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A New Deformable Model Based on Level Sets
for Medical Image Segmentation

D.Jayadevappa, S.Srinivas Kumar, and D.S.Murty

Abstract— This paper presents a new deformable model based level sets to speed up the convergence for efieetid fast

on level sets for medical image segmentation whicplays a
pivotal role in medical diagnosis. The current poplar Image
segmentation deformable models such as Snakes, Getrit
Active Contours, Gradient Vector Flow, Level sets an
Variational Level sets have a limitation that the cavergence of
the contour towards the object boundary is slow andience not
suitable for real time medical diagnosis. To countethis
limitation we present an improved image segmentatio
algorithm which is computationally efficient and ako the
proximity of the contour towards the object is higker compared
to existing algorithms. A new speed term is introdced in the
evolution step of variational level set in order taspeed up the
convergence process. The variational level sets iimages with
intensity inhomogeneity, tend to be slower and pramto leakage
of contour outside the object boundary. This is dueo the
selection of gradient information for the termination of
convergence process. However, this limitation is ewxcome in the
proposed algorithm by modifying the edge indicatorfunction
embedded with the speed term that optimizes the efttive
distance of the attractive force. Experimental reslis are
provided using real time medical images. Comparatie tables
and graphs highlighting the performance of variousdeformable
models are also presented

Keywords— Deformable models, Medical image segmentation,
Level sets and Variational level sets.

I. INTRODUCTION

Medical image segmentation is the process oflilapeach
voxel in a medical image data set to indicatds®ue type and
provide information about the anatomical structufée
various confrontations in medical image segmematoe
poorly defined boundaries, blur or weak edges,nsitg
inhomogeneity, inconsistency in image quality whiténg a
scan and variable object shapes in medical imdgeSihakes
[5], Geometric Active Contours (GAC) [6], [7], Griadt
Vector Flow (GVF) [8], Level sets [9]-[11], and Mational
Level sets [12], [13], are the deformable modeksilable in
this literature. This work aims to review the vasso

deformable models and the limitations of these rwde

Further, this work aims to modify the variational
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segmentation.

This paper is organized as follows. Section Il pn¢s the
review of various deformable models with necessary
mathematics and limitations. Section 1ll proposesd a
discusses the deformable model based on Variatieveall set.
Experimental results comparing the performance & t
proposed method with existing techniques in terfmaimber

of iterations for convergence to segment the image,
computation time and also the accuracy in captuthey
region to be segmented are presented in secticantl/the
concluding remarks could be looked up in section V.

Il.  REVIEW OF DEFORMABLE MODELS

A. Snakes
The classical energy based snake model has betllyni
proposed in [5], and was successful in dealing aitiide
variety of computer vision applications. This framoek
matches a deformable model to an image by meamsesfly
minimization and thereby exhibiting dynamic behavio

Let us define a contowr parameterized by arc lengthas

c(9={d9={(xp ¢P:0< s JO-Q 1)

where, L denotes the length of the contouirand Q denotes
the entire domain of an imag(ax,y). An energy function

E(c) can be defined on the contour such as

E(Q) = By + B (2)

where, E, and E_, denote the internal and external

ext
energies respectively. The internal energy function
determines the regularity, i.e., smooth shapéhetontour. A
common choice for the internal energy is a quadfatiction
given by

1 2 5
En = | alc(s] +Ale(y’ o @)

Here a controls the tension of the contour, agdcontrols

the rigidity of the contour. The external energyntethat
determines the criteria of contour evolution depegan the

imagel (x, y) can be defined as

Eext = j: Eimg( d 3) dE (4)
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Eimg (X, ¥), denotes a scalar function defined on the image dE(Q) _ 1[63

plane, so that local minimum d&,,, attracts the snakes to dt ! E(Df ' N) N- KfN}| c‘s| ds (10)

edges. A common example of the edge attractiortitm& a  ence, the direction for whicE(c) decreases most rapidly
function of the image gradient given by . . S
provides us the following minimization flow

