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Abstract — Computer is used virtually everywhere everyday in 
the world.  Before 1990s computer systems are generally used 
for mathematics, engineering, and business computations.  In 
this period, mainly use FOTRAN, COBOL, and PL/1 for 
computation on mainframe systems.  In the last two decades 
scientists found that the natural world is complicated that has 
overwhelmed with data that required more sophisticated 
computation facilities and better languages for computation 
and that created new computing disciplines. This paper 
addresses the understanding of programming language 
semantics that will help user in selection of programming 
language features for various applications needs and that can 
help programmers in designing reliable, accurate, efficient, and 
user-friendly software systems for the sophisticated word. 
 
Index Terms:  user-defined types, exception handling, 
multitasking, communication between program units, and user-
defined precision 

 

I.  INTRODUCTION 

It is a chaotic world, it is a systematic world; it is a confused 
age, it is illuminate age; it is disordered society, it is organized 
society.  Everyday we are struggling in a complex, intricate, and 
difficult environment for our life.  Computer science can give one 
abilities to solve a category of complicated, obscure, and 
oppressive problems.  We can take the advantage of computer 
speed and large volume of storage spaces to add our ability for 
solving complex problems in the world.  This is a very challenge 
task and interesting assignment to youngsters.  It attracts many of 
them to study computer science.   

In October 1962, Purdue University established the first 
department of computer science in the United States [8]. Since then 
Computer Science education has become an integral discipline in 
colleges and universities across the country.  Initially, students in 
physics, engineering, and mathematics were advised to take one 
course in the FORTRAN language while students in the school of 
business particularly in Management Information Systems ware 
required to take a course in the COBOL language.  Students who 
majored in Computer Science were required to enrolled in both 
FORTRAN, COBOL, and PL/1 courses.  It was thought that this 
would prepare them potentially to work in industrial firms or 
business companies after completion of their degrees. 
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Since then, computer software and its use have spread to 
nearly every aspect of peoples’ lives from work to play.  Today 
almost every one uses computer and software everywhere.   Most 
of the equipment and devices, which use software are designed and 
manufactured by engineers.  Some of this hardware is equipped 
with embedded computer systems, some are operated by a computer 
system, and some are connected to a computer and give output 
results to the computer.  For these applications, users need not only 
robust hardware, but also reliable software.  

Today, the most serious problems with software products are 
expense, ease of use, and reliability [12].  Computer scientists not 
only need to study computer mechanisms and how to increase the 
productivity and efficiencies of a computer system, but also need to 
design computer systems, write programs, and execute them.  The 
former is the state of the practice of software engineering and the 
latter is the state of the art.  Unfortunately, there exists a gap 
between the former and the latter.  The task for computer scientists 
is to eliminate or narrow this gap.  To do this, one may apply the 
principles of software engineering for software design that will 
make systems more efficient, robust, reliable, and friendlier to use.  
To implement this, one should thoroughly analyze system 
requirements, carefully design the system and programs, and then 
perform various tests including unit tests and system tests.  Finally 
computer scientists need to deliver systems and make sure that they 
meet their requirements and fit in their environments [14].  

However, computer scientists need a good language tool to 
implement these software engineering principles.  Human 
languages such as English, Chinese, Spanish, Russian, etc. are all 
ambiguous languages.  None of them can be used to communicate 
with a computer system.  Therefore, mathematicians, computer 
scientists, and linguists must work hard to develop semantically 
unambiguous languages, starting by designing grammar rules and 
then developing the sentential structures of the language.  A 
computer program uses such a language to communicate with a 
computer system to take a set of input data to the computer system, 
reorganize data objects in the computer system, construct new data 
objects, and then generate a useful output for the program.         

Nevertheless, most engineers have had only one computing 
course in FORTRAN or in the C language or both while they were 
in college and perhaps they believe that FORTRAN or the C 
language is enough for their engineering application needs.  In fact, 
the FORTRAN language lacks user-defined types that limit its 
application domain.  Moreover, both the FORTRAN and C 
languages do not have predefined accuracy features, friendly 
concurrency facilities, and effective exception handling methods.  
Today, neither FORTRAN language nor the C language remains 
adequate to program in this complex and chaotic world for 
designing and implementing more sophisticated and reliable 
systems for biological, physical, and other natural related systems.  
Therefore, we need understand programming Language semantics 
thoroughly so that we can deal with natural world computation. 
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This paper describes some necessary elements in the 
understanding programming language semantics that is important 
for the computation of the natural world.  It requires computation 
more accurate, more reliable, more precise, more efficient, and 
friendlier.  Therefore, we should consider the extends of 
application domain, the application of accuracy and efficient 
facilities, the use of modularization and communication, the 
utilization of parallelism or concurrency, and applying exception 
handling and for reliability critical projects in this sophisticated 
word. 

