
An Adaptive Neural Network-Based Method for
WWW Proxy Caches

Rachid el Abdouni Khayari ∗ Mohammad S. Obaidat † Sami Celik ‡

Abstract— Developing adaptive methods to deal
with the fast changes in communication systems work-
load request patterns has become a big challenge in
the last years. Self-regulating mechanisms should be
able to permanently analyze the system state and to
modify its mode of operation if necessary. This mod-
ification can be achieved, e.g. by restructuring of the
whole system or by setting adequate parameters of
the used algorithms and methods.

In this paper, we discuss the use of neural networks to
support the adaptivity of the Class-based Least Re-
cently Used (C-LRU) caching algorithm. The C-LRU
caching algorithm has been shown to deliver good re-
sults for the cache performance, as measured by the
hit rate and the byte hit rate. Furthermore the C-
LRU allows for an adaptive caching strategy, since a
change in the request patterns results in a change in
the parameter setting. For our purpose, trace driven
simulations are used. Our experiments show that neu-
ral networks are in fact able to achieve this aim.

Keywords: Caching, Self-regulating, Proxy server,

Class-Based Least Recently Used, Neural Networks

1 Introduction

The increasing use of WWW-based services has not lead
to high frequented web servers but also to heavily-used
components of the Internet [25]. Fortunately, it is well
known that there are popular and frequently requested
sites, so that caching can be used to reduce Internet band-
width consumption caused by the tremendous growth of
the World-Wide Web [9]. Some of the main reasons for
which a user would go for Web caching include the fol-
lowing [24]:

• to increase the bandwidth availability by curbing the
transmission of redundant data,

∗University of the Armed Forces Munich, Department of Com-
puter Science, Germany

†Monmouth University, Department of Computer Science, West
Long Branch, USA

‡RWTH Aachen, Department of Computer Science, Germany

• for reducing network congestion,

• for improving response times and

• for achieving savings in terms of cost (for e.g. cost
of bandwidth)

Web caching is one of the most used technique to de-
crease the end-to-end delays and to reduce the Internet
traffic [20]. Web caching works in a similar way to clas-
sical memory system caching; it stores web documents in
anticipation of future requests [19].

Significant differences between memory system and web
caching however exist; they result primarily from the
following three properties of web caching: the non-
uniformity of web object sizes, retrieval costs, and cache-
ability. For more details, we refer to [10, 19, 20]. These
specific properties of web caching have been studied in
details in many studies, e.g. in [10, 15, 20, 26]. It has
been found that these specific characteristics are essential
for the web caching and make the developing of perfor-
mant web caching algorithms very difficult [20, 26]. Fur-
thermore in [10, 20], three possible locations of the cache
(namely at the client, at the Proxy Server and at the
Primary Web server) and their pros and cons have been
studied in detail.

In the last years, many caching strategies have been de-
veloped and studied [3, 4, 6, 8, 13, 21, 22, 31, 32]. The
goodness of such caching strategies has been evaluated
by the delivered hit rate (defined as the percentage of re-
quests that could be served from the cache) and the byte
hit rate (defined as the percentage of bytes that could be
served from the cache).

The gist of all the approaches is the following question:
which object has to be replaced when a new object has to
be stored and the cache is already completely filled? To
determine the document popularity, three properties of
WWW requests, namely frequency of reference, recency
of reference and the referenced object size, are usually
used and exploited [20]. A compact overview over the

IAENG International Journal of Computer Science, 36:1, IJCS_36_1_02
______________________________________________________________________________________

(Advance online publication: 17 February 2009)



well-known caching strategies, as well as their evaluation
are given in [20].

Most of these caching algorithms have been developed for
specific contexts (e.g., for memory, web, disk or database)
and therefore rate some object characteristics more im-
portant that others [15, 20]. In [4, 6], it has been shown
that an algorithm that is optimal for one context may fail
to provide good results in another one.

In most cases the validation of these caching algorithms
have been performed and tested by considering only one
trace, which reflects the user behavior for only a lim-
ited time period. The changes in the workload requests
pattern have never been studied. In this context, and
due to fast changes in the workload request pattern in
communication systems (Proxy server cache in our case),
most of these methods have to be verified. To cope with
this challenge, future communication systems should in-
tegrate self-reconfiguration mechanisms.