1

A|0G, D1 (x, y) ©) %

Eimg (% Y) = == (Kt (Ot NN (12)

where, G denotes a Gaussian smoothing filter with standafghere, N is the unit normal to the cuneeand K is its
deviationo, A is the suitable constant chosen aidis the  curvature. The L term on the right in (11) is the mean
convolution operator. Solving the problem of snakes find  curvature motion also called curve shortening flareighted
the contourc that minimizes the total energy tern using by the edge detection functidn. The 2° term attracts the
Greedy algorithm [14] with the given set of weiglatsand/3 . curve towards the boundaries of objects by creatingliey
The limitations of snakes are as follows: centered on the edges. The limitation of GAC ig,tkiais
(i) The classic snakes provide an accurate locatibthe model relies on a non parameterized curve, andvesain
edges only if the initial contour is given suffioty near the initial curve according to the boundary attractiterm
edges, since they rely on the local informatiomglwith the towards one direction (inwards/outwards). Thusprider to

contour. be properly used it demands a specific initialzmatstep,
(if) Estimating a proper position of initial contowithout where the initial curve should be completely exteror
prior knowledge is a hindrance. interior to the real object boundaries.

Classic snakes cannot detect more than one bounddryovercome these short comings, efforts have beste by

simultaneously since the snakes maintain the sapw@dgy introducing some region based features which mdle t

during the evolution stage, which implies that take model independent from its initial conditions andrenrobust

cannot split to multiple boundaries or merge fromltiple  [16]-[18]. Although these approaches seem to have a

initial contours. reasonable behavior, they still suffer from the direction
flow imposed by the boundary term.

B. Geometric Active Contours (GAC)

The Geometric active contour model [15], canviesved as ~ C. Geometric Vector Flow (GVF)
an ‘extension’of classical Snakes since it overcomes theGVF was defined in [19] as an external force tsipthe
limitations of Snakes. This model does not imposy a snake into objects concavity and discussed thetamings
rigidity constraints(3 =0) and is given by of the original snake and GAC. It is a 2-D vectald

V(s)=[u(9, \ $] that minimizes the following objective

function

E(0) = [ f(OI(9))] o

- OtY—m

“ E:ﬂy(u§+u§+v§+ G+ 0| v-01 axdy  (12)

= [ £ {0 (c(9)))es )

0 where, u,, Uy, v, v, are the spatial derivatives of the field,
M is the blending parameter, and is the gradient of the
where, the functiori is the edge detecting function defined inedge map which is defined as the negative extéonad i.e.
equation (5),dsis the Euclidean element of length abfc) ~ f = -E, ,.The objective function is composed of two terms.
is the Euclidean length of the curealefined by They are the regularization term and the data drigem. The
data driven term dominates this function in the eabj
1 L(c) boundaries (i.e[0f| is large), while the regularization term
L(c) =I|Cs|d3= _[ ds (8) dictates the function in areas where the infornmatie
0 0 constant (i.e|Jf| tends to zero). The GVF is found by
solving the following Euler equations by using cdilis of

variations and the normalized GVF is used as tlaicst
external force of the snake

Let us introduce an artificial timeé* and considering family
of curvesc(s) such that the energy function

h 20 (- 2 2\ _
E@=[ f{or(c(s 9))le(s) o ©) pPu=(u=£)( 12+ 17)=0 (130)
° pI?v=(v- fy)( £2+ fyz) =0 (13b)
The first variation of the energl(c) is then given as, where, 0% is the Laplacian operator. Limitations of Gradien

Vector Flow are as follows:
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(i) According to the definition of the objectiverfction, the contour is generally represented in a numericanfes a
boundary information is not used directly (only gisadient partial differential equation. A formulation of dowir

affects the flow), which might be considered asauback. In  evolution using the magnitude of the gradientga(fx, y) was

other words strong edges as well as weak edgeseceea ; ... : "
similar flow due to the diffusion of the flow infloration. initially proposed by Osher and Sethian [9] angiven by

(i) The generation of GVF is iterative and compiataally

) . o9 X,
intensive. ¢E3t Y) =[0g(x y) (V+£k(¢)( X )))) (15)
D. Level sets where,v denotes a constant speed term to push or pull the

Level set is a vital category of deformable nisdeevel set contour, k denotes the mean curvature of the level set
theory, a formulation to implement active contowas function ¢(x,y), and& controls the balance between the
prop_o_sed by_ Osher and -Sethla.ln [20].They_repr@sem!utour regularity and robustness of the contour evolution.
implicitly via two dimensional Lipchitz continuous Limitations of level sets are
functiong(x, y):Q — O, defined in the image plane. The (i) while implementing the traditional level seethod, it is

function ¢(x, y) is called level set function, and a particulanumerically necessary to keep the evolving levefigection

