
 

 

 

  
Abstract—The purpose of this paper is to give one set of 

stability and stabilization conditions for an inverted pendulum 
robot which simulating human stance under the framework of 
Discrete Perturbed Time-Delay Affine (DPTDA) Takagi– 
Sugeno (T–S) fuzzy models. In the beginning, the mathematical 
model of inverted pendulum robot system and the 
corresponding DPTDA T–S fuzzy model are introduced. Next, 
some sufficient conditions are derived on robust H∞  
disturbance attenuation, in which the robust stability and 
prescribed performance are achieved. In order to find suitable 
fuzzy controllers, the Iterative Linear Matrix Inequality (ILMI) 
algorithm is employed to solve these sufficient conditions. 
Finally, a numerical simulation for the nonlinear inverted 
pendulum robot system is given to show the applications of the 
presented controller design approach. 
 

Index Terms—Inverted Pendulum Robot, Takagi-Sugeno 
Fuzzy Model, Time-delay, S-procedure, Iterative Linear Matrix 
Inequality.  
 

I. INTRODUCTION 
  Human being stance has been investigated in detail for 

a long time [1]. In recent years, the researchers wish to 
simulate human stance on the machine. In this paper, the 
model is constructed based on purely inverted pendulum 
dynamics and on a movable supportive base. This work was 
based on the assumption that the act of maintaining an erect 
posture could be viewed. However, the problems often are a 
complicated nonlinear system. In general, the methods of 
linear control and those of local linearization and moving 
linearization are not well suited for the control problem of 
inverted pendulums. This is due to the fact that inverted 
pendulums constantly move among widely separated regions 
of their workspace such that no linearization valid for all 
regions can be found. In fact, in many practical systems, the 
system plants contain severe nonlinear properties. Therefore, 
many researchers have studied to solve the difficulties of 
nonlinear control methods. One of them is the fuzzy logic 
control [2-4]. It is a successful control approach to many 
complex nonlinear systems or even non-analytic systems 
[5-6]. Some remarkable studies on the stabilizing controller 
design for fuzzy systems can be referred to [7-10], in which 
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the so-called T–S fuzzy model [11] has mainly been used to 
represent fuzzy systems. 

Generally, the T–S fuzzy models can be separated into 
the homogeneous fuzzy models [7-11] and the affine fuzzy 
models [12-15]. The homogeneous one can be referred to the 
T–S fuzzy model of which consequent part is linear without 
constant bias term. In contrast, the affine one means the T–S 
fuzzy model of which consequent part is affined by a 
constant bias term. In general, the affine T–S fuzzy model 
can preserve diverse nonlinear systems more than the 
homogeneous one. However, the analysis and synthesis of 
affine T–S fuzzy model are more difficult than the 
homogeneous one. 

Due to there are few studies dealing with the H∞  
constraints and time delay effects for the DPTDA T–S fuzzy 
models. Hence, one major target presented in this paper is the 
robust stability for the affine T-S fuzzy models. In this paper, 
the issue of robust stability is proposed in the presence of 
norm-bounded uncertainty. The class of perturbed affine T–S 
fuzzy models is defined by a state-space model and 
time-varying norm-bounded parameter uncertainties. 
Moreover, the H∞  control scheme [16] is used in this paper 
to attack the problem of robust performance design problems 
for the perturbed affine T–S fuzzy models. Besides, the 
presence of time delays in control loops usually degrades 
system performance and is even a source of instability [17]. 

The other target presented in this paper which we have 
to pay attention is the fuzzy controller design problem under 
the framework of LMI method [18]. The fuzzy controller 
design of the DPTDA T–S fuzzy models is a challenging 
problem for the designers because the closed-loop stability 
conditions are not LMI formulations but Bilinear Matrix 
Inequalities (BMI) ones. The BMI conditions can not be 
easily solved via a convex optimization algorithm. For this 
reason, an ILMI algorithm [12, 14-15] has been presented to 
solve the BMI problem. In this paper, an ILMI algorithm is 
developed to find feasible solutions for the synthesis problem 
of fuzzy controller design for the DPTDA T–S fuzzy models. 
Finally, in order to illustrate the applications of proposed 
fuzzy controller design approach for the inverted pendulum 
robot system, a simulation is provided in this paper. 
 

