

Abstract— Along with the boom of Web services and the thriving

Model Driven Architecture (MDA), we must consider the growing

significance and utility of modeling in the development of software

and solutions. The main advantages of MDA are the ability to

transform one PIM into several PSMs, one for each platform or

technology in which the final system will be deployed, and the

automatic code generation that implements the system for those

platforms from the corresponding PSMs. Service-oriented

architectures (SOA) are also touted as the key to business agility,

especially when combined with a model-driven approach.

Model-Driven Architecture (MDA) is a well-developed concept

that fits well with SOA, but until now it has been a specialized

technique that is beyond practical application scope of most

enterprises.

In this paper, We describe the initial investigation in the fields of

MDA and generative approaches to SOA. Our view is that MDA

aims at providing a precise framework for generative software

production. Unfortunately many notions are still loosely defined

(PIM, PSM, etc.). We propose here an initial exploration of some

basic artifacts of the MDA space to SOA. Because all these

artifacts may be considered as assets for the organization where

the MDA is being deployed with SOA, we are going to talk about

MDA and SOA abstract components to apply an e-business

applications. We also discuss the key characteristics of the two

modeling architectures, focusing on the classification of models

that is embodied by each. The flow of modeling activity is

discussed in the two architectures together with a discussion of the

support for the modeling flows provided by MDA. Our model of

framework – a unified modeling architecture – is introduced

which illustrates how the two architectures can be brought

together into a synergistic whole, each reinforcing the benefits of

the other with case study.

Index Terms—Model-Driven Architecture(MDA),Domain Model,

Service-oriented architectures(SOA), Software Process

Improvement, Component Based Development, Repository

I. INTRODUCTION

In order to find an appropriate solution to development and

design of those systems an appropriate paradigm seems

necessary. The object-oriented and component-based

technology has not significantly met the needs of these systems,

and may be considered as adding additional complexity to a

domain that needs simplification. A new paradigm like

service-oriented architecture is necessary. SOA is a paradigm

that utilizes services as fundamental elements for developing

Heang-Kon Kim is with the Department of Computer Engineering, Catholic

University of Daegu Kyung San, Daegu, 712-702, Korea (corresponding

author to provide phone: 053-850-2743; fax: 053-850-2740; e-mail:

hangkon@ cu.ac.kr).

applications. In order to gain the full benefits of such technology,

an effective approach to modeling and designing these complex

distributed systems is required. In fact there is not a suitable

approach to SOA-based development and little works have been

done on this area and most of them are for special applications

and specific domains. To exploit the benefits of SOA effectively

and duly, we propose an approach that involves MDA into the

context[1,2,3,4].

Service-oriented architecture (SOA) is an approach to

loosely coupled, protocol independent, standards-based

distributed computing where software resources available on

the network are considered as Services[3]. SOA is believed to

become the future enterprise technology solution that promises

the agility and flexibility the business users have been looking

for by leveraging the integration process through composition

of the services spanning multiple enterprises. The software

components in a SOA are services based on standard protocols

and services in SOA have minimum amount of

interdependencies. Communication infrastructure used within

an SOA should be designed to be independent of the underlying

protocol layer. Offers coarse-grained business services, as

opposed to fine-grained software-oriented function calls and

uses service granularity to provide effective composition,

encapsulation and management of services.

The problems of modeling solutions based on SOA have

largely been resolved through the recognition of the importance

of loose coupling and the consequent separation of concerns.

Service Interfaces are shared amongst models showing the

implementation and re-use of the services. Whilst the use of

modeling within SOA is well established, it has suffered from

the same issues as modeling in other architectures. The

abstraction gap between the level of detail expressed in the

model and the level of detail expressed in the code is a key issue.

Yet it is the abstraction gap which is one of the key targets for

the Model Driven Architecture. It seems likely, then, that if

SOA and MDA can work together they will add value

synergistically, leading to greater benefits than either

architecture provides in isolation. Yet the two architectures are

distant in terms of the way they address the issues surrounding

modeling. SOA focuses on the stereotypical roles of models

based on separation of concerns. MDA focuses on levels of

abstraction, defining the role of models within a process. The

question of the compatibility of these two model architectures

remains open.