. , close to a signed distance function [21],[22].
level, usually the zero level ap(x,y) is defined as the (i) Re-initialization, a technique for periodicgll

contour, such as re-initializing the level set function to a signgidtance during
C ={(x, y):(g( X »: o} ,D( X QDQ (14) the evolution, has been extensively used as a ricaher
remedy for maintaining stable curve evolution anduging
) reliable results. However, as pointed out by Goraed
Aali) | p=0,=2 Fau_geras [2_3], re-initializing the level set fuocti is
Liiieoh obviously a (_j|s§\greement b_etween the theory ofahel set
PLERT et | method and its implementation.
Frolxy) ~L/
s =V E. Variational Level sets
In image segmentation, active contours are dymaorves

(@) (b) that move towards the object boundaries. To achteEseyoal

Fig.1. Level set evolution and the correspondingtsor the external energy that can move the zero levelesu
propagation: (a) topological view of level se,u(x, y) towards object boundaries is defined. ILebe an image, and

g be the edge indicator function defined by

evolution (b) the changes on the zero level set. 1

Fig.1 (a) shows the evolution of level set functipfx, y) and ’ 1+|0G, DI|2 (19
Fig. 1(b) shows the propagation of the correspandinwhere,G,is the Gaussian kernel with standard deviaton
contourc. As the level set functioz,v(x, y) increases fromits  An external energy for a functiog(x, y) can be defined as
initial stage, the corresponding set of contayrpropagate

towards outside. With this definition, the evolutiof the $qav (@ =ALg (@) +V A (D) a7)
contour is equivalent to the evolution of the leset function,
o9 X, .
oc _ o(xy)  the advantage of using the zero level sé¥here, A and v are constants, and the terrig(¢) and

i.e., —
ot ot

is that a contour can be defined as the border dmatw

positive and negative areas, so the contours eatemtified

A, () are defined as

by just checking the sign gf(x,y) . The initial level set Ly(®) =ng(¢))|D¢1dxdy (18)

functiong (x,y): Q — O may be provided by the signed Q

distance from the initial contour such as A (o) = j gH(-¢) dxdy (19)
Q

VY) = ,Y):t=0
%(X y) {w(x y) } where, d is the univariate Dirac function, and is the

= tD((x, y), ny(q))) Heaviside function which is defined as
where, =D (a,b) denotes a signed distance betweeand o olz—p.
b, and ny(co) denotes the nearest neighboring pixel on M) - i(sin[ﬂ]ﬂ] p<ld<e, (20)
initial contoursc, = ¢(t= o) from (x, y)as a pixel(x, y) is ) 2 ol

located further inwards from the initial contougs. The
initial level set function is zero at the initiabrtour points
given by, @ (x,y)=0,0(x,y)00. The deformation of the
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Now the total energy functional defined. Letg be the level set function. The evolution is
given as
(@ =up(@)+<5.0 (@ (21)
0
| °2=qjng (23)
The external energy, ,, drives the zero level set towards ot

the object boundaries, while the internal enepgp(g)
penalizes the deviation ofg) from a signed distance

function during its evolution. . By calculus of iations [24],
Gateaux derivative (first variation) of the functigin (21)

can be written as

where, q represents the speed term, in which the values of
speed are well defined in the whole space. We refinel the
speed terng of a two dimensional moving contom(rs) , as

shown in Fig.2 represents the object boundary arudhar
contour y(s) represents the moving contAtiany point p

Y3 sy ( Og 22) on the moving contour, the speed is derived basethe
wz‘ﬂ[w‘dw(Dﬂ)}/‘o’(@dw[gD(A]‘Vgﬂ@ elastic interaction between line defects [26]-[2BE speed
term g is defined as

(22) is the evolution equation of the level setduise[25].
Advantages of Variational Level sets are as foltows q=- j I'—nds (24)
(i)Significantly larger time step can be used famerically 9 |I|

solving the evolution of partial differential eqioat, and
therefore speeds up the curve evolution.