In the last years, some studies have been conducted to de-
velop self-reconfigurable methods and systems, e.g. [11,
12, 14, 27, 29, 30]. The aim of these studies was to de-
velop appropriate mechanisms to enable computing soft-
ware and hardware systems (also including communica-
tion systems) to deal with observed changes in the work-
load, in the environment or in components states.

In this context, the C-LRU can be seen as potentially
adaptive to the considered workload, since it is param-
eterized using information on the requested object-size
distribution (see Appendix A). In this paper, the adapt-
ability of C-LRU will be studied and validated in detail
(see bellow).

The rest of this paper is organized as follows. In Sec-
tion 2, we will first discuss some methods for the realiza-
tion of the adaption of C-LRU based on periodical appli-
cation and on neural networks. The results of the appli-
cation and validation for the adaptive variant of C-LRU
are shown in Section 3. Finally, the paper is concluded
in Section 4.

2 Adaptive methods for C-LRU

The Class-based Least Recently Used (C-LRU) caching
strategy has been implemented with the aim to get
a balance between large and small documents in the
cache [10, 19, 20]. Consequently, it has been shown in
earlier studies that this method provides good results for
the hit rate as well as for the byte hit rate (for more detail
see [10, 19, 20]).

The C-LRU is based on the use of the EM algorithm to
compute a hyper-exponential distribution function from
the observed and collected measurements data. In that
way, he C-LRU method allows for an adaptive caching
strategy, since it sets its parameters depending on the
observed workload. This property is very mandatory for
web caching algorithms due to the observed fast changes
in the web traffic. A compact introduction in the C-LRU
is given in appendix A.

The C-LRU approach exploits characteristics of the re-
quested objects, so it is important to have an accurate
description of the requested objects [20]. Therefore, we
have to determine how often one has to adapt the charac-
terization. As it has been shown in [10, 20], three possibil-
ities for parameter computation of the CLRU algorithm
can be deployed:

Static use (once-only determination): A sample of
collected request log for a long Periode of time
is chosen. The appropriate parameters are deter-
mined/computed once-only; it is assumed that the
workload changes in the future are not very signifi-
cant.

Periodical application: After a predetermined period
of time, e.g., every 24 hour, one week or one year, one
reanalyzes the object-size characteristics. If signifi-
cant changes are recognized, the parameters of the
caching strategy have to be recomputed and adapted
accordingly.

Application on-demand: By observing the perfor-
mance values, e. g., the hit rate, the byte hit rate or
the response time, over the time, a decrease in per-
formance might be observed, which can lead to an
updating of the caching parameters by using some
predefined thresholds mechanism.

(a few minutes for traces covering several months and
hundreds of millions of requests) an important benefit of
C-LRU over other approaches is that it is adaptive. The
investigation of the two above adaptation strategies, the
periodical application and the application on demand,
and their performance implications on C-LRU will be
studied bellow. In this paper, we compare the static use
(the once-only determination) of the C-LRU, the period-
ical application and an use by demand. We check the
adaptability for the C-LRU and examine the possibility
for determining the distribution parameters in an efficient
way.

IAENG International Journal of Computer Science, 36:1, IJCS_36_1_02
______________________________________________________________________________________

(Advance online publication: 17 February 2009)



2.1 Peridiocal application:

In this first variant, the C-LRU caching algorithm has
to run after a pre-defined period of time, e. g. after 24
hours. Another possibility is to make the new computa-
tion depending on a certain number of observed requests.
For our implementation, we will choose the second vari-
ant, e. g. after 1, 000, 10, 000, 100, 000 and 500, 000 de-
tected new requests. As soon as a difference between the
old and new distribution functions of the document sizes
has been observed, a reconfiguration of the caching pa-
rameters has to be done. This reconfiguration should be
done automatically in that new class boundaries ri and
class fractions pi have to be adapted/recomputed, with
the aim to get optimal results for the hit rate and/or byte
hit rate.

