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Optimal Cascade Linguistic Attribute Hierarchies for
Information Propagation

Hongmei HEMember IAENGand Jonathan Lawry

Abstract— A hierarchical approach, in which a high- non-hierarchical one [2]. As a result of the uncertainty and
dimensional model is decomposed into series of low-dimensionalnon-linear relationship between different attributes ambal
sub-models connected in cascade, has been shown to be an effegariable, different cascade hierarchies will have diffenger-
tive way to overcome the "curse of dimensionality’ problem. The  formance on decision making procedures. We have proposed
upwards propagation of information through a cascade hierar- 5 ganeral multiple attribute hierarchy embedded with Lisgu
chy of Linguistic Decision Trees (LDTs) based on label semantics tic Decision Trees (LDTs) based on Label Semantics [7]. In

forms a process of cascade decision making. In order to exam- this paper. we propose a cascade hierarchy approach embed-
ine how a cascade hierarchy of LDTs works compared with a paper, prop Yy app

single LDT for multiple attribute decision making, we developed ded with LDTS_ represgntlng tranSpf”lrem rules, and descr'b_e
genetic algorithm with linguistic ID3 in wrapper to find optimal  the process of information propagation through a cascade hi
cascade hierarchies. Experiments have been carried out on the €rarchy. We then develop a genetic algorithm with the Lin-
two benchmark databases, Pima Diabetes and Wisconsin Breastguistic ID3 (LID3) [9] algorithm in wrapper to optimise cas-
Cancer databases from the UCI Machine Learning Repository. cade hierarchies. The experiments are performed on bench-
Itis shown that an optimal cascade hierarchy of LDTs has better mark databases from the UCI Machine Learning Repository.
performance than a single LDT. The use of attribute hierarchies

also greatly reduces the number of rules when the relationship .

between a goal variable and input attributes is highly uncertain 2 Label Semantics

and nonlinear. Moreover, the cascade linguistic attribute hierar- Label semantics [5, 6] proposes two fundamental and inter-
chy presents cascade transparent linguistic rules, which will be ’ prop

useful for analyzing the effect of different attributes on the dei- 'clated measures of the appropriateness of labels as plescri
sion making as a reference in a special application. tions of an object or value. Given a finite set of lab&lfrom

which can be generated a set of expressibhsthrough re-
Keywords: cascadelinguistic attributehierarchy, information prop-  cursive applications of logical connectives, the meastiegpo
agation, cascade decision making, Genetic algorithm in wrapper, propriateness of an expressiéne LE as a description of
Linguistic ID3 instancer is denoted by (x) and quantifies the agent’s sub-
jective belief that) can be used to describebased on his/her
(partial) knowledge of the current labelling conventiohshe
population. From an alternative perspective, when faced wi
an object to describe, an agent may consider each lab@l in
and attempt to identify the subset of labels that are appro-

1 Introduction

For multiple attribute decision making, the underlyingarel
t|oqsh|p petween a_ttrlbutes and .the cIa§S|f|cat|'on or mlségriate to use. Let this set be denoted By. In the face
variable is often highly uncertain and imprecise. This re- . . : . .

of their uncertainty regarding labelling conventions tigerat

quires an integrated treatment of uncertainty and fuzzme\ﬁi" also be uncertain as to the composition®§, and in la-

\;Vt?r?gu?;(;dt(e)“ﬁig :};Eg?pig?:;;;:glgorgn:gz? tfrrlzn;:;mﬁ\;ebel semantics this is quantified by a probability mass fumcti
g g ' m, : 2° — [0,1] on subsets of labels. The relationship be-

backs to fuzzy modeling of systems is known as the ,Cur?\?vzen these two measures will be described below
of dimensionality’, which is the exponential growth in the '
number of possible fuzzy rules as a function of the dimenynjike linguistic variables [14], which allow for the gemer
sion of model input space. A hierarchical approach in whigfpn of new label symbols using a syntactic rule, label seman
the original high-dimensional model is decomposed into Sgcs assumes a finite set of labels These are the basic or
ries of low-dimensional sub-models connected in casca®, lgore labels to describe elements in an underlying domain of
been shown to be an effective way to overcome this probledscourse2. Based onc, the set of label expressiods? is

since it provides a linear growth in the number of rules and pghen generated by recursive application of the standarid log
rameters as the input dimension increases [12]. Campello &ynnectives as follows:

Amaral presented a unilateral transformation that coevtbe

proposed hierarchical model into a mathematically eqaival _ .
Definition 2.1 Label Expressions