(ihThe level set function can be initialized witpeneral Wwhere, | is a vector defined asl =(X‘X(S), y- Y 5))
functions that are more efficient to construct aadier to
use than widely used signed distance function.
_(iii)The level set e_volution_ _in thi_s method can basi_ly and|l|:\/(x—x(s))2+(y— W 3)2 , and n represents the
implemented by simple finite difference scheme asd
computationally efficient. Limitations of Variatiah Level
sets are:

between the poinfx, y) and a poinl(x(s), y s)) on c(s)

normal direction. Under this definition, the spéeside the
object boundary and outside the object boundarferdifin

(i) The gradient function in (22) give very smadllves at the sign. We des_cnbe how the spe_ed function deﬂneﬂ/qlman
boundary and makes the speed of the moving coidour be used for image segmentation problem. Let an enzy
(i) In case of images with intensity inhomogengithe | (X y)located intheZ =0 plane.

gradient based term can never stop the level s@titan

completely even for ideal edges, making leakagenoft y
inevitable. 0

I1l. MODIFIED VARIATIONAL LEVEL SET Moving

I contour

To overcome the above mentioned drawbacks afiaddi
variational level set method is proposed. This rsffa c(s
long-range attraction generated by the object bagndnd
acting on the evolving contour for solving the segtation
problem. This frame work is generic and can be iagptio
images which are noisy, having weak and blurreagsddpng
with intensity inhomogeneity. It is experimentadliyown that
this method is effective in detecting elongated avetlapped Fig.2. Interaction between object boundary and moving
tissues structures. contour.

In existing level set techniques, the gradient rimi@tion is

used as stopping criteria for curve evolution, pravides the The speed term is set to depend on the intensitiegan the
attracting force to the zero level set from a tatgeundary. image by replacing the normal directionin (24) by the
However, in case of images with intensity inhomaggnthe image gradierifll . However, the image based speed function
gradient based term can never fully stop the lesef is singular on the contou( s) . The singularities can then be

evolution even for ideal edges, making leakage noftesmeared out if the normal directioris replaced with the

inevitable. . .
In this work a novel frame work for level set avidn by gradient of the smoothed 'ma@(G‘f Dl) , where G,

introducing a new speed term, is proposed. Thiskworepresents a Gaussian smoothing filter with stahdar
explores a new edge indicator function embeddeth wit deviationo . Therefore, the image based speed terims
speed term, which optimizes the effective distantehe given as

attracting force and also provides robust edgenasibn. By

using this term, the leakage problem is avoideeoatiffely in [ D]](GU DI)

most cases and also capture range is improved cethpa q= .[— (25)
traditional level set methods. |||

In this section a speed tergnfor interaction between object

boundary and moving contour during the contour etmh is

Xy

Object
boundary
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where, Q denotes the image domain a(rxdy) 0Q . Another The right hand side in (27) by the difference scheman be

important property of the speed tenis that it is a long simply written as

range speed generated by the object boundaryhanelis no d(_ﬂ _#_
need to place the initial contour entirely insideoatside the A Ay
object. Also, the sign of the speed depends oditieetion of r

the contour and the object boundary, so that théooo is not

necessary to be placed entirely inside or nearothject The difference equation (31) can be expressed as th

(31)

boundary. following iteration
In the above definition of speed function, the imagise also
generates a speed term for the moving curve, neguilh #]ﬂ:%,kj +rR(qp'§) (32)

spurious contours. The speed generated by the nsise

relatively small as compared with that by the obpeindary. ) ) ) )
We remove this contribution of the noise by addthg where, 7 is the time step, using larger time step can speed

interaction within the moving contour, so that ttedative the evolution, but may cause error in the bounttzgtion if
weak interaction between the noise and the movargonr ~ the time step chosen is too large.
can be overcome. The speed tagnis now defined as

A. Initialization of Level set Function

_ |HD(GJ Ul +wH ((0)) In this method not only the re-initializationogedure is
a= _I I dxdy (26) completely eliminated, but also the level set fiorcw is no

0 longer required to be initialized as a signed distafunction.