 

II.  EXTENDSION OF THE APPLICATIONS TO 
A SOPHISTICATED WORD 

A department store usually consists of tens’ of thousands 
merchandises; it is very difficult to manage them properly, 
efficiently, and cost-effectively.  One of the most effective ways to 
manage such department stores is to partitioning all the 
merchandises into departments such as man’s ware, lady’s ware, 
house ware, juniors, sports, electronics, hardware, shores, bath 
and bed, pharmacy, etc.  Any merchandise in a department store 
must belong to one and only one department, and department-to-
department are discriminates to each other.  No merchandises can 
belong to two distinct departments at the same time.  If a piece of 
merchandise belongs to two departments that must have two stock 
numbers, that the item will have two entries on the computer 
printed list, and that will increase the operating overhead for 
department store.  Each department consists of a set of similar or 
the same kind merchandises and a set of operation rules and 
policies for manage these merchandises.  For example, hardware 
and electronic departments have different return or refund policies; 
some electronic items are not allowed customers to test or to tryout. 
Pharmacy department has its operational procedures or rules; 
medications are classified into prescription and non-prescription.  
For any prescription medication is strictly required a medical 
doctor’s signed prescription [26].   

In a special season of the year, like Christmas time, most 
department stores want to make some additional business for this 
splendor season; they create a new department called “Santa;” it is 
for children to take pictures with the Santa.  Likewise, in the 
springtime they create a new department called “Plants” by selling 
saplings, flowers, seedling, soils, seeds, fertilizer, rocks, and other 
goods for the garden [26]. 

Today real world projects can be very large and complicated 
for applications in newly developed domains.  These projects can 
include hardware projects, software projects, and firmware 
projects.  Many engineering projects need to take years or tens’ of 
years to complete them such as the Yangtze River Three Gorges 
Dam project that was launched in 1993 and the water level in the 
reservoir will reach to 175 meters in 2009, when the project is 
finally completed [7]; the Airbus A380 project that was started in 
2000 for worldwide market campaign and made its maiden flight in 
2005 [2]; and the Boeing 777 program was launched in October 
1990 and the first 777-300 was delivered to Cathay Pacific Airways 
in June 1998 [5].   These projects involved thousands designers, 
hundreds subcontractors, and tens of thousands manufactures.  To 
implement and manage these projects we need to use many large-
scale computer systems to process a massive amount of data and 
programs. 

A computer system commonly manages a large amount of 
data objects.  In structure it is similar to a department store, with its 

thousands of items of merchandise, or a large engineering project, 
with hundreds of subcontractors.   Therefore, we need to group 
data objects into types.  Types are discriminates to each other, 
unless a type conversion function is applied that can converts from 
one type to another.  Data objects in a computer system are 
analogous to merchandise in a department store or devices, parts, 
and equipment in an engineering project.  The association rules 
used to manage merchandise, parts, devices, and equipments are 
similar to respect operations of types in a computer system.  To 
create a new department in a department store is to expand its 
business; much like creating a new type in a computer system 
enlarges its application domain [26] to multidisciplinary areas and 
to the control of more complex physical systems.  These new types 
are called user-defined types.     
 Similarly, management of an engineering project requires 
subdividing the project into subprojects through subcontracting.  In 
a computer system, we classify data objects into types.  This is a 
granulation [27].  Therefore, granulation is an essential feature in 
the design of programming languages.  It provides predefined basic 
types and user-defined types so that the language can extend its 
application domain to any desired area.   

Programming language likes FORTRAN IV have only basic 
types and do not allow users to define their own types.  Therefore, 
its application domain is so limited.  However, the Ada and the 
C++ programming languages do provide user-defined type 
capability; and their application domain is not limited [26].  Today, 
these two languages are considered general purpose programming 
languages.  Hence, user-defined types are vital for this complex and 
chaotic world in computing.  