II. SYSTEM DESCRIPTIONS AND PROBLEM FORMULATIONS 

A. Inverted pendulum robot system 
In this section, the mathematical model of the simple 

inverted pendulum robot system is introduced. Referring to 
Fig. 1, a simplified dynamic model for describing inverted 
pendulum robot system to simulate human stance is proposed 
as follows [4]. 
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( ) ( ) ( ))2
4 3 3k k kml x sin x cos x−       (1d) 

where 
m is the mass of the black on the pendulum. 
l  is length of the pendulum. 
g is acceleration due to gravity. 
b   is coefficient of viscous friction for motion of the cart. 
u   is applied force. 

( )tv  is the denotes the disturbances. 
The four state variables stand for  1x x= , 2x x= � , 

2x θ= , 4x θ= �  with the position of the cart, and θ  the angle 
the pendulum makes with vertical. This model is obtained by 
discretizing the continuous time model via Euler’s method 

with Τ  is 0.1s, kg12 98 sb .= , 1 378.Μ = kg, 0 325l .= m, 

2
m9 8 sg .= , 0 051m .= kg. 

 
m

l

M
u

θ

 
Fig. 1 Inverted pendulum robot system to simulate human 

stance 
 

Considering premise nominal parameter uncertainties, the 
modified dynamic model for the inverted pendulum robot 
system can be described as follows: 

 
( ) ( )( ) ( ) ( )1 2k 1 0 1 t 1 k 0 1 kx . cos . x+ = + σ + ( )0 2 k. v+  (2a) 
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+
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( ) ( ))3 30 4998 k k. cos x sin x−        (2b) 

( ) ( ) ( )3 3 4k 1 k 0 1 kx x . x+ = +            (2c) 

( ) ( )4 4k 1 kx x+ =
( )( )( )2

3

0 1

0 4478 0 0166 k

.

. . sin x
+  

( )( 313 4162 k. sin x× ( ) ( )3k ku cos x−  

( ) ( )2 312 98 k k. x cos x+  

( ) ( ) ( ))2
4 3 30 0166 k k k. x sin x cos x−             (2d) 

 
where ( ) ( ) ( ) ( )1 1k k 1 kx xρ ρσ = + − − τ  and ( )kσ  is a 
time-delay function. 

B. DPTDA T–S fuzzy model 
Based on the nonlinear inverted pendulum robot system 

(2) presented above, the stability analysis and fuzzy 
controller design problems for the nonlinear system (2) via 
T-S fuzzy model are introduced. Consider the DPTDA T–S 
fuzzy model described by the following IF-THEN rules. 
 
Rule i: IF ( )1 kz  is i1M  and ( )2 kz  is i2M  and ··· and 

( )p kz  is ipM  THEN 

( ) ( ) ( ) ( ) ( )i i id idk 1 k kx x x+ = + Δ + + Δ − τA A A A  

( ) ( )i i ku+ + ΔB B ( ) ( )i i kv+ + Δ +a a E ,  

i 1 2 r, , ,= … , ( ) ikx ∈ X , i Î∈  

( ) ( )k kx = ψ , for [ ]k 0,∈ −τ             (3) 
 
where n n

i
×∈ℜA , n n

id
×∈ℜA , n m

i
×∈ℜB , n

i ∈ℜa  and 
n∈ℜE  are constant matrices, ( ) ( )1 pk    kz , ... , z  are known 

premise variables that may be functions of the state variables, 
p  is the premise variable number and r  is the number of 
fuzzy model rules. ( ) nkx ∈ℜ  is the state vector, ( ) mu k ∈ℜ  

is the input vector, ( )kv ∈ℜ  denotes the disturbance which 

belongs to [ ]2 f0  kL , , where [ ]2 f0  kL ,  denotes the 
Lebsegue space consists of square-integrable functions on 
the interval [ ]f0  k,  and fk  is the terminal time of the 
control. ipM  is the fuzzy set, τ  is the constant time delay in 

the state and 0τ > . ( )kψ  is the initial condition of the state 

defined on k 0−τ ≤ ≤ . Besides, the region n
i ⊆ ℜX  is 

assumed to be a fuzzy subspace and iX  is called as a cell. 