The service-oriented architecture (SOA) approach and the

corresponding web service standards such as the Web Service

Description Language (WSDL) [5] and the Simple Object

Access Protocol (SOAP) [6] are currently adopted in various

Modeling of Distributed Systems with SOA & MDA

Haeng-Kon Kim

fields of distributed application development (e.g. enterprise

application integration, web application development, inter

organizational workflow collaboration). The service-oriented

paradigm offers the potential to provide a fine grained

virtualization of the available resources to significantly increase

the versatility.

Model driven architecture (MDA) [7] has been proposed as

an approach to deal with complex software systems by splitting

the development process into three separate model layers and

automatically transforming models from one layer into the

other :

1) The Platform Independent Model (PIM) layer holds a high

level representation of the entire system without committing to

any specific operating system, middleware or programming

language. The PIM provides a formal definition of an

application’s functionality without burdening the user with too

much detail.

2) The Platform Specific Model (PSM) layer holds a

representation of the software specific to a certain target

platform such as J2EE, Corba or in our case the service oriented

Grid middleware.

3) The Code Layer consists of the actual source code and

supporting files which can be compiled into a working piece of

software. In this layer, every part of the system is completely

specified. MDA theory states that a PIM is specified and

automatically transformed into a PSM and then into actual code,

thus making system design much easier. The trick, of course,

lies in the development of generic transformers capable of

generating PSM and code layers from the PIM [8]. e-business

application on SOA is a relatively young field of distributed

computing and is currently lacking any form of tool support for

a model driven approach to software development. This is

unfortunate since we believe that due to its high complexity and

the high rate of churn in the software technology market, a

MDA approach is vital to the adoption of this new technology as

in figure 1. Only if “business logic” (i.e. application

functionality) developers can more or less effortlessly integrate

a new middleware into their system, will a widespread adoption

be possible. Furthermore, the developers responsible for the

integration of the middleware into the overall system should be

able to concentrate on middleware concerns and not have to

cope with the business logic as well. This separation of concerns

can be greatly facilitated by an appropriate MDA approach.

Fig.1. MDA approaches

In this paper, we present a model-driven approach to SOA

modeling and designing complex distributed systems based on

MDA. MDA separates the Platform Independent Model (PIM)

from the Platform Specified Model (PSM) of the system and

transforming between these models is achieved via appropriate

tools. The paper proposes a new approach to modeling and

designing service-oriented architecture. In this approach the

PIM of the system is created and then the PSM based on SOA is

generated (this PSM is a PIM for next level). Then the final

PSM based on a target platform (such as Web Services, Jini and

so on) is generated. These models are generated with

transformation tools in MDA and an approach to the model

driven development for e-business applications on SOA is

presented. The goal of the approach is to minimize the

necessary human interaction required to transform a PIM into a

PSM and a PSM into code for a SOA. To further separate the

architectures specific components of the PSM from the business

specific components of the PSM, a UML e-business Profile is

introduced and a separation of the PSM layer into two parts is

proposed which make the automated transformations from PIM

to PSM to code easier to implement and more transparent for

system designers, developers, and users. The separation of

concerns introduced on the PSM layer is mirrored on the code

layer by the use of Java annotations, allowing the same business

code to run in different domains simply by exchanging the

annotations and thus decoupling application code and SOA

middleware.

II. RELATED WORKS

A. Modeling Web services metadata based on MDA

Web services are emerging as the perfect framework for

application-to-application integration or collaboration, to make

these applications available as Web services. To standardize the

use of Web services, the World Wide Web Consortium (W3C)

proposed the Web Service Description Language (WSDL)

standard, an XML-based language that describes Web service

functionality. Essentially, a WSDL file is a

language-independent XML-based version of an IDL (Interface

Definition Language) file that describes the operations offered

by a Web service, as well as the parameters that these operations

accept and return. Thus, WSDL has become the standard that

supports the description of Web services: What they do, how

they should be used, and where they are localized[8,9].

The WS-Policy framework consists of two specifications:

WS-Policy and WS-Policy Attachment.

 The WS-Policy specification describes the syntax for

expressing policy alternatives and for composing them

as combinations of domain assertions. The WS-Policy

specification also describes the basic mechanisms for

merging multiple policies that apply to a common

subject and the intersection of policies to determine

compatibility.