*Department of Engineering Mathematics, University of BiistoK The set of label expressioid of £ is defined recursively as
{H.He,J.Lawry @bristol.ac.uk follows:
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olf L e LthenL € LE For example, ifL = {low,medium,high} with focal

elf0,p € LEthen—60,0 A p,0V o € LE sets {{l},{l,m},{h}} and 8 = low A —-medium then
MlAﬁm(x) = ZF:leRmQF My (F) = mi({l})

A mass assignment.,, on sets of labels then quantifies the

agent's belief that any particular subset of labels costalh 3 A cascade linguistic attribute hierarchy

and only the labels with which it is appropriate to describe
3.1 Definition of a cascade hierarchy

Definition 2.2 Mass Assignment on Labels

Va € Q a mass assignment on labels is a functiop : 2 — The process of aggregation of evidence in multi-attribete-d
[0,1] such thaty" g . m, (S) = 1 sion problems based on attributes ..., z,, can be viewed as
’ g T -

a functional mapping between a high level variabland in-

£Ht attributesy = f(z1, ..., x,), Which is often dynamic and
nonlinear, and may be imprecisely defined. In some cases, the
function f may be approximated by a composition of lower
dimensional sub-functions, forming a cascade hierarchy-(a
nary tree). Each sub-function represents a new internmediat
attribute. Figure 1 shows a simple cascade hierarchy. There
aren — 1 intermediate attributes produced. The last interme-

Definition 2.3 Set of Focal Elements _ diate attributez,_; corresponds to the goal variabje The
Given labelsC together with associated mass assignment  cascade relationship is expressed as following:

Yz € §, the set of focal elements fdris given by:

F={SCL:3weQ, m,(S)>0} (@) Z{

Now depending on labeling conventions there may be cert

scribe any object. For examplemall andlarge cannot both
be appropriate. This restricts the possible value® pfo the
following set of focal elements:

Fl(xl,l'g) 1= 1, (2)
Fi(zi,1,$i+1) n>1>1.
The appropriateness measurg,(x), and the massn, are  As proposed in [7], in a linguistic attribute hierarchy, éan
then related to each other on the basis that assettirig) ¢’
provides direct constraints di,.. For example, asserting: *
is Ly A Ly’, for labels Ly, Ly € L is taken as conveying the
information that bothl.; and L, are appropriate to describe
x so that{L,, Ly} C D,. Similarly, ‘z is =L’ implies that
L is not appropriate to describeso L ¢ D,. In general we
can recursively define a mapping LE — 22° from expres- Figure 1: A cascade hierarchy of LDTs

sions to sets of subsets of labels, such that the asset#tiisn

¢’ directly implies the constrainD,. € A (6) and where (6)

is dependent on the logical structure éf For example, if tion mappings between parent and child attribute nodes are
L = {low, medium, high} then\(medium A —high) = defined in terms of weighted linguistic rules which explicit
{{low, medium}, {medium}} corresponding to those setsmodel both the uncertainty and vagueness which often char-
of labels which includenedium but do not includehigh. acterises our knowledge of such aggregation functionss@he
Hence, the descriptio®, provides an alternative to Zadeh'srules will be defined as conditional expressions in the label
linguistic variables in which the imprecise constrainti$ ¢ semantics framework [6] weighted by conditional probabili
onz, is represented by the precise constrdmt< A(f), on ties. For each attribute, a set of labels and subsequerit labe
D,. expressions is defined. We assume that expressions describ-
ing a parent attribute can be (imprecisely) defined in terms o

a description of its children. Lef;, 6; andF; denote the set

of labels, a label expression and focal sets respectively, d

Definition 2.4 A-mapping) : LE — 27 is defined recur-
sively as follows¥6, ¢ € LE

oVL, € LAL;)={FeF:L;eF} fined for attributex; fori =1,...,n. Similar!y, letZ,, 0, and
e MO A @) = A(0) N A(p) Fy de_n_ote the label set, a label expression and focal set for
e MOV ) = A(0) UNp) describing the goal variablg respectively.

o A(=0) = A(0)° More precisely, the weighted conditional rules can take the

_ . ~ form of an LDT. In an LDT, the nodes are attributes, and
Therefore, based on themapping we define the appropriatethe edges are label expressions describing each attriboee.

ness measure as below: depth of an LDT with two input attributes is at most 2. A
branchB is a conjunction of expressiofig A6, whered; and
Definition 2.5 (Appropriateness Measure) 0, are the label expressions of the two edges on the br&nch