The set of cell indices is denoted as Î  and the union of all 
cells ( ) ( )ii Ik ˆx conv

∈
= X∪  is referred to as the whole fuzzy 

space, where ( )conv i  refers to the convex combination. Let 

0I Iˆ ˆ⊆  be the set of indices for the fuzzy rules that contain the 

origin and 1I Iˆ ˆ⊆  be the set of indices for the fuzzy rules that 
does not contain the origin. The origin is an equilibrium point 
of the DPTDA T–S fuzzy models and it is assumed that 

i 0=a  for 0i Î∈ . Besides, iΔA , idΔA , iΔB  and iΔa  are 
time-varying matrices with appropriate dimensions and they 
are structured in the following norm-bounded form: 
 
[ ]i id i iΔ Δ Δ ΔA A B a  
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( )[ ]1i 2i 3i 4it= DΔ Q Q Q Q                (4) 
 
where D , 1iQ , 2iQ , 3iQ  and 4iQ  are known real constant 
matrices of appropriate dimensions, and ( )i tΔ  is an 
unknown matrix function with Lebesgue-measurable 
elements and satisfies ( ) ( )T

i ik k ≤Δ Δ I .  
 
Lemma 1 [19]: 

Let Γ , iD , iQ  and ( )i kΔ  be real matrices of 

appropriate dimensions with ( ) ( )T
i ik k ≤Δ Δ I . Then for 

0>Ξ  any scalar 0ε >  satisfying i iT
0ε − >I D ΞD , one has 

 
i ( ) i( ) i ( ) i( )T

i ik k+ +Γ DΔ Q Ξ Γ DΔ Q

i i i( ) i i i
1T T TT T

−

≤ + ε − + εΓ ΞΓ Γ ΞD I D ΞD D ΞΓ Q Q      (5) 

□ 
Given a pair of ( ) ( )( )t  tx , u , the final outputs of the 

DPTDA T–S fuzzy model (3) are inferred as follows: 
 

( )k 1x + =  

( )( ) ( ) ( ) ( ) ( ){
r

i i i id id
i 1
ω k k kz x x

=

+ Δ + + Δ − τ∑ A A A A  

( ) ( ) ( )} ( )( ) ( )
r

i i i i i
i 1

k ω k ku z v
=

+ + + + +∑B ΔB a Δa E  

( )( ) ( ) ( ) ( ) ( ){
r

i i i id id
i 1

= h k k kz x x
=

+ + + − τ∑ A ΔA A ΔA  

( ) ( ) ( )}i i i iku+ + + +B ΔB a Δa ( )kv+E        (6) 

 
where 

( ) ( ) ( ) ( ) T

1 2 nk k  k    kx x , x , ... , x⎡ ⎤= ⎣ ⎦ ,  

( )( ) ( )( )
n

i ij j
j 1

ω k M kx x
=

= ∏ , 

( )( ) ( )( )
( )( )

i
i r

i
i 1

ω k
h k

ω k

x
x

x
=

=

∑
, ( )( )ih k 0x ≥  

 and ( )( )
r

i
i 1

h k 1x
=

=∑                (7) 

 
The PDC [8] offers a scheme to design a fuzzy controller 
from the given T–S fuzzy model (6). The PDC type fuzzy 
controller has the following form: 
 
Rule i: IF ( )1 kz  is i1M  and ( )2 kz  is i2M  and ··· and 

( )p kz  is ipM  THEN 

( ) ( )ik ku x= −F , i 1 2 r, , ,= …    for ( ) ikx ∈ X  , i Î∈   (8) 
 
where m n

i
×∈ℜF  are constant matrices. The output of the 

PDC type fuzzy controller is determined by the following 
summation: 
 

( ) ( )( ) ( ){ }
r

i i
i 1

k h k ku z x
=

= −∑ F            (9) 