From an engineering viewpoint, we usually subdivide a 
complicated problem or system into several sub-problems or 
subsystems respectively; this method reduces the difficulty of 
solving the problem.  In the next section, we will address 
subprograms and communications between program units for 
synchronization of the world. 

 

III.   MODULARIZATION AND COMMUNICATION 
IN THE CHAOTIC WORLD 

 
Modularity partitions a complicated problem into sub-

problems, and we implement them as sub-programs.  A sub-
program is a unit of a program declared out of line and invoked via 
calls.  The purposes of a subprogram are many folds:  

(1) Result of modular design of program,  
(2) Factoring of common logic that occurs several places in a 

program,  
(3) Parameterized calls allow operating on different objects at 

different times, and 
(4) Simplifying and easing the complexity of the problem. 

In general, there two distinct subprogram types exist in commonly 
used programming languages. 

(1) Functions.  It returns values of a designated type.  These are 
used anywhere an expression is accepted. 

(2) Procedures.  It represents computational segments, and its 
results may be passed back via parameters or side effects.  
These are used wherever statements are permitted. 

 Communication between the main program and subprograms 
or from one subprogram to another occurs via parameter passing.  
Each programming language defines its own parameter passing 
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mechanisms.  There are five parameter-passing mechanisms in 
current commonly used programming languages such as parameter 
passing by value, by reference, by name, by value-result, and by 
copy rules that including copy- in, copy-out, and copy-in out rules 
[15, 16].   
 Among these five parameter-passing mechanisms, parameter 
passing by value, parameter passing by reference, and parameter 
passing by name can be defined mathematically below: For a 
parameter pass, in evaluating a variable name to get a value by 
finding the location associated with the name and extracting the 
value from the location.  Let names, locations, and values be three 
sets, we define two mappings:  

  ρ : names →  locations, and  
                  σ : locations →  values 
Differences in the parameter passing mechanism are defined by 
when ρ and σ  are applied. 

(1) Parameter passing by value 
ρ  and σ both applied at point of call, argument completely 

evaluated at point of call. 
(2) Parameter passing by reference (location) 
  Location is determined at the point of call and location is 

bound as the value of parameter. ρ  is applied at point of call 
and σ  is applied with every reference to the parameter. 

(3) Parameter passing by name 
At time of call, neither ρ  nor the σ is applied. ρ  and σ  
are applied with every reference to the parameter.  

These three parameter-passing mechanisms formed 
hierarchical structures; the diagram is given in Fig.3.1.   For 
parameter passing by value, both ρ  and σ are applied at calling 
time; for parameter passing by reference, ρ  is applied at calling 
time and σ is applied at reference time; for parameter passing by 
name both ρ  and σ  are applied with every reference to the 
parameter. 

 
     Name 
 
    Reference 

 
Value      

  
 

 

Fig. 3.1 Hierarchical structures of parameter passing 

The ALGOL, C, C++, and Pascal languages provide 
parameter passing by value mechanism; and it is a convenient and 
effective method for enforcing write protection. The ALGOL, C, 
C++, and Pascal languages also implement parameter passing by 
reference.  This eliminates duplication of memory.  But, there are 
disadvantages in the parameter passing by reference.  First, it will 
likely be slower because one additional level memory addressing is 
needed compared to parameter passing by value.  Second, if only 
one-way communication to the called subprogram is required, 
unexpected and erroneous changes may occur in the actual 
parameter.  Finally, parameter passing by reference can create 
aliases, which are harmful to readability and reliability.  They also 
make program verification difficult.  

The ALGOL programming language by default provides 
parameter passing by name.  When implementing parameter 
passing by name, the system will create a run-time subprogram to 
evaluate the expression in the calling unit of the program and return 
the result to the called unit of the program.  Therefore, it requires 
some additional overhead to implement such a run-time 
subprogram.  In the ALGOL programming language, if one wants 
parameter passing by value, he or she must declare with the word 
“value” for that variable in the actual parameter.  ALGOL treats 
parameter passing by reference, as a special case of parameter 
passing by name; therefore, the programmer does not need to 
specify anything.  We can define a hierarchical structure for 
parameter passing by value, reference, and name in the ALGOL 
language.  

In the programming language PL/1, for actual parameters with 
a single variable, PL/1 uses parameter passing by value.  However, 
for a constant or an expression as an argument in the calling 
statement, PL/1 refers to a dummy formal parameter in the called 
subprogram and it implements a default value or parameter passing 
by value.   