_ _ ) _ o Here we propose the region based initializatiohegél set
where, wis the adjustable weighti (¢) is the Heaviside fynction, it is computationally efficient and allswfor
function defined in (20) angb is constant. The value of speedflexibility in some situations. The proposed inlitiavel set
term is calculated using the FFT algorithm. Now gan functions are computed from an arbitrary regfop in the
introduce a small curvature term associated withrrall image domai2 . For example, if the regions of interest can
weighty , along with the weighted length term and weightetde roughly and automatically obtained in some vsagh as
area term then the new evolution equation becomes thresholding, and then we can use these roughlgiruat

regions as the regio®,to construct the initial level set
(27) functiong . Then the initial level set function will evolva i

an uniform fashion according to the evolution eguaand
level set curves converged to the region of interes
where, k is the mean curvature of the level set functioregiv
as

%f’: p(Dg-k)+13()(9K) + q0g3(9)

B. Implementation

0 The implementation of the various deformable ntodtarts
k(o(xy))= di\{—(oJ (28) with the identification of all adjustable paramstéor each
||D(/1 method. In this work, MATLAB 7.1 is used on dualreo
Pentium-IV processor with 1GB RAM in implementing
various deformable models. The selected methods diathe
= (&x%z/ 2¢’<¢WX;’+¢“¢2X (29) following common simple characteristics: A Gaussian
((&2 +¢§)A blurring filter is the pre-processing performed tbe image
and no post-processing is used; the gradient maigit
images or their thresholded results of the Gaussiarred
where, @, @, @, and @, denotes the first and secondimages are used as the edge maps; the initial eoisttormed
as a circle centered around the initial locatiorsetected
image point defined by the user; no prior inforroatof the
In the proposed method, the Dirac functid(x)in (27) is  object shape or texture pattern is available. Tarampeters,

slightly modified to achieve additional control iyroducing  Within each group of deformable contour methods, \@ry

order partial derivatives ofo( X, y) with respecttox and y .

¢ term and is given by similar and are described in the next section.
0, x> ¢, C. Parameters for Deformable models
5. (x)= i[“ CO{QD M= ¢ (30)  The Snake model, Geometric Active contour andd@ra
¢ 2¢ ¢)) ' Vector flow have six parameters in common: elasti€ir ),

rigidity (3), viscosity (), external force field ¢, v) and

deformation step (DS). Ther and [ parameters are
we use¢=1.2and all the spatial partial derivative andassociated with the internal force in the origisake model
temporal partial derivative are approximated by ¢eatral in (3). The y and DS parameters are used in iteratively

difference, and the backward difference schemeeasfely. ypdating contour location (i.e., deformation), thust
explicitly included in the deformation equations.her

(Advance online publication: 1 August 2009)
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combination ofa and S parameters allows the contour tosegmentation can be constructed by (a) placing allsm
maintain smoothness during the deformation procesgontour within the object, (b) placing a large cantoutside

Decreasing a or [ will

intersections in the deforming contour, while irasiag them
will shrink the contour to a line or point. The parameter is a

weight parameter to adjust the viscosity used ihatipg the
contour position. Increasing will slow down the contour

deformation process and make the deformation naises
The external force field determines the strengtthefeffect
of the image features that make up the externaleforhe
GVF snake has two additional parameters,
regularizationy and iterationdN . The GVF regularization

parameter in (13a) and (13b), has a correlation with the
noise level of the image. The image noise is diect

proportional tqu .

The level set method has two common parametersteayd
are: iteration step (IS) and deformation step (DEhe
iteration step is related to the discrete implemion of the
level set contour deformation process. Decreademgtion
will result in a slow deformation process but a engtable
deformation.

The componemt is used in the variational level set active

contour, is a variable used to weight the area landth
functionals, in (17). In the modified variationalkl set, the

speed terng is used in (25) for the interaction between the

object boundary and the moving contour to speedhep
convergence process and the additional parangetty

modify the Dirac delta function in (30).

D. Parameter settings

Once the parameters are identified, the nexttoures how
to determine and adjust the parameter values @irogbod
results with small errors compared with the exjperitours.
In practice, for a new set of images with similaaxacteristics
some preliminary training and testing are normediguired.
In the experiments we used a course to fine scluentbe
image test set to achieve the best parameter setl lzan both
the qualitative and quantitative error measures. fohowing
steps outline the process used to determine pagaseitings
and tuning of the deformable models under consiabera
(i) Except for the selected adjustable parametat te
deformation step parameter, fix all other paransetertheir
initial values or their acceptable ranges.