 
Substituting (9) into (6), one can obtain corresponding 

closed-loop system as follows: 

( )k 1x + ( )( ) ( )( )
r r

i j
i 1 j 1

h k h kz z
= =

= ∑∑  

( )( ) ( ) ( )( ) ( )( ){ 1ij 2ij1ij 2ijk k k t kx x× + Δ + + Δ − τH D H H D H  

( )( )}3ij3ij k+ + ΔH D H ( )kv+E            (10) 

 
where  

ij ji
ij 2

+
=

G G
H , id jd

2ij 2
+

=
A A

H , i j
3ij 2

+
=

a a
H , 

ij ji
1ij

2
+

=
G GH , 2i 2j

2ij
2
+

=
Q Q

H , 4i 4j
3ij

2
+

=
Q Q

H , 

ij i i j= −G A B F  and ij 1i 3i j= −G Q Q F         (11) 
 
For the more, in order to deal with the robust performance 
design problems, we have 
 
Definition 1 ( H∞  Performance Constraint) 

Given a positive real number γ , the model of the form 
(10) is said to have [ ]2 f0  kL ,  gain less than γ  if 
 

( ) ( ) ( ) ( )
f fk k

T 2 T

k 0 k 0
k k k kx x v v

= =

< γ∑ ∑S , ( )k 0v∀ ≠     (12) 

 
with zero initial condition for all ( ) [ ]2 fk 0  kv L ,∈ , where 

fk  is the terminal time of the control, γ  is a prescribed value 
which denotes the worst case effect of ( )kv  on ( )kx . 

Besides, T 0= >S S  is a positive definite weighting matrix 
and n n×∈ℜS . 

□ 
 

The purpose of this paper is to find a fuzzy controller 
(9) such that the closed-loop system (10) is quadratically 
stable which satisfy the H∞  constraint (12). In next section, 
we analyze the quadratically stable conditions for DPTDA 
T–S fuzzy model (10) firstly. According to these stability 
conditions, a fuzzy controller is developed via ILMI 
algorithm in section IV. 
 

III. STABILITY ANALYSIS FOR DPTDA T-S FUZZY MODEL 
Stability analysis for a closed-loop DPTDA T–S fuzzy 

model (10) is discussed in this section. It is shown that the 
stability analysis issue to closed-loop DPTDA T–S fuzzy 
models is considered based on Lyapunov stability criterion 
and Razumikhin theorem. The sufficient condition for 
guaranteeing the closed-loop stability is introduced in the 
following theorem. 
 
Theorem 1 
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Given a H∞  attenuation parameter 0γ > . The DPTDA 
T–S fuzzy model described in (10) is quadratically stable in 
the large and the H∞  control performance (12) is guaranteed 
for an attenuation γ , if there exist positive definite matrices 

0>P , 0>S , d 0>P , control gains iF  and scalars ijq 0ξ ≥  
such that 
 

ij 0ϒ <          for 0i Î∈          (13) 
and 

( )
n

ij ijq ijq
q 1

s 0
=

ϒ − ξ <∑ Ω    for 1i Î∈           (14) 

 
where 

( )
T

ij
1T T T

ij 2ij ij 2ij
T

I
−

⎫⎧ ⎡ ⎤
⎪⎪ ⎢ ⎥ ⎪⎡ ⎤ϒ + ε −⎨ ⎬⎢ ⎥ ⎣ ⎦

⎪ ⎪⎢ ⎥
⎣ ⎦ ⎪⎩ ⎭

H
φ H PD D PD D P H H E

E
�  

                       (15a) 

φ =

TT
1ij 1ij1ij 1ij d

TT
2ij 1ij2ij 1ij

T
1ij

⎡ − + + + ε⎢
⎢ + ε⎢
⎢
⎢⎣

H PH P P S H H

H PH H H
E PH

 

TT
2ij 2ij2ij 2ij d

T T 2
2ij

* *

*

⎤
⎥

− + ε ⎥
⎥− γ ⎥⎦

H PH P H H
E PH E PE I

    (15b) 

ijϒ �  

( )