 In most FORTRAN implementations before FORTRAN 77, 
parameters were passed by reference.  In later implementations 
parameter passing by value-result has been used commonly. 
  For the Ada language, parameter passing has three modes: 
mode in, mode out, and mode in out.  These are different from 
parameter passing by value and by reference [3, 4, 17, 20] 
Mode in 
• This is the default mode (i.e., in may be omitted).  
• The actual parameter is copied into a local variable. The 

actual parameter must have a defined value at the point of call. 
• The actual parameter may be an expression of compatible 

type. 
Mode out 
• The result is copied into the actual parameter upon exit. 
• The actual parameter may be a variable of compatible type. 
• The actual parameter need not have a value upon entry. 
Mode in out 
• The value of the actual parameter is copied into a local 

variable upon entry. 
• The value of local parameter is copied into the actual 

parameter upon exist. 
• The actual parameter must be a variable with a defined value 

upon entry. 
These parameter-passing mechanisms are serving 

communication facilities between main program and its 
subprograms or between one subprogram and another.  The 
purpose of engineering computing is to solve problems in the 
complicated world by means of granulation [27, 28], organization, 
and causation.  Granulation subdivides the problem into a set of 
more manageable sub-problems.  Granulation is an effective tool to 
modularize the original problem and to write it into subprograms.  
From a programmer viewpoint, communication between the main 
program and subprograms and the communication from one 
subprogram to another is the causation within the program.  The 
structural design and the logical flow reflect the organization of the 
problem. Every parameter passing mechanism designed in current 
programming languages has its own purpose and application 
domain.  For the granulation computing, we need to provide all of 
these features for selection so that we can solve problems most 
flexibly.  
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This paper emphasizes using features of programming 
languages for engineering computation.  It is worth noting that the 
Ada programming language is designed for embedded systems, 
safety-critical software, and large projects that require high 
portability, reliability, and maintainability.  For example, over 99 
percent of the aviation software in the Boeing 777 airplane uses the 
Ada language [1].  Not surprisingly, the Ada language was the first 
object-oriented design programming language to be accepted as an 
International Standard.  
 Today, we design software systems to meet complex 
application requirements.  Almost all the activities in human 
society, the biological world, physical systems, and engineering 
projects are concurrent or parallel; and purely sequential activities 
are special cases.  Therefore, concurrency reflects the nature of 
designing software projects.  In the next section, we will address 
the multitasking features in the Ada programming language [6, 9]. 

 

IV. PARALLEL OR CONCURRENCY IS THE NATURE OF 
THE WORLD  

 
Among all commonly used programming languages, the Ada 

language has the most complete and best features for multitasking.  
Multitasking permits a programmer to partition a big job into 
many parallel tasks [8, 20].  Other programming languages like the 
C and C++ programming languages can only apply some 
predefined functions.  Thus, they are lack of flexibility and limit 
their applicability.   For engineering applications, we should use 
these features and include them in the design of programming 
languages.   

A task is a unit of computation that can be scheduled 
independently and in parallel with other such units. An ordinary 
Ada program can be thought of as a single task; in fact, it would be 
called the main task.  Other tasks must be declared in the main 
task (as subtasks) or be defined in a package [3, 5, 20, 21].  
Several independent tasks are often to be executed simultaneously 
in an application.  Ada tasks can be executed in true parallelism or 
with apparent concurrency simulated by interleaved execution.  
Ada tasks can be assigned relative priorities and the underlying 
operating system can schedule them accordingly.  A task is 
terminated when its execution ends. A task can be declared in 
packages, subprograms, blocks, or other tasks.  All tasks or sub-
tasks must terminate before the declaring subprogram, block, or 
task can be terminated. 

A task may want to communicate with other tasks. Because 
the execution speed of tasks cannot be guaranteed, a method for 
synchronization is needed.  To do this, the Ada language requires 
the user to declare entry and accept statements in two respective 
tasks engaged in communication.  This mechanism provides for 
task interaction and is called a rendezvous in the Ada language 
[21]. 