2.2 Application on demand

In this second variant, a neural network has been im-
plemented. There are many specific forms of neural net-
works; in this work we focus on the multi-layer perceptron
(see Figure 1). The Multi Layer Perceptron (MLP) is a
specific class of neural networks, it consists of multiple
layers of computational units, usually interconnected in
a feedforward way. This means that each neuron in one
layer has directed connections to the neurons of the sub-
sequent layer. In many applications the units of these
networks apply a sigmoid function (f(x) = 1

1+e−x ) as an
activation function. For more details see [1, 28].

Figure 1: MLP with two hidden layers

Our objective hereby is to determine/recompute the op-

timale distribution parameters by the use of neural net-
works. For that, the number of the used neurons has
been varied between 10 and 100. Furthermore two dif-
ferent neural networks have been implemented, the first
one for the class boundaries ri and the second one for the
class fractions pi. The definition and meaning of these
both parameters (ri and pi) are given in appendix A.

3 Application and validation

For our analysis, we used three traces from the access log
files of Proxy servers:

• The first and the second trace are stemming from the
Technical University of Aachen, Germany (RWTH).
To study the adapt-ability of our method, we use two
access logs; one collected in early 2000 (RWTH2000)
and the second in September 2002 (RWTH2002).

• The third used trace is the well-known Pittsburgh-
Pennsylvania trace. It is a part of the NLANR Cache
Locations [2]. This trace has been collected in 2002
and contains the description of requests during a
time period of 43 days.

The traces are stemming from different areas, the users
have also different behavior. The two traces RWTH2000
and RWTH2002 have a scientific nature and the PB2002
mirrors user behavior with different interests.

3.1 Statistical analysis of the traces

The important statistical information about the three
traces are given in Table 1. A typical property of the web
traffic can be seen, namely the heavy-tailed distributed
document sizes for all these traces: high squared coeffi-
cients of variation and very small medians (compared to
the means). This property has also been found in many
other studies, e. g. in [5, 20, 23]. Furthermore, we can do
the following remarks related to the changes of the web
traffic over the time:

• The average of the object sizes becomes larger, and

• the fraction of dynamic objects becomes higher.

3.2 Periodical application

We simulated the C-LRU with three different periods de-
pending on the number of the requested objects, namely
after 1, 000, 10, 000, 100, 000 and 500, 000 requests for
the three traces, the RWTH2000, the RWTH2002 and
the PB2002. We compared the results of the periodical

IAENG International Journal of Computer Science, 36:1, IJCS_36_1_02
______________________________________________________________________________________

(Advance online publication: 17 February 2009)



Table 1: Statistics of the traces RWTH2000, RWTH2002
and PB2002

RWTH 2000 RWTH 2002 PB 2002

total requests 32,341,063 22,875,618 24,386,018
static requests 31,139,386 21,428,326 21,906,745
dynamic requests 1,201,677 1,447,292 2,479,273
fraction static 96.28% 93.67% 89.83%
fraction dynamic 3.71% 6,32% 10.16%
total Byte 329.006 GB 318.279 GB 410.792 GB
Byte static 314.564 GB 301.793 GB 389.585 GB
Byte dynamic 14.441 GB 16.48 GB 21.207
fraction dynamic (B) 4.38% 5.17% 5.16%
smallest object 17 Byte 17 Byte 17 Byte
largest object 218 MB 858 MB 408 MB
average object size 10,846 Byte 15,122 Byte 19,095 Byte
median 2,240 Byte 2,400 Byte 2,980 Byte
squared coef. of var. 408.33 2,285,77 509.87

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 64  128  256  512  1024  2048  4096  8192  16384  32768  65536

H
itr

at
e 

[%
]

Cache Size [MB]

adaptiv C-LRU 5000 1000
adaptiv C-LRU 10000 10000

adaptiv C-LRU 100000 100000
adaptiv C-LRU 500000 500000

static C-LRU

Figure 2: Hit rate: Comparison between static and adap-
tiv C-LRU for the RWTH2002 trace.

application with those obtained by the static application
of C-LRU. The results for the RWTH2002 and PB2002
are plotted in Figure 2 for the hit rate and in Figure 3 for
the byte hit rate, resp. in Figure 4 and Figure 5. Similar
results have also been found for the periodical application
for the RWTH2000 trace (see also [7]).