T
ij

T
12ij T T

ij 2ij 3ijT

T
3ij

I
−

⎫⎧ ⎡ ⎤
⎪⎪ ⎢ ⎥
⎪⎪ ⎢ ⎥ ⎡ ⎤+ ε −⎨ ⎬⎣ ⎦⎢ ⎥⎪ ⎪⎢ ⎥⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭

H
H

φ PD D PD D P H H E H
E

H

 

                         (15c) 
ij

Tij T
3ij 1ij 2ij3ij 1ij 2ij 0

⎡
⎢

⎡ ⎤⎡ ⎤ + ε⎢ ⎣ ⎦ ⎣ ⎦⎣

φ
φ

H P H H E H H H
�   

TT
3ij 3ij3ij 3ij

* ⎤
⎥

+ ε ⎥⎦H PH H H
            (15d) 

( )

ijq ijq

ijq

T
ijq ijq s s

0 0
0 0 0 0

s
0 0 0 0

0 0 v
×

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

T n

Ω

n

"
"

# # % # #
"
"

        (16) 

 
Besides, the S-procedure [12, 18] weighting parameters 

n n
ijq

×∈ℜT , n 1
ijq

×∈ℜn , and ijqv ∈ℜ  are defined such that 
 

( )( ) ( ) ( ) ( )T T
ijq ijq ijq ijqt t t 2 t v 0x x x xσ + + ≤T n� ,  

q 1 p= "  and i 1 r= "                (17) 
 
for all ( )tx  which activates rule i (i.e., ( )( )ih t 0x > ). 

Proof: 
Select a discrete-type Lyapunov function as 

 

( )( ) ( ) ( ) ( ) ( )
k 1

T T
d

k τ

k k kV x x x x x
−

ϖ= −

= + ϖ ϖ∑P P      (18) 

 
By evaluating the first-forward difference of the Lyapunov 
function ( )( )kV x  along the trajectories of DPTDA T–S 

fuzzy model (10), one has 
 

( )( )kV xΔ  

( )( ) ( )( )k 1 kV x V x= + −  

( ) ( ) ( ) ( ) ( ) ( )T T T
dk 1 k 1 k k k kx x x x x x= + + − +P P P  

( ) ( )T
dk τ k τx x− − −P  

( )( ) ( )( )
r r r r

i j
i 1 j 1 k 1 l 1

h z k h z k
= = = =

= ∑∑∑∑ ( )( ) ( )( )k lh z k h z k  

( ) ( )( ){ TT
ij ijk k× + Δx O D J P� ( )( )} ( )ij ijk k+ ΔO D J x�  

( ) ( ) ( ) ( ) ( ) ( )T T T
d dk k k k k τ k τx x x x x x− + − − −P P P   

                        (19) 
where 
 

ij ij 2ij 3ij⎡ ⎤= ⎣ ⎦O H H E H , ij 2ij 3ijij 0⎡ ⎤= ⎣ ⎦J H H H ,  

and ( ) ( ) ( ) ( ) TT T Tk k k k 1x x v⎡ ⎤= − τ⎣ ⎦x�     (20) 

 
From Lemma 1, one can obtain  
 

( )( )kV xΔ  

( )( ) ( )( )
r r r r

i j
i 1 j 1 k 1 l 1

h z k h z k
= = = =

≤ ∑∑∑∑ ( )( ) ( )( )k lh z k h z k  

( ) ( ){ 1T T T T T
ij ij ij ijk I

−
× + ε −x O PO O PD D PD D PO�  

} ( )T
ij ij k+εJ J x� ( ) ( ) ( ) ( )T T

dk k k kx x x x− +P P  

( ) ( )T
dk τ k τx x− − −P               (21) 

 
Next, let us define the following performance index 
 

( ) ( ) ( ) ( ){ }
fk

T 2 T

k 0

k k k kJ x x v v∞
=

− γ∑ S�         (22) 

 
with zero initial condition for all ( ) [ ]2 fk 0  kv L ,∈ . Hence, 

for any nonzero ( )kv  one has 
 

( ) ( ) ( ) ( ){ } ( )( )
fk

T 2 T

k 0

k k k k kJ x x v v V x∞
=

≤ − γ +∑ S  

( ) ( ) ( ) ( ){ } ( )( )
f fk k

T 2 T

k 0 k 0

k k k k kx x v v V x
= =

= − γ + Δ∑ ∑S  

( ) ( ) ( ) ( ) ( )( ){ }
fk

T 2 T

k 0

k k k k kx x v v V x
=

= − γ + Δ∑ S  
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( ){ }
fk

k 0

H x,v,k
=

∑�                (23) 

 
where ( )H x,v,k  is defined as follows according to (21). 
 