The Ada language also gives an optional scheduling called a 
priority that is associated with a given task.  A priority expresses 
relative urgency of the task execution.   An expression of a priority 
is an integer in a given defined range.  A numerically smaller value 
for priority indicates lower level of urgency.  The priority of a 
task, if defined, must be static.  If two tasks with no priorities or 
two tasks of equal priority exist, they will be scheduled in an 
arbitrary order.   If two tasks of different priorities are both eligible 
for execution, they could sensibly be executed on the same 
processor.   A lower priority task cannot execute while a higher 
priority task waits.  The Ada language forbids time-sliced execution 

scheduling for tasks with explicitly specified priorities.  If two tasks 
of prescribed priorities are engaged in a rendezvous, the 
rendezvous is executed with the higher of the two priorities.  If 
only one task has a defined priority, the rendezvous is executed at 
least at that priority. 

A task may delay its own execution or put itself to sleep and 
not use processing resources while waiting for an event to occur by 
a delay statement.  The delay statement is employed for this 
purpose.  Zero or negative values have no effect.  The smallest 
delay time is 20 milliseconds or 0.020 seconds.  The maximum 
delay duration is up to 86400 seconds or 24 hours.  The duration 
only specifies minimum delay; the task may be executed any time 
thereafter, if the processor is available at that time. 

The Ada language also provides a select statement.  There are 
three forms of select statements.  Selective wait, conditional entry 
call, and timed entry call.  A selective wait may include (1) a 
terminate alternative, (2) one or more delay alternatives, or (3) an 
else part, but only one of these possibilities is legal.  A task may 
designate a family (an array) of entries by a single name.  They can 
be declared as: 

 Entry request (0..10) (reqcode: integer); 
Entry alarm (level);    -- where type level  

-- must be discrete 
An accept statement may name an indexed entry 

   Accept request ( 0) (reqcode: integer) do … 
Accept request (1) (reqcode: integer) do … 
Accept alarm (level); 

An entry family allows an accepting task to select entry calls to the 
same function deterministically. 

            Today’s compiler technology adequately supports all Ada 
features.  In a real-time system, the response time for multitasking 
features may seem not fast enough.  Therefore, speed is an 
important factor in choosing an Ada compiler for general and real-
time system applications.  Among all commonly used programming 
languages, the Ada language is the unique one that provides 
multitasking features at the programming level, and it is very 
important useful feature for modeling and simulating of real-time 
and concurrent events in programming. 

The goals of computing are reliability, efficiency, accuracy, 
and ease of use.  From the programming point of view, to provide 
reliable computation is to prevent or eliminate overflow, underflow, 
and other unexpected conditions so that a program can be executed 
safely, completely, and efficiently.  Efficient computation requires 
an effective computational algorithm for the given problem using 
proper programming language features for that computation.  For 
accurate computation, one should consider problem solving 
capability, accuracy features, and parallel computation abilities in a 
given programming language.  For ease of use, the software 
engineer should put himself in the situation of the user.  A software 
engineer should remember that users have a job to be done, and 
they want the computer system to do the job with a minimum of 
effort.  In the next section, we will discuss issues of accuracy and 
efficiency of the Ada language in numerical computation capability 
[15].   

 

V. ACCURACY AND EFFICIENCY ARE REQUIRED BY 
THIS SOPHICIFICATE WORLD 
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The area of numerical computation is the backbone of 
computer science and all engineering disciplines.  Numerical 
computation is critical to real world engineering applications.  For 
example, on November 10, 1999, the U.S. National Aeronautics 
and Space Administration (NASA) reported that the Mars Climate 
Orbiter Team found:   

“The ‘root cause’ of the loss of the spacecraft was the 
failed translation of English units into metric units in a 
segment of ground-based, navigation-related mission 
software as NASA previously announced [11].”  

This example indicates that numerical computation and software 
design are crucial tasks in an engineering project.  The goal of 
numerical computation is to reach to a sufficient level of accuracy 
for a particular application.  Designing software for efficient 
computation is another challenge.   
    For engineering applications, we need to deal with many of 
numerical computations. Among most commonly used 
programming languages, the Ada language has the best numerical 
computation capability.  From the precision aspect, the Ada 
language allows a user to define his own accuracy requirement.  
This section will address the Ada language numerical computation 
capability [15].  To deal this, we should consider the following four 
criteria: problem solving capability, accuracy of computation, 
execution time for solving problems, and the capability of 
parallelism  
(1) Problem solving capability:  The Ada language provides 
user-defined types and separate compilation.  The former supports 
programmers solving a wide range of engineering problems and the 
latter permits development of large software systems.  The Ada 
language provides data abstraction and exception handling that 
support information hiding and encapsulation for writing a reliable 
program.  In the real world, many engineering projects consist of 
concurrent or parallel activities in their physical entities.  To 
properly simulate these systems with a programming language, that 
language must provide for logical concurrency regardless of how 
the program is actually executed.  Ada multitasking meets this 
requirement [13, 22].  In fact, multiprocessor computer systems are 
now available, thus simulating a truly parallel system becomes 
possible.   
(2) Precision and accuracy:  The Ada language’s real number 
types are subdivided into float-point types and fixed-point types.  
Float-point type have values are numbers with the format, 