Appropriateness measurgy,) is evaluated as the sumrespectively. Each branch also is augmented by a set ofcondi
of mass assignment,. over those subsets of labelsip(z), tional mass values:(F|B)=P(C, = F|B), for each output
i.e.V0 € LE,Vx € Q, jig(y) = ZFeA(a) my (F). focal elementt” € F,. Then the rules corresponding to the
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branchB would be:0; A 0, — F : m(F|B) for each focal 4 GA in wrapper to optimise cascade hierar-
elementF € F,. chies

4.1 Chromosomes and Reproduction

3.2 Upwards propagation of information To learn a linguistic cascade hierarchy, we use a genetie alg
rithm as a search agent with the LID3 as an induction algo-

The upwards propagation of information through a cascadéhm in wrapper. For the optimisation of cascade hierashi

hierarchy of Linguistic Decision Trees (LDTs) based on labevith n attributes, the size of whole search spac%’is The

semantics forms a process of cascade decision making. Figrformance of different hierarchies is judged on the bafsis

ure 1 shows the process of bottom-up information propagatithe accuracy for the given classification task.

through the cascade hierarchy. The only information apkila ]

regarding the mappings;, F; and F; is in the form of de- Chromosomes:The purpose of a GA is to evolve a popula-

cision trees. DT}, LDT, and LDTs, which define mapping tion of ppteqtlal solutllons ea_ch corresponding to the adesca

functions forz, in terms of those for, anda,, for z, interms  hierarchies in a multiple-attribute space. Therefore, Gife

of those forz; andzs, and fory in terms of those for, and in wrapper approach conducts a search in the space of pos-
4. sible cascade hierarchies. Different attribute orderotefine

different cascade hierarchies. So we define any possible per
However, it is not easy to define the labels for intermediatautation of all attributesy = {x1,...2,}, andr — H as a
attributes in terms of their children, as the intermediate agenome of the genetic algorithm.
tributes are not directly related to basic attributes instystem _ _ .
[2]. Therefore, we suppose all intermediate attributesapre R€Production: We use foulette-wheelselection, according
proximations of the decision variabjewith the same domain t0 Which, an individual with better fitness has higher proba-
and description labels. According to Jeffrey’s rule [4)vegi bility of bgmg selected. The.pro.babm_ty that hierarchy is
an LDT, the mass assignment of the decision variable can $fdected is given by the nominalised fitness:
calculated by: £(H)

=1 Fi(H)

Soi 1oy (1) e, (w2)m(Fy | By, ), i=1 » o o

Zt_i: 10, (zie1 o, (zis)m(Ey|By.), 0> 1 A ong-e'l|t'|sm s_trategy is mcluded. since it keeps the curren

g=1m% v 3) best individual in the next generation, and speeds up the con

vergence of the evolution process. On the other hand, irrorde

eﬁo keep the diversity of solutions, a random hierarchy is-gen
erated in each generation.

pi = (4)

m., (Fy) =

where, B;; is the j'* branch in thei'" LDT, and py(z) is
appropriateness measure, quantifying the degree of owaf b
that label expressiofi is appropriate for: [6]. The appropri-

ateness measure can be calculated with mass assignmen{g©f;se two-point order crossover as follows (Figure 3): two
attributex according to Definition 2.5. parental permutations;; and 7, are chosen randomly de-

Information is propagated along the cascade LDTs from log\?znding on the _proba_lbility chosenin4. A cor_1tinuous intb_rva
level to high level. For the example in Figure 1, given masy the permutat|o_n_r1 is chosen, and also an interval starting
functionsmy, , my,,mg,, andm,,, the mass functiom, is at the same posntlon_ and Of. t.h?] Sag'ﬁ Iengr]]th ]fmlm Tge
determined by propagating,., andm.,, throughL DT}, m., two parameters,starting position and ’length of interval

H /
is determined by propagating., andm,, through LDT5, are prodtuged rartlnt?]omly. :—VYO r;ﬁw'pte rml,llt?t|om§,a:g ?h?
and finally, m,, is determined by propagating., andm,, are created such thaf contains the interval from, wi N

through decision tred. DT} (see Figure 2). Here we Con_rest being the other elementsof in the same order as they
' appeared inr;. 75, contains the interval from; with the rest

being the other elements @f in the order as they were it

(Figure 3). Mutation, which is the swapping of two randomly

picked elements of a permutation, is carried out with some
/ ? ﬁ ? probability (n_rate) on each child in the population.