( )H x,v,k  

( )( ) ( ) ( ) ( ) ( )T 2 Tk k k k kV x x x v v= Δ + − γS  

( )( ) ( )( ) ( ) ( ) ( ){ }
r r

T
i j ij

i 1 j 1

h k h k k k kx x
= =

= ϒ∑∑ x x� �     (24) 

 
where ijϒ  is defined in (15c). Converting (24) to an LMI by 
applying the S-procedure described in [12, 18], one has 
 

( )H x,v,k ≤ ( )( ) ( )( ) ( ) ( ) ( ){ }
r r

T
i j ij

i 1 j 1

h k h k k k kx x
= =

ϒ∑∑ x x� �  

( )( )
n

ijq ijq
q 1

kx
=

− ξ σ∑           (25) 

 
where ( )( )ijq kxσ ∈ℜ  is defined in (17). Since ijq 0ξ ≥  and 

( )( )ijq k 0xσ ≤ , then (25) can be represented as 

 

( ) ( )( ) ( )( )
r r

i j
i 1 j 1

h k h kH x,v,k x x
= =

≤ ∑∑  

( ) ( ) ( )
n

T
ij ijq ijq

q 1

k s k
=

⎧ ⎫⎛ ⎞⎪ ⎪× ϒ − ξ⎜ ⎟⎨ ⎬
⎪ ⎪⎝ ⎠⎩ ⎭

∑x Ω x� �          (26) 

 
Obviously, if (14) hold for all ( ) ikx ∈ X , 1i Î∈ , then 

( ){ }
fk

k 0

0H x,v,k
=

<∑ . It means that 

 

0J∞ <   or  ( ) ( ){ } ( ) ( ){ }
f fk k

T 2 T

k 0 k 0

k k k kx x v v
= =

< γ∑ ∑S   (27) 

 
Since (27) is equivalent to (12), it is easy to find that H∞  
performance constraint (12) is achieved with a prescribed γ . 
In the next step, we have to show that the DPTDA T–S fuzzy 
model in (10) is quadratically stable. From (26), if  

n

ij ijq ijq
q 1

0
=

ϒ − ξ <∑ Ω  hold, it implies that ( ) 0H x,v,k < . 

Assume that the disturbance ( )tv  is zero, and then one has 
 

( )H x,v,k ( )( ) ( ) ( ) ( ) ( )T 2 Tk k k k k 0V x x x v v= Δ + − γ <S  

                      (28) 
or 
 

( )( ) ( ) ( )Tk k kV x x xΔ < − S            (29) 

 
Therefore, the DPTDA T–S fuzzy model described in (10) is 
quadratically stable in the large. Besides, for the case of 

( ) itx ∈ X , 0i Î∈ , the stability condition (13) can be obtained 

by setting the state bias term i 0=a  and ignoring the 
S-procedure from the similar proof procedure. 

□ 
 
 From Theorem 1, it can be noted that the matrix 
inequalities in P , S , dP , iF  and ijqξ  belong to the class of 
BMIs and the controller synthesis can not be solved by the 
MATLAB LMI-toolbox. In the next section, Theorem 2 is 
provided to introduce modified stability conditions which 
can be solved by MATLAB LMI-toolbox through an ILMI 
algorithm [12, 14-15]. 
 