(ii) Adjust the selected parameters and run thgam.
(iif) Determine the suitable range for the paramétenhich
the resultant contour converges to the object barynd
Repeat the above steps for the other parameters tigt
assumptions that the parameters are independe, tite
order in choosing parameters does not matter.tivedy, if

the parameters were dependent on each other then gh

resultant contours would not converge or provideueate
results.

E. Contour Initialization

To broaden the scope of the deformable modets ttes
initial contour being formed as a circle around timser
selected location, included two variations of alitcontour
locations and sizes, as illustrated in Fig.3. Inggal, initial
contours for deformable models in medical

namely

result in corners and self the desired boundary. The main experiments focosetthe

first condition because it requires the least urgeraction for
automated image segmentation. Fig. 3(b) shows ah&ar

initialized around the object boundary. The differes in unit
iteration times among the various images are fanstof the
initial contours as well as the type of image. Example, the
number of iterations depends on how close thealrétintour
is placed to the region of interest.

(e)
Fig. 3. Contour initialization. (a) Original image. (b) @our
position for original image. (C) Image with Gaussiaoise
(0 =0.02). (d) Contour position for noisy image. (e) Image
with weak object boundary. (f) Contour position forage
with weak object boundary.

(f)

IV. EXPERIMENTAL RESULTS ANDDISCUSSION

The performance of the above mentioned deforenabl
models have been tested and analyzed with thres tfreal
image data sets of size 512 x 512 pixels. Thesgéamare the
MRI slice of brain attained of tumors pathology,taibed
from M S Ramaiah Medical College and Hospital, Bdarge.

Experimental results are obtained by implementiagous
deformable models [29]-[33]. In the following st
performance is tested considering the images wéidkvedges
and also images affected by Gaussian noise.

The goal of the MRI brain image without noise exmpent
was to determine which method could segment arncotjat
s diverse contrast in the region within the tatgaindary.
In this test image, the Snake model, GAC, and Ga&-dimost
same result, because there is no contour topolbggge, as
shown in Fig. 7(a), (d) and (g). Level set and stonal level
set also had poor results. All the results, extiepiproposed
deformable model, Fig. 7(p), the contours couldneaich or
converge to the region of interest. From the visieslervation
of the radiologist, the proposed method gives thestb
segmentation result for MRI image without introdwyghoise.

image

(Advance online publication: 1 August 2009)
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In case of MRI brain image with Gaussian noige=0.02 Table 2. Comparison of No. of Iterations and Computation
in Fig. 7 (b), the Snake model, GAC, GVF, are i&mmsto time for image corrupted by Gaussian noise<0.02).
noise and incapability of contour topology changd éus,
unable to converge exact boundary as displayedgi? fb),
(e) and (h). The Level set and variational level were
determined to provide the best qualitative reswith small Snake | GAC | GVF | Level | Variat. | Proposed
leakage in the contour near the object boundaishasvn in model set 'e;’e' method
Fig. 7(k) and 7(n). Therefore, the proposed methodid =
yield acceptable result for the noisy image asldi&al in Fig. | jterations | 3745 | 3200 | 2700 | 1100 | 1055 645
7(9).
In case of MRI brain image with weak edges, the
segmentation problems result from the complex shaife
inhomogeneous interior and gaps. Due to the prioxiofi the
gaps, we observe that the contour leaks throughldahve
contrast edges in Snake model, GAC, GVF, and Lesths

Deformable models
Parameters

Comp. time | 245s. | 200s | 175s | 130s. | 110s. 85s.

shown in Fig. 7(c), (f), (i) and (l). Whereas theoposed O Snake Model

method survives both weak and strong edge as shofrig. 100000 B GAC

7(r). 3000.00 OGVE

It is observed that the contour is converging talwathe Numberof 200000 OLevel Set

object boundary from iteration to iteration. Howewae final ~ '€rations  1000.00 B Variational Level Set
result in terms of accuracy in converging to thgeob 0.00 HProposed Method
boundary is varying from one technique to anothds also (@)

observed that, the method based on variational ksts is BOOTE ] ng&ke Model
performing well for accurate boundary detectionweuwer, it e