 The WS-Policy Attachment specification describes

how to associate policies with a particular subject. It

gives normative descriptions of how this applies in the

context of WSDL and UDDI, (Universal Description,

Discovery, and Integration), and it provides an

extensible mechanism for associating policies with

arbitrary subjects through the expression of scopes.

Along with the boom of Web services and the thriving Model

Driven Architecture (MDA), we must consider the growing

significance and utility of modeling in the development of

software and solutions. MDA, which was proposed by the

Object Management Group (OMG), is a model-driven

framework for software development that proposes to model the

business logic with Platform-Independent Models (PIMs) to

later transform them on Platform-Specific Models (PSMs) by

using transformation guides between the different models. The

main advantages of MDA are the ability to transform one PIM

into several PSMs, one for each platform or technology in which

the final system will be deployed, and the automatic code

generation that implements the system for those platforms from

the corresponding PSMs.

Because Web services are software components, the

development of Web services must exploit the advantages of

MDA. To apply the MDA principles in the development of Web

services, a modeling process must be considered. According to

MDA principles, this modeling activity should result in

automatic code generation. If we want to abstract from the

platform in which the Web service will be deployed, the code

that should be generated is the WSDL document that contains

the Web service description in a standard format.

B. MDA Main Concepts

The main concepts of the MDA are beginning to be identified

[6,7] A model represents a particular aspect of a system under

construction, under operation or under maintenance. A model is

written in the language of one specific meta-model. A

meta-model is an explicit specification of abstraction, based on

shared agreement. A meta-model acts as a filter to extract some

relevant aspects from a system and to ignore all other details. A

meta-meta-model defines a language to write meta-models.

There are several possibilities to define a meta-meta-model.

Usually the definition is reflexive, i.e. the meta-meta-model is

self defined. A meta-meta-model is based at least on three

concepts (entity, association, package) and a set of primitive

types. The OMG MDA postulates the use of the MOF as the

unique metameta-model for all IT-related purposes. The MOF

contains all universal features, i.e. all those that are not specific

to a particular domain language. Among those features we find

all that is necessary to build meta-models and to operate on them.

Maintaining a specific tool for the MOF would be costly, so the

MOF is aligned on the CORE part of one of its specific

metamodels: UML. UML thus plays a privileged role in the

MDA architecture. As a consequence, any tool intended to

create UML models can easily be adapted to create MOF

meta-models.

MDA utilizes models and a generalized idea of architecture

Fig.2. MDA Development Process

standards to address integration of enterprise systems in the face

of heterogeneous and evolving technology and business

domains. MDA combines computer-aided verification and

machine intelligence during modeling to discover and remove

design bugs before code reviews and testing. MDA Meta model

acts as a filter to extract some relevant aspects from a system

and to ignore for all other details. A meta-meta-model defines a

language to write meta-models. The application of MDA to a

use case begins by focusing on the development of the models.

Figure 2 show the MDA process that includes: Computation

Independent Model (CIM): describes concepts of a given

domain but does not describe the software system. Platform

Independent Model (PIM): describes software behavior that is

independent of some platform. Platform Specific Model (PSM):

describes software behavior that is specific for some platform.

The first step in using MDA is to develop a CIM which

describes the concepts for a specific domain. For example, a

CIM might describe experiment protocols, or properties of

genes. The CIM focuses on the environment and requirements

of the system; the details of the structure and processing of the

system are hidden or as yet undetermined. The next step

involves developing the PIM. The term "platform" can have

various meanings and can include one or more system aspects

such as operating system, network configurations, and

programming language. The meanings of PIM and PSM

models are therefore relative to the definition of platform used

in the use case. More important than the definition of platform

is the recognition that PIMs and PSMs are supposed to separate

aspects of program behavior from aspects of implementation.

The third step is developing one or more PSMs which

characterize a particular deployment of a software application.

This could, for example, focus on the properties of a web

application, whether the application should be generated in Java

or Visual Basic, or whether the installation was for a standalone

or networked machine. MDA requires development of explicit

transformations that can be used by software tools to convert a

more abstract model into a more concrete one. A PIM should be

created, and then transformed into one or more PSMs, which

then are transformed into code.” The mappings between models

are meant to be expressed by a series of transformation rules

expressed in a formal modeling language. “A CIM is a software

independent model used to describe a business system. Certain

parts of a CIM may be supported by software systems, but the

CIM itself remains software independent. Automatic derivation

of PIMs from a CIM is not possible, because the choices of what

pieces of a CIM are to be supported by a software system are

always human. For each system supporting part of a CIM, a

PIM needs to be developed first.”