IV. FUZZY CONTROLLER DESIGN FOR DPTDA T-S FUZZY 
MODELS VIA ILMI ALGORITHM 

In this section, the ILMI algorithm [12, 14-15]  is used 
to develop a fuzzy controller design procedure for the 
DPTDA T–S fuzzy model (10). The idea of the ILMI 
algorithm used in solving BMI problems is based on holding 
some matrix variables as constant values and then converting 
it into a LMI problem. One can thus use the MATLAB 
LMI-toolbox to solve the proposed fuzzy controller design 
problem. 

A. Stabilization condition of DPTDA T–S fuzzy model 
Theorem 2 

Given a H∞  attenuation parameter 0γ >  and the 
auxiliary constant matrix 0>R . The conditions of Theorem 
1 are satisfied if there exist 1α < , positive definite matrices 

0>P , 0>S , d 0>P , control gains iF  and scalars ijq 0ξ ≥  
such that 
 

ij

T

0

0

<⎧⎪
⎨

− ≤⎪⎩

Θ

R PR R
    for 0

ˆi I∈            (30) 

and 

ij

T

0

0

⎧ <⎪
⎨

− ≤⎪⎩

Θ

R PR R
  for 1

ˆi I∈             (31) 

 
where 

ijΘ �  

d
T TT 1 T 1
2ij 1ij 2ij 2ij2ij 1ij 2ij 2ij d

T 1 T 1
1ij 2ij

T 1 T 1
ij 2ij

1ij

1ij

0
0

*
− −

− −

− −

−α + +⎡
⎢

+ ε − + ε⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

P P S

H R H H H H R H P H H
E R H E R H
D R H D R H

H
H

 

T 1 2

T 1 T 1

1

I
0 0
0 0 0

* * * *
* * * *

* * *
* *

*

−

− −

−

⎤
⎥
⎥
⎥− γ
⎥

−ε + ⎥
⎥−ε
⎥

− ⎥⎦

E R E I
D R E D R D

R

     (32) 
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ijΘ �  

d ijq ijq
T TT 1 T 1
2ij 1ij 2ij 2ij2ij 1ij 2ij 2ij d

T 1 T 1
1ij 2ij

T TT 1 T T 1
3ij 1ij 3ij 2ij3ij 1ij ijq 3ij 2ij

T 1 T 1
ij 2ij

1ij

1ij

+ +

0
0

*
− −

− −

− −

− −

−α + + − ξ⎡
⎢

+ ε − + ε⎢
⎢
⎢
⎢ ε − ξ ε⎢
⎢
⎢
⎢
⎢
⎣

P P S T

H R H H H H R H P H H
E R H E R H

H R H H H n H R H H H
D R H D R H

H
H

 

T 1 2

TT 1 T 1
3ij 3ij3ij 3ij 3ij ijq ij

T 1 T 1
3ij

0 0
0 0

* *
* *

*−

− −

− −

− γ

+ ε − ξ

E R E I

H R E H R H H H v
D R E D R H

 

T 1

1

I+
0
0 0

* * *
* * *
* * *
* * *

* *
*

−

−

⎤
⎥
⎥
⎥
⎥
⎥
⎥−ε
⎥

−ε ⎥
⎥− ⎦

D R D

R

           (33) 

 
Proof: 

Rewriting (31), one has  
 

d ijq ijq
T TT 1 T 1
2ij 1ij 2ij 2ij2ij 1ij 2ij 2ij d

T 1 T 1
1ij 2ij

T TT 1 T T 1
3ij 1ij 3ij 2ij3ij 1ij ijq 3ij 2ij

T 1 T 1
ij 2ij

1ij

1ij

+ +

0
0

*
− −

− −

− −

− −

− + + − ξ⎡
⎢

+ ε − + ε⎢
⎢
⎢
⎢ ε − ξ ε⎢
⎢
⎢
⎢
⎢
⎣

P P S T

H R H H H H R H P H H
E R H E R H

H R H H H n H R H H H
D R H D R H

H
H

 

T 1 2

TT 1 T 1
3ij 3ij3ij 3ij 3ij ijq ij

T 1 T 1
3ij

0 0
0 0

* *
* *

*−

− −

− −

− γ

+ ε − ξ

E R E I

H R E H R H H H v
D R E D R H

  