Mxq Mxo

My3 Mxy

Mz 3 Mz _yp My

4.2 Evaluation and Termination Criteria

Figure 2: The cascade upwards information propagation ) ) . )
Here we only consider binary classification problem with two

classes '+ and '-’. First, we investigate the ordinary accu
racy on a threshold, which is the ratio of the number of cdrrec
sider only classification problems where the goal variapleclassifications to the number of testing samples. When the
belongs to the finite set of classéS, ..., C;}. In this case, estimated probability(C|Z) (equivalent tom, ({C})) that a
F = {{C1}, ..., {C:}}, and for input vectot?, m,({C;}) = sample with measurement vecidbelongs to clas€' is larger
P(C;|). than a thresholdy, then that sample is classfied @ Con-
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start=2 length=4 Similarly, the integrated accuracy can be defined as the area
under ROC curve, which measures how well the decision
M [2]6]s5] 1] 7] 3] 4] o maker separates the two classes without reference to a deci-

sion threshold, as follows:
T [a]s][ 7] o] 4] 2] 3] ¢

1
. i i ARoc(H)Z/ ndo @)
m[els] 7] o] 4] 2 1] 3 0
T [o[4]s]1] 7] 3] 2] 6 Let p(+|Z) be the estimation of the probability that an in-
stance with measurement vecis positive. If we rank test
Figure 3: Two-point order crossover instances according to increasing positive probabilitiben

the area under the ROC curvd £o¢) for a decision making
problem with two classes +,- can be calculated [3] by:

Y= P(P+1)/2

ventionally we use 0.5 as a threshold. Here we consider two Aroc = PN ’ )

measures of accuracy, integrated accuracy and the area URggsre, P and NV are the numbers of positive and negative sam-

ROC curve, which measures how well the classifier separa; 8s,r; is the rank of tha?" positive instance in the rank list

the two classes without reference to a decision threshdld. Toccording to the probabilities of the positive class.

closer the ROC plot is to the upper left corner, the higher the

ordinary accuracy of the test results. Termination criteria: Termination is an important parame-
ter, which affects the running time and quality of solutions

For each possible threshatdfor discriminating between the Generally it heavily depends on the size of the chromosome.

two classes, some positive cases will be correctly clagsifi¢ne maximum generationsaz_gen is linear function of the

as positive {"P,=number of True Positive), but some positivg,ymper of basic attributes. The evolution procedure wilise

cases will be estimated as negativeN,=number of False peated until the maximum number of generations is reached.
Negative ). On the other hand, some negative cases will be

correctly classified as negativ@&y,=number of True Neg- 4.3 LID3 algorithm for the induction of an LDT

ative), but some negative cases will be classified as pesitiv

(F P,=number of False Positive). In order to obtain an LAH embedded with LDTs, we need to

trainin turn all LDTs in the hierarchy. The LID3 algorithm][9

Accuracy:  For a decision maker, th@rdinary Accuracy for training cascade LDTs is a black box as part of evaluation

(A.) over a threshold can be calculated as below: in the wrapper of the Genetic Algorithm. LID3, an extension
of well-known ID3 algorithm [11], is used to build an LDT

, (5) based on a given linguistic database. The search is guided by

M a modified measure of information gain in accordance with

where, M is the number of test examples. In order to redud@Pel semantics.
the sensitivity to the threshold, we define the integrated ac-
curacy to be the integration of accuracies forale [0.5,1) Definition 4.1 (Branch Entropy) The entropy of branch B,

TP, + TN,
Ao(H) = Lha+ 1N

(Formula (6)): for a given goal variable belonging to class sét =
{Cl, ...,Ct}, is
L Aa) - t
Aa(H :/ da~ =Y N,., 6
()= | Mo~ 7 2o © E(B) = -3 PCB)ogoP(CB) (@)
i=1

where, the interval [0.5, 1) is divided inta subintervals with
constant step length (), and whereV,,, = TP,, + TN,,. Given a branch B, supposg is expanded to the branch B,

then the Expected Entropy is defined as follows:

ROC curve: Receiver Operating Characteristic (ROC) anal-
ysis originated from signal detection theory and has been efinition 4.2 (Expected Entropy)
troduced to machine learning in recent years in order to-eval
uate algorithm performance in an imprecise environmeng. It EE(B,z;) = Z E(BU F;)P(F;|B). (10)
claimed [10] that ROC graphs can offer a more robust frame- F,cF;
work for evaluating classifier performance than traditiaa
curacy measure. The true positive rate is calculated wihere,B U F}; represents the new branch obtained by append-
n = L£. The false positive rate is calculated with= 5£F. ing the focal elemen; to the end of branch B. The probabil-
In a ROC curve, the true positive ratg) s plotted as a func- ity of F; given B can be calculated as follows:
tion of the false positive rates§ for varing thresholds. Each -

. ; . > =cp P(BUF;|Z)
point on a ROC plot represents# §) pair corresponding to P(F}|B) = €D L
a particular decision threshold. > zep P(BIT)