As it can be seen, the difference between the two vari-
ants is minimal, and can be neglected. The cause of this
phenomenon can be explained as follows; the results for
the static C-LRU are based on the EM application over
a long period of time. During this long period, the al-
gorithm sets its parameters which mirror the behavior of
many users over this long period of time. For this rea-
son, the parameters are also convenient for a transient
allocation of the cache in the Web Proxy server.

This transient behavior can be found over many recurring

 5

 10

 15

 20

 25

 30

 35

 64  128  256  512  1024  2048  4096  8192  16384  32768  65536

B
yt

e 
H

it 
R

at
e 

[%
]

Cache Size [MB]

adaptiv C-LRU 5000 1000
adaptiv C-LRU 10000 10000

adaptiv C-LRU 100000 100000
adaptiv C-LRU 500000 500000

static C-LRU

Figure 3: Byte hit rate: Comparison between static and
adaptiv C-LRU for the RWTH2002 trace.

time intervals. Related to this, the efficiency of determin-
ing the C-LRU caching parameters can be seen here as
an advantage of a periodical use of the C-LRU. Since
for a new computation only a relative small number of
measurements data is used for the EM-Algorithm. The
EM-algortihm has a time complexity of O(N ·I), where N
the number of used measurement data and I is the num-
ber of phases in a hyper-exponential distribution [17, 18].
So the periodical use has in fact a lower run time, and
delivers good results anyway.

3.3 Adaptivity by the use of neural net-
works

The idea behind the use of neural network is to learn
the progression/evolution of the document sizes distribu-
tion over the time from the requests stream of the Proxy
server and to adapt the cache configuration if necessary.
This procedure corresponds to the execution of an EM
algorithm run, where the hyper exponential distribution
parameters are determined for the document sizes. To
apply the neural network method on the data sizes distri-
bution, it is necessary to transform it in a reduced vector
description (feature analysis) and to retransfer the results
to the real form/description thereafter.

Furthermore it is necessary to have an automated mecha-
nism for detecting changes in document sizes distribution
to signalize a new computation of the cache parameters.
This is done by considering the hit rate and the Byte
hit rate. These two parameters are monitored during the
caching mode. By a significant decrease under a certain
threshold, a distribution change will be assumed.

IAENG International Journal of Computer Science, 36:1, IJCS_36_1_02
______________________________________________________________________________________

(Advance online publication: 17 February 2009)



 10

 15

 20

 25

 30

 35

 40

 64  128  256  512  1024  2048  4096  8192  16384  32768  65536

H
itr

at
e 

[%
]

Cache Size [MB]

adaptiv C-LRU 5000 1000
adaptiv C-LRU 10000 10000

adaptiv C-LRU 100000 100000
adaptiv C-LRU 500000 500000

static C-LRU

Figure 4: Hit rate: Comparison between static and adap-
tiv C-LRU for the PB2002 trace.

For the use of neural networks, two phases are needed;
a training phase and a test/estimation phase. The ob-
jective of the ’training/learning phase’ is to ’learn’ from
the training data. The collected knowledge in this first
phase should be used in the test phase to show how far
the neural networks are able to deliver the assumed cor-
rect output. This step is equivalent to classify the input
vector adequately (optimizing a so called ’target func-
tion’ [1, 28]). The neural network has to be trained to
deliver the same results as the EM algorithm. A training
data has the form: (pattern, result). During the training
phase many such tuples are generated; hereby the neu-
ral network tries to find the appropriate configuration of
its intern configuration (layer weights). During the test
phase the goodness of the training phase is validated us-
ing an error computation (e.g. MSE see bellow).

For a better representation, the amount of the data (here
document sizes) considered is of a huge interest; the used
data in the experiments should cover all possible range
of values. By a given large trace T and a predetermined
number of training data t; where each data has a docu-
ments, a window with size a will be shifted t times over
the trace T with a chosen pre defined step size. By each
step a feature vector will be generated and an EM algo-
rithm run will be executed.

In this section, we will present some results obtained by
the ’training’ method for the RWTH2002 trace. First, we
generated different training and test data:

• Distribution with 1, 000, 000 sizes:
– 200 training data with 25, 000 step sizes and,
– 100 test data with 10, 000 step sizes.

