to 0.3. (+): Experimental results with an initi@rzition equal to
domain variation of output signals, the spectruldBET), 0.6 and control parameter equal to 0.4.

the autocorrelation functions and cross-correlation
functions are clearly noise-like.

(Advance online publication: 20 November 2008)
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Fig. 6: (a) Cross-correlation of perturbed PWLCM map,

+

+
2

*
4

6 s 10 12 (b) and (c) Attractors of Perturbed PWLCM map, Freap and
(n,t)-tailed shifts map respectively.

Fig. 4: Cycle length versus the perturbation degree
with A =10 forPerturbed PWLCM (*) and (n,t)-tailed shifts Nist Statistical Test

map (+). Among the numerous standard tests for pseudo-
randomness, a convincing way to show the randomufess

the produced sequences is to confront them to i8I N

Percentof 0 Statistical Test (National Institute of Standardsd

o Technology). The NIST statistical test [14] is atistical
package consisting of 16 tests that were develtpeaest

Percentof1| the randomness of arbitrary long binary sequences

produced by either hardware or software based
cryptographic random or pseudorandom number

00 s w0 10 a0 0 a0 m0 w0 0w B0 w0 1o 1% w0 0 @ a0 &0 50 generators_ These tests focus on a Variety d|ffawes

@)

(b) of non-randomness that could exist in a sequence.

Fig. 5: Balance property (a)PWLCM map, (b) Perturbedp .  To verify our results, we employ the above testitesio

test the randomness of 100 binary sequences othleng

38912. Note that the 100 binary sequences werergieae
with randomly selected secret keys. For each tbst,
default significance leved=0.01 was used, at the same
time a set of P-values, which is correspondindhéoget of

sequences, is produced. Each sequence is caitassf
the corresponding P-value satisfies the conditieralBe
>a, and is calledailure otherwise.

@)

Tablel.

o!
4 6 4 2 0 2 4 6 8 0 01 02 03 04 05 08

(b)

Performed tests and number of sequences passihdesiin a sample of 100 sequences.

Number of Passed Sequences

Map name (n,t)-tailed Perturbed (n,t)- Frey Perturbed Frey PWLCM Perturbed
Name of Test shifts map tailed shifts map PWLCM
Frequency 99 100 96 100 97 100
Block Frequency 100 100 96 99 96 99
Cumulative Sums 98 100 92 100 97 98
Runs 99 100 97 98 100 99
Rank 100 100 100 97 99 99
Discrete Fourier 100 95 0 99 99 99
Transform
Seriall 97 100 98 100 98 100
Serial2 98 99 99 100 100 100
Approximate 97 99 94 97 97 100
Entropy
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In [5], the authors showed that logistic map doe$ nt_

satisfy the requirements as a good random source.
In Table 1, we show the results obtained with the
application of NIST test on PWLCM, Frey afdt)-tailed
shifts maps and the comparison with the results o
perturbed ones.

As we can see, the perturbed maps are much bhd#ar t
original maps; that the sequences passed all thst ofo
NIST tests. Then, the obtained results demonstitate

strength of the perturbation technique proposecesthe  [3].

perturbed maps pass all chosen NIST tests.

[4].

V. CONCLUSION

In a cryptographic system, the use of a good cbaotis;.

generator, with desirable dynamical statisticalpgmties,
is very important. We proved this idea in our poas

paper [4]. In this paper, we have implemented sie 0 [g].

dimensional chaotic generators (PWLCM, perturbed
PWLCM, Frey, perturbed Freyn,t)-tailed shiftsmap and
perturbed one). And we tested all generators whih t
application of NIST statistical tests. A comparisamong
these maps using standard criteria proves theegifiy of
the perturbed technique. Indeed, both theoreticad a
experimental analyses demonstrated that perturkegas m
have desired cryptography properties. As prospettis

generator to obtain better dynamical statisticalpprties.
And finally test another chaotic maps perturbedtha
same way to find the best cryptographic properties.

[10].

APPENDIX

Theoretical analysis of expanded cycle length
Assume that the system has entered a péristhte after
no iterations, i.e.(n+T)= x(n (forn>n, ;ki<N) and

[7

—

(8.

=Ax(2" -1)is the lower bound of the system cycle

ength.
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