(11)
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where, P(B|Z) = pup(Z) = pe, (z1) * po,(x2), 61 anddy 6, 3,5, 7, 1. Table 1 lists the accuracies at threshold.2.3,(
are two label expressions associated with the two edgegin the integrated accuraciegl{), the areas under ROC curves
branchB, andz; andx, are incident to the two edges. Hence(Aro¢) and the numbers of branche$) for H;, H- and the

thelnformation Gaincan be calculated by: single LDT. It can be seen th&{; andH, achieve similar
performance ind,, A; and Agoc. Their performance i,
IG(B,x;) = E(B) — EE(B, z;). (12) andAgroc is better than that of a single LDT, while the single

) ) ) ) LDT has higher integrated accuracy thafy andH,. The
The most informative attribute will form the root of an LDT,pranch numbers fof{, and H, are much less than for the

and the tree will expand into branches associated with al PQingle LDT.
sible focal elements of this attribute. For each branch, the

free attribute with maximal information gain will be nextde

until the branch reaches the specified maximum depth or theble 1: Evaluations of hierarchies obtained by GAW on the
maximum class probability arrives the given threshold. THaima %tabase

process forms a level order traversal. | A | A | Aroc [ 8
H1 0.747396| 0.188281| 0.783776| 115

£ E iments and Evaluafi H, | 0.748698| 0.189437| 0.790649| 115
Xperiments and £valuation LDT | 0.713542| 0.244922| 0.769687| 14845

All attributes are discretised using an entropy-basedcsmbr
into three labels £ = {small, medium,large}), respec-

tively. Each label corresponds to a trapezoidal fuzzy s@lccuracy and ROC curves: Figure 7 (a) and (b) show the
which has50% overlapping with neighbouring label fuzzy accuracy and ROC curves for the two hierarchies and the sin-
sets. A missing value of an attribute in an instance of tha-tra gle LDT, respectively. From the accuracy curves in Figure 7
ing database is replaced with the mean value of the attribyg it can be seen that; andH, obtain approximately the

for the corresponding class. same accuracy curves, and achieve higher ordinary acesraci
Oat threshold 0.5 than the single LDT does. But the accuracies
&Jtained byH; andH, decrease as thresholds increase, and

The experiments are carried out using ten-fold cross vali

tion.. Data |s_spI|t Into 10 approximate equal partltpnscIEa become smaller than for the single LDT when thresholds are
one is used in turn for testing while the remainder is used for

training i.e. 9/10 of data is used for training and 1/10 fatte over 0'6.5' F'gufe 7. (t.)) shows that the two optlmal cascade
. . ; hierarchies obtain similar ROC curves to the single LDT, al-
ing. The whole procedure is repeated 10 times.

though they have different performance in accuracies.

A trained hierarchy is evaluated using two types of accuracy

measure described in Section 4.2. The ordinary accurac 'rg On the Wisconsin Breast Cancer Database

eV<|’:l|U;’it€Cij at_trr:reshol? 0.5. The area under a ROC curverig, \yisconsin Breast Cancer Database: The Wiscon-
calculated with Formula (8). sin Breast Cancer (WBC) database [1] was created by Dr.

We examine the quality of cascade decision making and fhdlliam H. Wolberg from the University of Wisconsin Hospi-

cost of a hierarchy, i.e. the total number of branches frdm ;SEFIS’ Madison. [8]. There are 699 samples, ir_1 which 458 sam-
decision trees in a cascade hierarchy, and compare the-perffieS aré Benign, and 241 samples are Malignant. There are

mance with that of a single LDT providing a direct mappinqi”e basic attributes, and each attribqte is with lower Idoup
between input attributes and a classification variable. ~and upper bound 10. There are 16 instances that contain a
single missing (i.e., unavailable) attribute value. Itlsimed

5.1 Onthe Pima Diabetes database that the best result 83.7% trained on 200 instances and tested
on the other 169 in the first group of 369 samples with the 1-
The Pima database: The Pima Indian data set is a well-nearest neighbor approach in [1].

known benchmark problem from the UCI repository [1]. The ] . )
problem relates to incidents of Diabetes mellitus in the@inpelutions and Fitness values: The two permutations of at-

Indian population living near Phoenix Arizona. The target alfibutes corresponding to the two optimal cascade hieresch
tribute is a binary valued decision variable indicating tnee 27€: 73:6,2,4,3,8,7,5,1,01,:6,4,3,8,1,7,5,2,0. Table 2 lists
or not the patient shows signs of Diabetes according to Woilfie accuracies at threshold 0.8, the integrated accuracies
Health Organisation criteria. The database of Diabetes f¥da), and the areas under ROC curve$r(¢) and branch

cludes 768 samples, in which, 268 positive instances (wiymbers @) for s, H, and the single LDT. The experiment