 15

 20

 25

 30

 35

 40

 45

 64  128  256  512  1024  2048  4096  8192  16384  32768  65536

B
yt

e 
H

itr
at

e 
[%

]

Cache Size [MB]

adaptiv C-LRU 5000 1000
adaptiv C-LRU 10000 10000

adaptiv C-LRU 100000 100000
adaptiv C-LRU 500000 500000

static C-LRU

Figure 5: Byte hit rate: Comparison between static and
adaptiv C-LRU for the PB2002 trace.

• Distribution with 10, 000 sizes:
– 400 training data with 12, 500 step sizes and,
– 100 test data with 10, 000 step sizes.

• Distribution with 1, 000 sizes:
– 500 training data with 10, 000 step sizes and,
– 100 test data with 10, 000 step sizes.

The used neural network for the computing of the class
boundaries ri and class fractions pi contains one input
layer, one output layer and one hidden layer. The neural
network has been analyzed for different input dimensions
(that are the dimensions of the feature vectors at the
input) and for a different number of neurons in the hidden
layer.

The goal is to find an appropriate network struc-
ture/configuration in the hidden layer. The abort con-
dition is defined by the SMSE value. When it becomes
smaller than as a pre-defined bound, the training will
end, and the results are then presented. To better evalu-
ate the results, the average of the collected MSE by the
Experiments has been used.

The goodness of the method can be estimated, e. g.
by using the standard deviation. For our purpose, we
use the scaled mean squared error (SMSE) as parameter
for the goodness of the estimation. The MSE is defined
as MSE(µ̂, µ) = E[(µ̂ − µ)2], where E[X] describes the
mean function. Thereby, the SMSE is the average of the
last 20 collected MSEs. The results for the class bound-
aries and for the class fractions can be shown in Table 2,
resp. Table 3. For 1, 000, 000 buffer size and only 10 neu-
rons in the hidden layer, good results have been found for

IAENG International Journal of Computer Science, 36:1, IJCS_36_1_02
______________________________________________________________________________________

(Advance online publication: 17 February 2009)



Table 2: Neural networks: results for the class boundaries
ri

buffer size neurons abort SMSE #iter. Mean MSE
1,000,000 10 0.001 13,000 0.005936
1,000,000 20 0.001 18,000 0.006909
1,000,000 30 0.001 16,000 0.006263
1,000,000 40 0.001 18,000 0.008148
1,000,000 50 0.001 16,000 0.007057
10,000 10 0.01 19,000 0.189287
10,000 20 0.01 13,000 0.187664
10,000 30 0.01 18,000 0.181471
10,000 40 0.01 12,000 0.127080
10,000 50 0.01 10,000 0.182708
1,000 10 0.01 11,000 0.089712
1,000 20 0.01 15,000 0.082128
1,000 30 0.01 9,000 0.066266
1,000 40 0.01 16,000 0.094396
1,000 50 0.01 8,000 0.077687

Table 3: Neural networks: results for the class fractions
pi

buffer size neurons abort SMSE #iter. MSE
1,000,000 10 0.00001 6,000 0.0000210
1,000,000 20 0.00001 7,000 0.0000299
1,000,000 30 0.00001 8,000 0.0000396
1,000,000 40 0.00001 10,000 0.0000383
1,000,000 50 0.00001 9,000 0.0006751
10,000 10 0.00001 8,000 0.0000183
1,000 20 0.00001 8,000 0.0000293
10,000 30 0.00001 9,000 0.0000396
10,000 40 0.00001 11,000 0.0000378
10,000 50 0.00001 12,000 0.0006510
1,000 10 0.00001 7,000 0.0000184
1,000 20 0.00001 11,000 0.0000298
1,000 30 0.00001 9,000 0.0000388
1,000 40 0.00001 10,000 0.0000378
1,000 50 0.0001 9,000 0.0006712

the class boundaries as well as for the class fractions (see
Table 2 and Table 3). The results delivered for a buffer
size of 10, 000 and 1, 000 are only partially adequate. This
can be shown by considering the stop criterion and the
average of the MSEs; the neural network is not able to
’learn’ if the MSE has reached a certain value regardless
of the length of the training phase [7].

The results for the class boundaries and fractions for the
optimal neural configurations are presented also in Ta-
ble 4, resp. Table 5 showing the difference between the
real input and the computed output results. Hereby the
parameter dim describes the length of the input vector
describing the distribution function.