It is possible for concepts defined in a CIM to be

automatically associated with properties defined in a PIM. For

example, the concept “protein” defined in a CIM about

proteomics experiments could be associated with PIM concepts

such as a help feature that defined protein for users or a drop

down list of protein names.

A meta-model in MDA defines a specific domain language. It

may be compared to the formal grammar of a programming

language. In the case of UML the need to define variants of the

base language was expressed. The UML meta-model was then

equipped with extension mechanisms (stereotypes, tagged

values, constraints) and this allows defining specialization of

the basic meta-models as so called profiles.

The MOF contains features to serialize models and

meta-models in order to provide a standard external

representation. The XMI standard defines the way serialization

is performed. This is a way to exchange models between

geographical locations, humans, computers or tools. When a

tool reads a XMI serialized model (a UML model for example),

it needs to check the version of the meta-model used and also

the version of the XMI applied scheme.

C. SOA

SOA exposes real dependencies against artificial ones [11]. A

real dependency is a state of affairs in which one system

depends on the functionality provided by another. Beside real

dependencies there are always artificial dependencies in which

the system becomes dependent to configurations and various

musts other systems expose. The target of SOA is to minimize

artificial dependencies (although it can never be completely

removed), and maximize real ones. This is done via loosely

coupling, and the concept of service. A service is a coarse grain

functionality objects, with interfaces expressed via a well

defined platform independent language. When using services as

computational objects, systems can register, find and invoke

each other based on a well defined, every one accepted,

language hence no one, highly becomes dependent to another

system and a high degree of loosely coupling is achieved.

III. APPLYING MDA TO E-BUSINESS APPLICATIONS

A. Basic ideas

The MDA organization may be viewed as a set of artifacts,

some being standard building blocks, some being user

developed. We may envision, in the not too far future, an

organization starting with a hierarchical library of meta-models

and extending it as an adaptation to its own local context

(models as assets). Model reusability will subsume code

reusability, with much more efficiency. This may be seen as

orthogonal to code class libraries (e.g. Java, Swing, EJB, etc.).

Inside a company, the various business and service models will

Fig.3. Architecture for Applying MDA to e-business

Development Process

be developed and maintained to reflect the current situation.

Combining a service-oriented modeling architecture with MDA

for e-business can bring many unique benefits. Firstly the clear

organization of models and information based on the

stereotypes derived from the service-oriented architecture and

select perspective as development process. Secondly the

productivity, quality and impact analysis benefits of the use of

MDA with its emphasis on automation, transformation and

synchronization. MS2Web solution for MDA in our approach is

uniquely positioned to take advantage of the unified modeling

architecture which results from bringing these two key

architectures together. MDA combines a uniquely powerful

implementation of the web services vision, together with the

industry leading solutions for modeling service-based solutions.

Figure 3 shows our architecture for applying MDA to

e-business and web service application in this paper. First it

defines the language used for describing object-oriented

software artifacts. Second, its kernel is synchronized with the

MOF for practical reasons as previously mentioned. There is

much less meta-modelers (people building meta-models) than

modelers (people building models). As a consequence it is not

realistic to build specific workbenches for the first category of

people. By making the MOF correspond to a subset of UML, it

is possible with some care to use the same tool for both usages.

As a consequence the MDA is not only populated by first class

MOF meta-models, but also with UML dialects defined by

UML profiles for specific purposes languages. This is mainly

done for practicality (widening the market of UML tools

vendors) and there is some redundancy between UML profiles

and MOF meta models (It is even possible to find conversion

tools). There are many examples of profiles. Some are

standardized by OMG working groups and other are

independently defined by user groups or even by individuals.

Examples of profiles are "UML for APL 1", " UML for CICS",

"UML for Scheduling Performance and Time" (real-time

applications), "UML for EJB", "UML testing", "UML for EAI",

"UML for QoS and fault tolerance", "UML for Cust Sys".