Diabetes), 500 instances without Diabetes. There are & bd&§Sults show thati; and7{, have similar performance in or-
attributes. dinary accuracies for different thresholds, and the areas u

der ROC curves. They have ordinary accuracies at threshold
Solutions and Fitness values:The two orders of attributes 0.5 better than a single LDT, but they lose performance in the
corresponding to the optimal cascade hierarctigsandH,) integrated accuracy. The best ordinary accuracy at thiegésho
obtained by the GAW with fithess values evaluateddyyand 0.5 is 96.7% obtained by{;. Both algorithms for learning a
Aroc respectively, aret;: 3,4, 2,5,6, 7,0, 1Hy: 2,4, 0, single LDT and a cascade hierarchy have computational com-

(Advance online publication: 22 May 2009)
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plexity O(nf3), wheren is the length of a branch arlis the
total number of branches. Table 2 shows that the number of
branches for the optimal cascade hierarchigsand, are
close to that for the single LDT. However, for each LDT in a
cascade hierarchy, there are only two input attributes, the:
length of a branch is at most 2. Therefore, the optimal cascddgure 4: Optimal cascade hierarchy for the Pima diabetes
hierarchies have better computational complexity tharsifie database

gle LDT.

down to be a cascade of sub-functions as below:
Table 2: Evaluations of hierarchies obtained by GAW on the

WBC database y = (@0, @1, 22,33, 34, 25, 20, 27)
H l A l Aa l Aroc l B = fr(z6,x1)
Hs 0.967096| 0.409156| 0.985831| 100 = f7(fe(2z5,x7), 1)

Ha 0.962804| 0.408530| 0.985867| 100
LDT | 0.934192| 0.441863| 0.932976| 97

|
—

(
(
7(f6(fs(24,25), 27), 21)
7(fo(f5(fa(2s,23),25), 7), 71)
(
(
(

Il
~

(
fo(fs(fa(fs (22, 6), 23), 25), 27), 71)

= fr(fe(fs(fa(fs(f2(21,m0), ws), 3), 5), x7), 1)
Accuracy and ROC curves: Figure 8 (a) and (b) show the = r.(fo(f5(fa(fs(fa(f1(z2, 24), 0), 76), 23), T5), 27), T1)
accuracy and ROC curves for the two optimal cascade hier-
archies and the single LDT, respectively. From the accuracy
curves in Figure 8 (a), it can be seen that the ordinary acci&ach sub-function is represented by a trained LDT, and each
racy at threshold 0.5 df(; and’H, is better than for the single sub-function decides an intermediate attribute, desugilte
LDT, but their ordinary accuracies when the threshold gdar distributed degrees of belief on difference classes. Thmica
than 0.6 are worse than for the single LDT. The ROC curvéstion is carried out from bottonfi; to top f-. Table 5 lists the
of Hs andH, are slightly better than for the single LDT. calculation results of each intermediate attribute forshm-

ples shown in Table 4.

6 Information propagation on the optimal cas- Table 4: Some samples of Pima Diabetes data

cade LAHs S [wo | o1 |2 [@s |2a |25 |25 [ar |y

) , .s1 |2 | 174|188 37| 120] 4450] 0.646| 24 | +

Here, we use Pima Diabetes as an example to observe the 1 109 58 | 18 | 116 | 28 02191 22 | -
formation propagation on the optimal cascade hierafidhy ss | 3 | 187 | 70 | 22 | 200 | 36.40 | 0.408 | 36 | +
2,4,0,6,3,5,7, 1 (Figure 4). Table 3 shows the information 3 [ 108 [ 62 | 24 | 0 26 0223] 25 | -

for all attributes.

Table 3: Attribute information in the database of Pima DiaNow, we examine the effects of each attribute in the prockss o
betes, including Lower Bounds (LB),Upper Bounds (UB)  cascade decision making by observing the Table 5sFand

z; | Description LB UB s3 that are positive samples, the process of decision making

zo | Number of times pregnant 0 17 are listed as below:

x1 | Plasma glucose concentration a 2 hours i 199
an oral glucose tolerance test

2> | Diastolic blood pressurermHyg) 0 122 e step 1: The levels of attributes andz, (Diastolic blood

z3 | Triceps skin fold thicknessigm) 0 99 pressure and Two-hour serum insulin) do not make the

x4 | Two-Hour serum insuliniu U/mi) 0 846 large difference between positive and negative probabili-

z5 | Body mass index (weight ihg/(heightin | O 67.1 ties. Buts; is with more positive probability, whiles is
m)?) with more negative probability

x¢ | Diabetes pedigree function 0.078 | 2.42

z7 | Age (years) 21 31 e step 2: The levels af, (Number of pregnant times) re-

y | +-. + indicates “tested positive for dia- 0 1 duce the positive probabilities as the valueg@for both
betes” samples are small.