4 Conclusions and outlook

The Class-based Least Recently Used (C-LRU) caching
strategy has been implemented with the aim to get a
balance between large and small document in the cache.

Table 4: Neural networks: optimal results for the class
boundaries ri

dim/ class min.dev.% max.dev.% mean dev.%
buffer size

30 / 1 0.012 1.56 0.326
1,000,000 2 0.356 2.63 0.863

3 0.051 5.71 2.00
4 0.076 20.58 11.31

Table 5: Neural networks: optimal results for the class
boundaries pi

dim/ class min.dev % max.dev.% mean dev.%
buffer size

30 / 1 0.001 1.90 0.913
1,000,000 2 0.003 3.19 0.968

3 0.064 9.41 3.99
4 0.379 42.3 14.91

Consequently, it has been shown in earlier studies that
this method provides good results for the hit rate as well
as for the byte hit rate. The C-LRU is based on the use
of the EM algorithm to compute a hyper-exponential dis-
tribution function from the observed and collected mea-
surements data. In that way, he C-LRU method allows
for an adaptive caching strategy, since it sets its parame-
ters depending on the observed workload. This property
is very mandatory for web caching algorithms due to the
observed fast changes in the web traffic.

In this study, we compared the static use of the C-LRU, a
periodical application and an use by demand. We check
the adaptability for the C-LRU and examine the possi-
bility for determining the distribution parameters in an
efficient way.

For the periodical use, the C-LRU has to be executed
after a certain period of time which is equivalent to an
execution after a certain number of observed/collected
requests. We found that the advantage of this periodical
application of the C-LRU lay primarily the efficiency of
the computation.

For an application on demand, we used neural networks.
Due to the self-similarity in the web traffic, which can
be explained by the heavy-taildeness property of the in-
volved distributions, e.g. for the document sizes, we ex-
cepted that these changes can be ’learned’ with neural
networks. The objective here is to ’learn’ the distribu-
tion parameters, which are well approximated by the EM
algorithm. We found, that neural networks are able to
achieve this aim by adequately dimensioning the used
paradigm.

IAENG International Journal of Computer Science, 36:1, IJCS_36_1_02
______________________________________________________________________________________

(Advance online publication: 17 February 2009)



In a new conducted study, we have also found that a
periodical application of the scheduling algorithm WFQ
(Weighted Fair Queueing) can be used for optimizing
WWW server performance. We will report about our
results in a separate paper [16].

A Appendix C-LRU

In this section, we will give a compact introduction of
the Class-based Least Recently Used caching Algorithm
(C-LRU). For more details, we refer to [10, 19, 20].

A.1 C-LRU: introduction

By the use of C-LRU, the cache is divided into portions
reserved for objects of a specific size. Each portion (class
or cluster) is reserved for documents of as specific size.
The algorithm works as follows [20] (see Figure 6):

• The available memory for the cache is divided into
I partitions where each partition i (for i = 1, . . . , I)
takes a specific fraction pi of the cache (0 < pi <
1,

∑
i pi = 1).

• Partition i caches objects belonging to class i, where
class i is defined to include all objects of size s with
ri−1 ≤ s < ri (0 = r0 < r1 < . . . < rI−1 < rI = ∞).

• Each partition in itself is managed with the LRU
strategy.

Figure 6: Principle of Class-LRU (adopted from [7])

A.2 C-LRU: Cache fractions pi and bound-
aries ri

The object sizes distribution is described by a hyper-
exponential distribution using the EM-algorithm [17, 18,
20]. The object sizes density f(x) takes the form of a
probabilistic mixture of exponential terms:

f(x) =
I∑

i=1

ciλie
−λix, with

I∑
i=1

ci = 1, and (1)

0 ≤ ci ≤ 1, for i = 1, . . . , I.

Interpretation:
the weights ci indicate the frequency of occurrence for
objects of class i and the average size of objects in class
i is given by 1/λi.

Cache fractions pi:
For the fraction pi, two possible actions are proposed:

(a) pi = ci for optimizing the hit rate

(b) pi = ci/λi∑I

j=1
cj/λj

for optimizing the byte hit rate.