One important kind of model that is being considered now is

the correspondence model. A correspondence model explicitly

defines various correspondences that may hold between several

models. In the usual case, there are only two models: the source

and the target. There may be several correspondences between a

couple of elements from source and target. The

correspondences are not always between couples of elements

and they are strongly typed. There is not yet a global consistent

view on correspondence models since this problem is appearing

Fig.4. Architecture for e-business Development in this paper

from different perspectives. When the notion of PDM and

virtual machine is clarified we may then tackle the definition of

a PIM, a model containing no elements associated to a given

platform. In other times this was simply called a business model,

but as for platform models we need to progress now towards a

less naive and a more explicit view. The first idea is that the PIM

is not equivalent to a model of the problem. We propose the

architectural model for many elements of the solution that may

be incorporated in a PIM as long as they don't refer to a specific

deployment platform as in figure 4.

In our architecture model as in figure 3, the PIM of the system

is created using UML diagrams by the analyst of the system.

The PIM of the system will be designed simply without thinking

about services that is pretty simple and is accomplished as

CBD(Component-Based Development). The SOA-based PSM

(which is a PIM for the next level) would be derived from the

present PIM. The way which is used to identify this PSM must

be quite different from the one used to identify PSM in

component-based systems; because in componentbased systems

the patterns which are used to determine the PSM of the system

have a specific form. For each service in e-busimess

applications, there is a single instance which manages a set of

resources and consequently, unlike components, services are for

the most part stateless that means need to view a service as a

manager object that can create and manage instances of a type,

or set of types. According to above discussion, in our approach

after creating the PIM, this PIM is transformed -with a

transformation tool- to another PIM based on SOA. In this

transformation, for each class diagram in PIM for e-business, a

Service Manager is created that manages the Instant Services.

This management involves creation, deletion, updating a service

and state management of services. To complete this

transformation, we need some other special patterns for dealing

with associations between classes. When this PIM based on

SOA is created, the PSM of the system can be created based on

a target platform such as Web Services, e-business and/or other

platforms with transforming tools. Some operations apply on a

 Fig.5. PIM of e-busincess applications

single model and are called monadic by opposition to dyadic

operations applying to two models. Operations applying on

more than two models are more rare. Obviously the most

apparent components in an MDA workbench are the precise

tools composing this workbench. Fortunately in this context we

should be able to propose a rather precise definition of a tool: it

is an operational implementation of a set of operations

applicable on specific models. The meta-models supported by a

tool should be exhaustively and explicitly defined.

B. Generating the PIM for e-business

 PIM for e-business application is an abstract design of a

computerized solution which does not include any platform

specific elements. The core of the platform independent model

(PIM) is a UML model – ranging from use cases through classes,

interactions, states and other UML elements to the components

as in figure 5.

C. Translation from PIM to PSM

While the PSM entities, i.e. Java classes or entity beans, bear

the structure and deliver the behaviour of inventory entities as

described in the original inventory PIMs, end-users should not

interact directly with these entities. Rather, entities should be

accessed through a single interface that exposes a simple set of

management methods and hides their complexity. This is a

standard design guideline, which conforms to the related design

pattern and influences the architectural design of components.

In order to comply with the guideline, the case-study aims at

implementing an application tool that allows users to manage

the inventory content through a simple GUI. Example users of

such a tool may be front-desk operators who respond to

customer calls and access the inventory to setup a new or change

the state of an existing product/service instance. The case-study

Fig. 6. Overall architecture for PIM to PSM translation

uses MDA to automatically generate the tool and associated

GUI in Java and J2EE (session bean) in order to deliver the

required embedded pattern and design guideline. Again, this

paper only concentrates on the Java outputs.

Figure 6 shows the overall architecture for PIM to PSM

translation. Transforming PSM based on SOA to the PSM based

on e-business Services using WSDL is a straightforward task. In

our approach, each value object and each interface in PIM will

be transformed to WSDL Type and Port Type in the PSM

respectively and the parameters of methods will be transformed

to the Messages (Input/Output) in the PSM.

A transformation t transforms a model Ma into another model

Mb t: Ma -> Mb. Model Ma is supposed based on meta-model

MMa and model Mb is supposed based on meta-model MMb.

We note this situation as: sem(Ma,MMa) sem(Mb,MMb) As a

matter of fact, a transformation is like any other model. So we'll

talk about the transformation model Mt. Mt: Ma->Mb.