e step 3: The larger levels afs (Diabetes pedigree func-

tion), the more the positive probabilities increase.
For the Pima Diabetes database, the goal should be the func-
tion of the eight input attributes. Through the optimal eale @ step 4: The levels af3(Triceps skin fold thickness) re-
LAH (H5), the function mapping = f(xo, ..., x7) is broken duce the positive probabilities.

(Advance online publication: 22 May 2009)
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Table 5: Upwards results for the samples in Table 4

i [+ ] s [ s2 [ ss | 54

of each attribute on the positive probability during theqarss
of decision making in the Table 6. From the process of cascade
decision making, it can be seen that the decisions have been

o = fi(wa, ) ) 04969 0.7365 0.5567 0.7119 done clearly at the bottom level, and decision making at the
PRy 1 05031 | 0.2635 | 0.4433| 0.2881  following step only adjusts the probabilities up) ©r down
- | 0.7164| 0.7585| 0.6804 | 0.6917  (|) slightly.
2= faz,20) | | 9836 0.2415| 0.3196 | 0.3083
- | 05967 0.7075| 0.6763 | 0.7040
= Table 6: Eff f h attri n th itive pr ili
8= falz2m0) | 0 4033| 0.2025 | 0.3237| 0.2960 cgchdGe degicstign?:kir?; bute on the positive probapift
o ) - | 0.6110] 0.7900| 0.6854 | 0.6466 S Tapandes [ 20 (70 (5 [0 o [ o0
’ + | 0.3890| 0.2100| 0.3146 | 0.3534 s lowp® 11 17 1L 11 1L 17
- [ 0.5161] 0.7093| 0.5474 | 0.8833 sa [lowp® 11 10 11 11 1T 11
=z ms) || 04839 0.2907| 0.4526 | 0.1167
- | 0.7761] 0.8710| 0.5114 | 0.7730
2 = folz,7) | | 05239 0.1200 | 0.4886| 0.2270 . _
- 02150 | 0.7883| 0.1804 | 0.7871  Hence, we observe the bottom decision tree (LDT1)(Figure
= 6) representing functiorf;. It can be seen that if4 is {s},
y=filzo2) | | 07850 0.2117| 0.8196| 0.2129 ) rep g i 418 {s}

{s,m}, or {m}, no matter which levek, is at, the negative
probability on a branch is larger than the positive proligbil
on a branch. The levels af, for sy ands, are allocated in the

step 5: The levels of5 (body mass index) increase theange described above, so the results are obvious.
positive probabilities.

step 6: The level ok (Age) for samples; reduces the “ G o
positive probability, while the level af; for sampless

increases the positive probability. At this step, the neg
tive probabilities are lager than the positive probalgiiti

1s,m} m} {m]}

for both samples, anegs has larger positive probability

thans;.

0.531 08357 077 0635 0,995 10 10 0972 0.892 0.652 0.795 095 0926 0.932 0.621 0455 0.604 0.766 0.569 0,458 0256 04 0486 0.458 0458
0469 0.143 023 0365 0405 0.0 0.0 0028 0.103 0.343 0.205 0.07 0.074 0.078 0.179 0,545 0.396 0.234 0411 0542 0743 0.6 0514 0.542 0.542

e step 7: However, the results are completely turned down

by function f;, due to the introduce of attribute,

Figure 6: The bottom LDT irH-

(Plasma glucose concentration at 2 hours in an oral glu-
cose tolerance test). The final decision made by the top

LDT is thats; andss are positive with probability 78.5%

and 81.96%, respectively.

7 Conclusion

Hence, we observe the top LDT representing function

fz(Figure 5). Obviously, ifzy is {m,{} or =1 is {l}, then

In this paper, the process of information propagation tghou

the sample is with larger positive probability than a negati a cascade hierarchy of Linguistic Decision Trees for multi-

probability (i.e. p,(+) > py(—)). Namely, the level ofr;

attribute decision problems is investigated. We develop-a g

(Plasma glucose concentration at 2 hours in an oral glucasstic algorithm with the training algorithm LID3 in wrappter

tolerance test) dominates the final decision.