Cache boundaries ri:
The range boundaries ri are computed using Bayesian
decision (see [10, 19, 20]);the appropriate class C(s) for
a given object is taken such that the decision error is
minimized:

C(s) = argmax
i

{p(i) · p(s|i)}. (2)

C(s) = argmax
i

(ciλie
−λis), i = 1, . . . , I. (3)

ri =
ln(ciλi)− ln(ci+1λi+1)

λi − λi+1
, i = 1, . . . , I − 1.(4)

Table 6: Complexity for various cache operations. N :
Number of Objects in the cache and I: Number of the
classes in C-LRU [10, 19, 20].

Hit/Miss Insert Delete Update
LRU O(1) O(1) O(1) O(1)

SLRU O(1) O(1) O(1) O(1)
LRU-K O(1) O(log N) O(1) O(log N)

LFU O(1) O(log N) O(1) O(log N)
LFF O(1) O(log N) O(1) O(log N)
GDS O(1) O(log N) O(1) O(log N)

C-LRU O(1) O(log I) O(log I) O(1)

IAENG International Journal of Computer Science, 36:1, IJCS_36_1_02
______________________________________________________________________________________

(Advance online publication: 17 February 2009)



References

[1] www.free.definition.com.

[2] National Lab of Applied Network Research
(NLANR). http://ircache.nlanrr.net/.

[3] K. Amiri, S. Park, R. Tewari, and S. Padmanabhan.
Dbproxy: A Dynamic Data Cache for Web Applica-
tions. In Proceedings of the 19th International Con-
ference on Data Engineering, pages 821–831, Ban-
galore, India, March 2003. IEEE Computer Society.

[4] M. F. Arlitt, R. Friedrich, and T. Jin. Workload
Characterization of a Web Proxy in a Cable Mo-
dem Environment. In Proceedings of ACM SIG-
METRICS, volume 27, pages 25–36, 1999.

[5] C. Cunha, A. Bestavaros, and M. Crovella. Charac-
teristics of WWW Clients-based Traces. Technical
Report TR-05-010, Boston University Department
of Computer Science, August 1999.

[6] P. Cao and S. Irani. Cost-aware WWW Proxy
Caching Algorithms. In Proceedings of USENIX,
pages 193–206, Monterey, CA, December 1997.

[7] S. Celik. Adaptive Caching in Proxy Servern. Mas-
ter’s thesis, RWTH Aachen, Lehr- und Forschungs-
gebiet Leistungsbewertung und Verteilte Systeme,
2003.

[8] G. Chen, C.-L. Wang, and F. C. M. Lau. P-
jigsaw: A Cluster-based Web Server With Coop-
erative Caching Support. Concurrency and Com-
putation: Practice and Experience, 15(7-8):681–705,
2003.

[9] J. Gettys, T. Berners-Lee, and H. F. Nielsen.
Replication and Caching Position Statement.
http://www.w3.org/Propagation/activity.html,
August 1997.

[10] B. R. Haverkort, R. El Abdouni Khayari, and
R. Sadre. A Class- Based Least-Recently Used
Caching Algorithm for WWW Proxies. In Computer
Performance Evaluation-Modelling Techniques and
Tools, pages 273–290. Lecture Notes in Computer
Science 2324, Springer Verlag, Berlin, 2003.

[11] Boudewijn R. Haverkort. Model-based Self-
Configuration for Quality of Service. Technical re-
port, Department of Electrical Engineering, Mathe-
matics and Computer Science, Chair for Design and
Analysis of Communication Systems, University of
Twente, 2004.

[12] H. Hemmati and R. Jalili. Self-reconfiguration in
Highly Available Persative Computing Systems. In
Automatic and Trusted Computing, pages 289–301.
Lecture Notes in Computer Science, Springer Verlag,
Heidelberg, 2008.

[13] S. Hosseini-Khayat. Improving Object Caching Per-
formance Through Selective Placements. In Parallel
and Distributed Computing and Networks (PDCN),
pages 262–265, 2006.

[14] R. El Abdouni Khayari. Ansatz zur Selbst-
Rekonfiguration von Caches in Web Proxies. MMB-
Mitteilungen, Heft 46, Herbst 2004. In German.