ddddd ±×± 10... .  Fixed-point types have values with the 
formats ,.ddddd± 0.dddd±  or ddd00.0±  [4, 8, 20].   

For the float-point number types, model numbers other than 
zero, the numbers that can be represented exactly by a given 
computer, are of the form: 

   sign ×  mantissa ×  (radix × ×  exponent) 

 In this form, sign is either +1 or -1; mantissa is expressed in a 
number base given by radix and exponent is an integer.  The Ada 
language allows the user to specify the number of significant 
decimal digits needed. A floating-point type declaration with or 
without the optional range constraint is shown: 

                  type T is digit D [range L  ..  R];  

In addition, most Ada compilers provide the types long_float and 
long_long_float (used in package standard) and f_float, d_float, 
g_float, and h_float (used in package system) [22].  The size and 

the precision of each of the Ada floating-point types are given as 
follows:  

      Type          Size(bits)        Precision (digits) 
    f_float          32      6  
       d_float      64    9 
       g_float      64    15 
       h_float    128    33 

The goal of computation is accuracy.  Higher accuracy will 
provide more reliability in the real-time environment.  Sometimes, 
a single precision or a double precision of floating point numbers in 
FORTRAN 77 [13] is not enough for solving some critical 
problems.  In the Ada language one may use the floating point 
number type: long_long_float (h_float) by declaring digit 33 to use 
128 bits for floating point numbers provided by Vax Ada [18] to 
provide a precision of 33 decimal digits accuracy, and the range of 

exponent is about from 13410−  to 13410+ or −448 to +448 of base 
2 [4, 8, 19, 20] for the range.  The author has employed this special 
accuracy feature in the computation of hypergeometric distribution 
function [23, 24].   

For the fixed-point types, the model numbers are in this form: 

                sign ×  mantissa ×  small 

The sign is either +1 or −1; mantissa is a positive integer; small is a 
certain positive real number.  Model numbers are defined by a 
fixed-point constraint, the number small is chosen as the largest 
power of two that is not greater than the delta of a fixed accuracy 
definition.  The Ada language permits the user to determine a 
possible range and an error bound which is called delta for 
computational needs.  Examples are the follows: 

Overhead has a delta of 0.01; 
Overhead has a range −10E5 .. 1.0E5; 

These indicate small is 0.0078125 which is 72− and model 
numbers are –12800000 ×  small to +12800000 × small.  The 
predetermined range provides a reliable programming environment.  
The user assigned error bound delta guarantees an accurate 
computation.  These floating-point number and fixed-point 
number types not only provide good features for real-time critical 
computations, but also give extra reliability and accuracy for 
general numerical computations.  
(3) The Ada for parallel computation:  The author has used 
exception handlings and tasks [6, 21] for computation of a division 
of a product of factorials and another product of factorials in the 
computation of the hypergeometric distribution function [24, 25].  
Exception handling is used to prevent an overflow or underflow of 
multiplications and divisions, respectively.  The tasks are used to 
compute the numerator and denominator concurrently. In addition, 
tasks and exception handling working together can minimize the 
number of divisions and maximize the number of integer 
multiplications in both of the numerator and denominator, reduce 
round off errors, and obtain the maximum accuracy. In the actual 
implementation, we used three tasks: task one and task two are 
employed to perform the multiplications in the numerator and 
denominator parallels and task three is used to perform a division.  
When both products in the numerator and denominator have 
reached a maximum before an overflow occurs, both task one and 
task two stop temporarily and invoke task three to perform a 
division of the products that have been obtained in the numerator 
and denominator before an overflow occurs.  After task three 
completes its job, task one and task two resume their computation 
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and repeat this procedure until the final result is obtained.  These 
tasks work together and guarantee that the result of this 
computation will be the most accurate and the time for the 
computation is reasonable.  The author has performed these 
computations on a single processor machine, so the parallelism is a 
logical parallelism.  If one has a multiprocessor machine, he can 
perform an actual parallelism, tasking and exception handling can 
easily be employed in the computation of the hypergeometric 
distribution function and some computation results and required 
time for this problem are given in [21], along with those for the 
computation of the multinomial distribution function, multivariate 
hypergeometric distribution function, and other comparable 
functions.  We conclude here that it is not possible to carry out the 
computation without using these Ada special features.    
(4) Execution time:  In the 1990s, compiler technology was 
inadequate to support many Ada features.  In a real-time system, 
the response time for multitasking features was seemed not fast 
enough.  Therefore, speed was an important criterion for choosing 
an Ada compiler for real-time applications.  However, the second 
generation of Ada compilers has doubled the speed of the first 
generation compilers.  Today, compilers are fast enough to support 
all Ada features.  Currently, Ada compilers are available for 
supercomputers, mainframe computers, minicomputers, and 
personal computers at reasonable prices. 