(9

,m} {

{m.
()

{s} I

0.928 0.0
0.072 0.0

0.871 0.848 0.0
0.129 0.151 0.0

0.764 0.66 0.0
0.236 0.34 0.0

0.577 0.462 0.0

Figure 5: The top LDT irfHs

a/N\# B/ /B B\ 0
o =+ =+ =+ =+

0.398 0.177 0.0
0.443 0.538 0.0 0.602 0.823 0.0 0.816

+}

0.184

optimise cascade hierarchies for decision making, and exam
ine the performance of the optimal cascade hierarchies on tw
benchmark databases, Pima Diabetes and Wisconsin Breast
Cancer databases from UCI machine learning repository. The
experimental results show that an optimal cascade higrarch
can achieve better performance in the ordinary accuracy at
threshold 0.5 and in the area under ROC curves than a sin-
gle LDT. The number of rules induced by the optimal cascade
hierarchy is much lower than a single LDT, when the relation-
ship between a class and the input attributes is highly uncer
tain and nonlinear. However, accuracy tends to decreage wit
higher thresholds. More importantly, the cascade linguit
tribute hierarchy present cascade transparent linguighis,
which are useful for analyzing the effect of different ditiies

For s, ands, that are negative samples, we conclude the effeat the decision making.

(Advance online publication: 22 May 2009)



TAENG International Journal of Computer Science, 36:2, IJCS 36 2 04

References
[1] Asuncion, A. and Newman, D.J.,
ucCl Machine Learning Repository

[http://lwww.ics.uci.edu/ mlearn/MLRepository.html]. Irvine,
CA: University of California, Department of Information and
Computer Science, (2007).

Accuracies over thresholds

[2] Campello, R. J. G. B. and Amaral, W. C., Hierarchical Fuzzy
Relational Models: Linguistic Interpretation and Universal
Approximation, IEEE Transaction on Fuzzy Systenisl(3),
(2006), pp. 446-453.

Thresholds

[3] Hand, D. and Hill, R. J., A simple generalisation of the area (a) Accuracies at threshold [0.5,1)

under the ROC curve for multiple class classification prob-
lemsMachiine Learning45, (2001), pp. 171-186.

[4] Jeffrey, R. C., The Logic of Decision, Gordon and Breach, New 08
York, (1965). o7

[5] J. Lawry, A Framework for Linguistic ModellindArtificial In-
telligencel55 (2004), pp. 1-39.

True positive rate

[6] Lawry, J., Modeling and Reasoning with Vague Concepts 02 o
(Kacprzyk, J. Ed.), Springer, (2006). 01 K
0 ‘ ‘ ‘ ‘
[7] J. Lawry and H. He, Multi-Attribute Decision Making Based ’ o Faise posiive rie o !
on Label Semantics, the International Journal of Uncertainty, (b) ROC curves

Fuzziness and Knowledge-Based Systems, 16(2) supp, (2008),

pp. 69 - 86. Figure 7: Accuracy and ROC curve fbf;, H,, and the single

[8] Mangasarian, O. L. and Wolberg, W. H., Cancer diagnosis vbDT on the Pima database
linear programmingSIAM News 23 (5), September, (1990),
pp. 1-18.

[9] Qin, Z. and Lawry, J., Decision Tree Learning with Fuzzy La-
bels,Information Scienced 72, (2005), pp. 91-129.

[10] Qin, Z., ROC analysis for predictions made by probabilistic
classifiers, in Proc. of the International Conference on Machine
Learning and Cybernetics, 18-21 August 2085(2005), pp.
3119- 3124.

Accuracies over thresholds

H3
Ha
LDT-WBC|

[11] Quinlan, J. R., Induction of Decision Tredgachine Learning 05
1, (1986), pp. 81-106.

0.5 0.6 0.7 0.8 0.9 1

[12] Raju, G.U. and Zhou, J. and Kiner, R. A., Hierarchical Fuzzy Thresholds
Control, Int. J. Control54:55, (1991), pp. 1201-1216. (a) Accuracies on threshold [0.5,1)
[13] Zweig, MH. and Campbell, G., Receiver-operating charac- 1
teristic (ROC) plots: a fundamental evaluation tool in clinic 09 f e
medicine. Clinical Chemistr9, (1993), pp. 561-577. 08 LoT-WeC]

[14] L.A. Zadeh, (1975), The Concept of Linguistic Variable and
its Application to Approximate Reasoning Partriformation
Sciences\Vol. 8, pp199-249, Part linformation Sciencesol.

8 pp. 301-357, Part llinformation Science8 pp 43-80.

True positive rate

0 02 04 06 08 1
False positive rate

(b) ROC curves

Figure 8: Accuracy and ROC curve fbfs, H4, and the single

LDT on the WBC database

(Advance online publication: 22 May 2009)