; . . . . Computation 150 0ok OGVF

is computationally intensive and the performancedsr in = e o000k OLevel Set

the presence of noise. Hence, the modified vanatitevel set 50200_ B Variational Level Set
with speed term, is used to speed up the segmamiatdcess 000k EProposed Method

and also accurate convergence to the object boyurBaveral (b)

visual results are presented. The computation tame, the Fig. 5. Comparative performance of noisy image in terms of
number of iterations are reported in the followables. number of iterations and computation time for difa

Deformable models. (a) No. Iterations, (b) Compatatime
Table 1. Comparison of No. of Iterations and computatiom sec.
time for original image. Table 3. Comparison of No. of Iterations and Computation
time for image with weak object boundary.

Deformable models

Parameters
Snake| GAC | GVF | Level | Variat.| Proposed = Deformable models
arameters
model set level method
set Snake | GAC | GVF | Level | Variat. | Proposed
lterations | 3400 | 2800| 2600| 760 | 850 510 model set S'g;’e' method

Iterations 3555 2850| 2800| 1010 | 980 605
Computation- | 220s.| 180s| 165s| 123s.| 11ls. 62s.

time
Computation- | 215s. 195s| 185s| 155s. | 95s. 77s.
time
3500.00 Bsnake Model 000,00 EdSnake Model
3000.00 BGAC ’ WGAC
NUmber ofapooo OGVF Number of 300000 CGVE
Iterations ﬁg'gg I:lLev_eI _Set Iterations 2000.00 CLevel Set
500,00 jtl: mVariational Level Set 1000.00 EVariational Level Set
000 EProposed Method 000 EProposed Method
(a) (@)
250.00 I Snake Model 250.00 OSnake Model
200.00 BEGAC 200.00 EGAC
Computation; s o OGVE Computation,sg g OGVF
Time 100.00 OLevel Set Time 10000 OLevel Set
50.00 W Variational Level Set 50.00. M Variational Level Set
0.00 OProposed Method 0.00 OProposed Method
(b) _ ~(b) _ .
Fig. 4. Comparative performance of original image in teans F ig. 6. Comparative performance of image with weak edges
number of iterations and computation time déferent in terms of number of iterations and computationetifor
Deformable models. (a) No. Iterations, (b) Compatatime different Deformable models. (a)No. Iteration
in sec. (b) Computation time in sec.
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(n
Fig. 7. Final segmentation results for original g@anoisy
image (o =0.02) and image with weak edges: (a) — (c
correspond to Snakes model, (d) — (f) corresponGALC
model, (g) — (i) correspond to GVF model, (j) —-ddrrespond
to Level set method, (m) — (0) correspond to Vel Level
set method and (p) — (r) correspond to the propossttiod.

variational level is superior in terms of convergerto the
object boundary compared to the variational levet. s
The experimental results are presented considesnigus
deformable models shown in Fig. 7. The comparatdseilt
shows that, the proposed method survives botmtage with
weak edge and the strong edges (Fig. 7. (p) Wngre as
other methods, the contour leaks through the lowtrast
edges and noisy images (Fig. 7. (a) - (0). Levelnsethod
overcomes previous problems faced by Snakes, GA@G, a
GVF. Meanwhile, computation is intensive, so madtfi
variational level set methods attempts to speettheprocess.
Comparative results shows that the proposed meikod
accurate in terms of locating the tumor in the imaand can
be used for medical diagnosis to segment tumors
automatically without much manual intervention.

V. CONCLUSION

The challenges of medical image segmentatiomddeessed
by using deformable models and the effectivenesshef
proposed technique in extracting features fromynoisdical
images has been demonstrated. The experimentétisrekow
that, for images with noise, the algorithm is @blepeed up the
process considerably while capturing the desiredeatb
boundary compared to other methods. Fine tuning the
parameters in the associated equations might ineptbe
performance of the algorithm. In the analysis aedvétion of
information in the image at different scales, reingv
unnecessary and irrelevant details, multi-resotuti@thod can
greatly improve the convergence and the computatmed.
More emphasis should be placed on using adaptige ed
detectors and smoothing operators on the imagdininate
noise and weak edge problems.
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