In running an application, a program crash is a disaster.  When 
the programmer designs his program, he must consider all such 
unexpected situations and find a means to prevent from happening.  
If it is not possible to prevent a crash from occurring, the 
programmer should provide some mechanisms to handle it, to 
eliminate it, or to minimize its damage.  In the next section, we will 
address exception-handling features for these purposes.  

 

VI.   EXCEPTION HANDLING IS THE SAFE GUARD IN THE 
DANGEROUS WORLD 

An exception is an out-of-the-ordinary condition, usually 
representing a fault state that can cause a program crash.  The Ada 
language provides for detection and handling of such conditions [4, 
8, 23].  It is raised implicitly from an operation of integer overflow 
during the evaluation of an expression, or assigning a negative 
value to a type with positive data item.  It is also raised explicitly as 
a result of checking when a determinant is found to be zero during 
matrix inversion or a stack is found to be empty during “pop” 
operation.  It is not always possible or practical to avoid all 
exceptions.  Allowing exceptions to occur without providing a 
means to handle the condition could lead to an unreliable program 
or a crash, however.  Therefore, exception handling is very 
important in designing a programming language [17, 23].  The Ada 
language provides five predefined exceptions.  They are: 

Constraint_error 

• It possibly the most frequently used exception in Ada 
programs.   

• Constraint_error is raised when a range constraint is violated 
during assignment or a discriminant value is altered for a 
constrained type.  

Numeric_error 
• When an arithmetic operation cannot deliver the correct result.  
• Overflow or underflow condition occurs.  

Storage_error 

• It is raised if out of memory during the elaboration of a data 
object.  

• During a subprogram execution, creation of a new-access type 
object, 

Tasking_error 
• It is raised during inter-tasking communication. 

Program_error  
• A program attempts to enter an unelaborated procedure, e.g. a 

forward is not declared. 

The Ada language encourages its user to define and raise his 
exceptions in order to meet the specific purposes needed.  The 
language allows the exception handling mechanism to be invoked 
for unusual conditions that are detected by the user’s program.  An 
exception handler is a segment of subprogram or block that is 
entered when the exception is raised.  It is declared at the end of a 
block or subprogram body. If an exception is raised and there is no 
handler for it in the unit, then the execution of the unit is 
abandoned and the exception is propagated dynamically, as 
follows: 

• If the unit is a block, the exception is raised at the end of the 
block in the containing unit. 

• If the unit is a subprogram, the exception is raised at the point 
of call rather than the statically surrounding units; hence the 
term dynamic is applied to the propagation rule. 

• If the unit is the main program, program execution is 
terminated with an appropriate (and nasty) diagnostic message 
from the run time support environment. 

The Ada language strongly encourages its user to define and 
use his own exceptions even if they manifest in the form of 
predefined exceptions at the outset, rather than depend on 
predefined ones; it is generally difficult to be sure exactly what 
caused the original exception.  The user should not depend on 
proper values for out or in out parameters from units that neither 
propagate an exception nor assume a predefined exception occurs 
at some known point even if there is only one point where it could 
occur.  The following is an example that shows the exception, 
handler, and propagation working together for the computation of 
factorial function.  