Obviously since Mt is a model, we postulate the existence of a

generic transformation meta-model MMt, which would be

similar to any other MOF based MDA meta-model:

In some cases the transformation takes some particular form

if the source and target meta-models are in the relation of

refinement like a CORBA and a CCM meta-model. Figure 7

show the examples of translation interface.

IV. CONCLUSION

Service Oriented Architecture (SOA) is increasingly

important in the business world as b2b transactions become ever

more vital to business process out-sourcing and other

co-operative activity. The problems of modeling solutions

based on SOA have largely been resolved through the

recognition of the importance of loose coupling and the

consequent separation of concerns. Reinforced by the

Supply-Manage-Consume concept, the separate modeling of

solutions and services is a well established practice

incorporated into advanced development processes that support

SOA, including Select Perspective. Service Interfaces are

shared amongst models showing the implementation and re-use

of the services.

Whilst the use of modeling within SOA is well established, it

has suffered from the same issues as modeling in other

architectures. The abstraction gap between the level of detail

Fig.7. Example of translation Interface PIM to PSM

expressed in the model and the level of detail expressed in the

code is a key issue.

Yet it is the abstraction gap which is one of the key targets for

the Model Driven Architecture.

Combining a service-oriented modeling architecture with

MDA can bring many unique benefits. Firstly the clear

organization of models and information based on the

stereotypes derived from the service-oriented architecture and

Select Perspective as development process. Secondly the

productivity, quality and impact analysis benefits of the use of

MDA with its emphasis on automation, transformation and

synchronization. Select Solution for MDA is uniquely

positioned to take advantage of the unified modeling

architecture which results from bringing these two key

architectures together.

In this paper we introduced an approach to modeling and

design of complex distributed systems using SOA and MDA. In

fact, to exploit the benefits of SOA effectively and duly, we

propose an approach that involves MDA into the context. In this

approach the PIM of the system is created and then the PSM

based on SOA is generated. Then the final PSM based on a

target platform is generated. These models are generated with

transformation tools in MDA.

REFERENCES

[1] Jean Bezivin, “Slimane Hammoudi, Denivaldo Lopes and Frederic

Jouault. Applying MDA Approach for Web service Platform,”

Proceedings of the 8th IEEE Intl Enterprise Distributed Object

Computing Conference, 2004.

[2] Michael N.Huhns, Munindar P.Singh, “Service-Oriented Computing:

Key Concepts and Principles,” Journal of IEEE Internet Computing,

2005.

[3] Adel Torkaman Rahmani, Vahid Rafe, Saeed Sedighian, and Amin

Abbaspou, “An MDA-Based Modeling and Design of Service Oriented

Architecture,” ICCS 2006, Part III, LNCS 3993, 2006, pp. 578 – 585.

[4] Aniruddha Gokhale and Balachandran Natarajan(2002). Composing and

Deploying Grid Middleware Web Services Using Model Driven

Architecture. In Lecture Notes in Computer Science. Volume 2519, pp.

633–649. Available: http://www.cydex21.com

[5] Rakesh Radhakrishnan and Mike Wookey, “Model Driven Architecture

Enabling Service Oriented Architectures,” In Whitepaper SUN

Microsystems, pp.1 – 13, 2004.

[6] David Skogan, Roy Gronmo, and Ida Solheim, “Web Service

Composition in UML,” Proceedings of the 8th IEEE Intl Enterprise

Distributed Object Computing Conference, pp. 111, 2004.

[7] Qusay H. Mahmoud, “Service-Oriented Architecture (SOA) and Web

Services: The Road to Enterprise Application integration (EAI),” Sun

Developers Network, Sun Developers network, April 2005

http://www.cydex21.com/

Dr. Haeng-Kon Kim is currently a professor in the Department of

Computer Engineering and was a dean of Engineering College at

Catholic University of Daegu in Korea. He received his M.S and Ph.D

degree in Computer Engineering from Chung Ang University in 1987

and 1991, respectively. He has been a research staff in Bell Lab. in 1988

and NASA center 1978-1979 in U.S.A. He also has been reserched at

Central Michigan University in in 2000-2002 and 2007-2008 in U.S.A.

He is a member of IEEE, KISS and KIPS. Dr. Kim is the Editorial

board of the international Journal of Computer and Information

published quarterly by ACIS. His research interests are Component

Based Development, Component Architecture & Frameworks for

Mobile Applications and Components embedded systems .