[15] R. EL Abdouni Khayari, M. Best, and A. Lehmann.
Impact of Document Types on the Performance of
Caching Algorithms in WWW Proxies: A Trace
Driven Simulation Study. In In Proceedings for the
IEEE 19th International Conference on Advanced
Networking Applications, pages 737–742, Taipeh,
Taiwan, 25-30 March 2005.

[16] R. El Abdouni Khayari, P. Fellinger, A. Musovic,
and A. Lehmann. An Adaptive Scheduling Algo-
rithm for Web Server: Impact Analysis of Web
Workload. 2009 (to appear).

[17] R. El Abdouni Khayari, R. Sadre, and B. Haverkort.
Fitting World-Wide Web Request Traces with the
EM-Algorithm. Performance Evaluation, 52(2–
3):175–191, April 2003.

[18] R. El Abdouni Khayari, R. Sadre, and B.R.
Haverkort. Fitting World-Wide Web Request Traces
with the EM-Algorithm. In R. van der Mei and
F. Huebner-Szabo de Bucs, editors, Proceedings of
SPIE, volume 4523, pages 211–220, Denver, USA,
August 2001.

[19] R. El Abdouni Khayari, R. Sadre, and B.R.
Haverkort. A Class-Based Least-Recently Used
Caching Algorithm for WWW Proxies. In Proceed-
ings of the 2nd Polish-German Teletraffic Sympo-
sium, pages 295–306, Gdansk, Poland, September
2002.

[20] Rachid El Abdouni Khayari. Workload-Driven De-
sign and Evaluation of Web-Based Systems. ISBN:
3-89959-073-2. Der andere Verlag, Osnabrueck, Ger-
many, 2003.

[21] N. Laoutaris, S. Syntila, and I. Stavrakakis. Meta
Algorithm for Hierarchical Web Caches. In Proceed-
ings of the IEEE IPCCC, Phoenix, Arizona, USA,
April 2004.

IAENG International Journal of Computer Science, 36:1, IJCS_36_1_02
______________________________________________________________________________________

(Advance online publication: 17 February 2009)



[22] P. Lorenzetti and L. Rizzo. Replacement Policies for
a Proxy Cache. IEEE/ACM Transactions on Net-
working, 8(2):158–170, 2000.

[23] M. Arlitt and C. Williamson. Internet Web Servers:
Workload Charactarization and Performance Im-
plications. volume 5, pages 631–645, IEEE/ACM
Transactions on Networking, October 1997.

[24] S. V. Nagaraj. Web Caching and Its Applications.
Kluver Academic Publishers, 2004.

[25] Netcraft. Web Server Survey.
http://www.netcraft.co.uk/survey/, August, 2002.

[26] P. Cao and S. Irani. Cost-Aware WWW Proxy
Caching Algorithms. volume 5, pages 193–206, Mon-
terey, December 1997.

[27] A. Raabe. Describung and Simulating Dynamic
Reconfiguration in SystemC Exemplified by a Ded-
icated 3D Collision Detection Hardware. Disser-
tation, Rheinische Friedrich Wilhelms Universitaet
Bonn, April 2008.

[28] R. Rojas. Neural Networks- A Systematic Introduc-
tion. Springer Verlag, Berlin, New York, 1996.

[29] G. Santhanakrishnan, A. Amer, and P. K. Chrysan-
this. Self-Tuning Caching: The Universal Caching
Algorithm. Software: Practice and Experience. Spe-
cial Isuue: Experiments with Auto-Adaptive and Re-
configurable Systems, 36(11-12):1179–1188, August
2006.

[30] Maarten Wegdam. Dymnamic Reconfiguration and
Load Distribution in Component Middleware. PhD
thesis, University of Twente, Netherlands, 2004.

[31] S. Williams, M. Abrams, C. R. Standridge, G. Ab-
dulla, and E. A. Fox. Removal Policies in Network
Caches for World-Wide Web Documents. In Pro-
ceedings of the ACM SIGCOMM Conference, pages
293–305. ACM Press, August 1996.

[32] D. Zeng and F. Wang. Efficient Web Content Deliv-
ery Using Proxy Caching Techniques. IEEE Trans-
actions on Systems, Mn and Cybernetics, 34(3):270–
280, 2004.

IAENG International Journal of Computer Science, 36:1, IJCS_36_1_02
______________________________________________________________________________________

(Advance online publication: 17 February 2009)