Function Power (n, k: natural) return natural is 
Function Power (n, k: natural) return natural is 

   begin         -- inner 
    if k < 1 then 

return 1;        
else  

return n * Power(n, k-1); 
   end if; 
  end Power;       -- inner 

begin          -- outer 
  return Power(n, k); 
  Exception 
   when numeric_error => 
  return natural'last; 

end Power;         -- outer 

The advantage of this segment of code is that when an overflow 
condition occurs, the inner Power function will exit.  Once the 
outer function returns the natural’last, it is not possible to get back 
to the exact point of the exception.   

If the function had been written as on the next page, each 
execution of the function would encounter an exception when an 
overflow occurs.  An undesired example is given as follows for 
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comparison.  This function will continuously raise exceptions when 
the first overflow is detected and at the end of all the recursive 
calls.   

Function Power (n, k: natural) return natural is 
begin             

if k < 1 then 
return 1;        

else  
                          return n * Power(n, k-1); 
   end if; 
   Exception 
    when numeric_error => 
      return natural'last; 

end Power;         
Designing a programming language for application to all 

human activities and their needs is not an easy task.  However, the 
language we want for engineering computation must be a reliable 
one.  The Ada language is a language that provides complete 
exception-handling facilities.  For a program to be considered 
reliable, it must be operate sensibly even when presented with 
improper input data as well as a software or hardware malfunction.  
A wide range of issues pertains to the design and implementation of 
software, which will operate successfully within specifications 
during specified time periods.  Of cause a greater precaution is to 
avoid possible errors in the program itself.  To do this, we must 
take account of such possible errors in the program design.  A truly 
reliable program must monitor itself during execution and take 
some appropriate actions when a computation is entering an 
unexpected state.  This is the purpose of an exception handler.  

  
VII.   CONCLUSION 

In this paper we have discussed the goal of engineering 
computing as accuracy, efficiency, reliability, and ease of use.  To 
accomplish the goals of engineering computation is not easy; it 
involves human intelligence, knowledge of variety of programming 
languages, and various programming facilities.  In this paper, we 
have examined many programming language features that are 
critically important for engineering applications.   Some of these 
features such as subprograms, user-defined types, and basic 
numerical computation facilities are provided by most commonly 
used languages like FORTRAN 90, the C, the C++, Pascal, and 
Ada languages.  This paper has highlighted the use of the Ada 
programming language's strong typed feature, predefined exception 
handling, user defined exception handling, and user-defined types 
for developing reliable programs.   All of these good features in the 
Ada programming languages are unique among all commonly used 
programming languages.  In particular, the use of the Ada 
language's delta, digits, and model numbers for designing 
engineering projects, which require accurate critical numerical 
computation, are very important.  For the Ada language, most of 
their compilers allow users to have a 128-bit floating-point number 
or 33 significant digits for numerical computation.  Programmers 
may specify required accuracies through digits and delta clauses 
for floating-point numbers and fixed-point numbers, respectively.  
In addition, Ada’s exception handling can prevent overflow or 
underflow during the execution of programs and multitasking can 
perform parallel computations.  Therefore, from the software 
reliability point of view, the Ada language is better than 
FORTRAN, the C, the C++ and  languages in numerical 
computation for engineering applications.  

Today, most engineers have only FORTRAN or the C/C++ 
programming languages for computing.  Perhaps some of them 

have used Mathematica, Mathlab, or Maple for computation.  All 
these mathematical packages have one or more of following 
drawbacks.  Each mathematical software package has its own input 
and output formats; these formats might not compatible with an 
engineering project.  Each of these software packages has its 
predefined accuracy, which might not meet the needs of 
engineering projects.   All of these mathematical packages are 
designed for classroom teaching or laboratory research 
computations; efficiency is not critically important for these 
purposes.  Moreover, these mathematical packages are not for real-
time or embedded systems applications; they lack exception-handling 
capabilities.  Therefore, engineers need to learn how to build their own 
computational capabilities. 

To do this, each engineering student needs to take at least two 
courses in computing, one is to learn the basic computation 
capabilities, a FORTRAN or the C/C++ course will serve for this 
purpose, the other is to study how to build efficient, accurate, 
reliable, and ease of use software systems to satisfy all engineering 
domain needs.   However, the instructor must have knowledge 
about engineering experiences in real world, and backgrounds in 
inter-disciplinary applications in order to qualify for this purpose 
and lead students to design, implement, and handle engineering 
projects for the challenges of the sophisticated word. 
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