T 1

1

I+
0
0 0

* * *
* * *
* * *
* * *

* *
*

−

−

⎤
⎥
⎥
⎥
⎥
⎥
⎥−ε
⎥

−ε ⎥
⎥− ⎦

D R D

R

 

( )1
0 0
0 0 0
0 0 0 0
0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 0

* * * * * *
* * * * *

* * * *
* * *

* *
*

⎡ ⎤α −
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

< ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

P

          (34) 

 
By using the Schur-complement [18], the inequality (34) 
becomes 
 

TT 1
1ij 1ij1ij 1ij d ijq ij

TT 1
2ij 1ij2ij 1ij

T 1
1ij

TT 1 T
3ij 1ij3ij 1ij ijq+

−

−

−

−

⎡ − + + + ε − ξ⎢
⎢ + ε⎢
⎢
⎢
⎢ ε − ξ⎣

H R H P P S H H T

H R H H H
E R H

H R H H H n

  

TT 1
2ij 2ij2ij 2ij d

T 1
2ij
TT 1
3ij 2ij3ij 2ij +

*
−

−

−

− + ε

ε

H R H P H H
E R H

H R H H H

 

       

 T 1 2

TT 1 T 1
3ij 3ij3ij 3ij 3ij ijq ij

* *
* *

*−

− −

⎤
⎥
⎥ +⎥− γ
⎥
⎥+ ε − ξ ⎦

ZE R E I

H R E H R H H H v

 

( )1
0 0
0 0 0
0 0 0 0

* * *
* *

*

⎡ ⎤α −
⎢ ⎥
⎢ ⎥<
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

P

                (35) 

 
where 

=Z  

( )

T
1ij

T
12ij 1 T T 1

ij 2ij 3ijT

T
3ij

I
−− −

⎡ ⎤
⎢ ⎥
⎢ ⎥ ⎡ ⎤ε − ⎣ ⎦⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

H
H

R D D PD D R H H E H
E

H

 

(36) 
If the matrix 0>P  exist such that T 0− ≤R PR R  is held, 
then the following inequality is obvious. 
 

TT
1ij 1ij1ij 1ij d ijq ij

TT
2ij 1ij2ij 1ij

T
1ij

TT T
3ij 1ij3ij 1ij ijq+

⎡ − + + + ε − ξ⎢
⎢ + ε⎢
⎢
⎢
⎢ ε − ξ⎣

H PH P P S H H T

H PH H H
E PH

H PH H H n
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TT
2ij 2ij2ij 2ij d

T
2ij
TT
3ij 2ij3ij 2ij +

*

− + ε

ε

H PH P H H
E PH

H PH H H

 

T 2

TT T
3ij 3ij3ij 3ij 3ij ijq ij

* *
* *

*

⎤
⎥
⎥ +⎥− γ
⎥
⎥+ ε − ξ ⎦

ZE PE I

H PE H PH H H v

 

( )1
0 0
0 0 0
0 0 0 0

* * *
* *

*

⎡ ⎤α −
⎢ ⎥
⎢ ⎥<
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

P

                (37) 

 
where 1α < . Thus, one has 
 

TT
1ij 1ij1ij 1ij d ijq ij

TT
2ij 1ij2ij 1ij

T
1ij

TT T
3ij 1ij3ij 1ij ijq+

⎡ − + + + ε − ξ⎢
⎢ + ε⎢
⎢
⎢
⎢ ε − ξ⎣

H PH P P S H H T

H PH H H
E PH

H PH H H n

 

TT
2ij 2ij2ij 2ij d

T
2ij
TT
3ij 2ij3ij 2ij +

*

− + ε

ε

H PH P H H
E PH

H PH H H

 

T 2

TT T
3ij 3ij3ij 3ij 3ij ijq ij

0*

* *
* *

⎤
⎥
⎥ + <⎥− γ
⎥
⎥+ ε − ξ ⎦

ZE PE I

H PE H PH H H v

   (38) 

 
The inequality (38) is equivalent to (14). Thus, the proof is 
completed. Besides, for the case of ( ) itx ∈ X , 0i Î∈ , the 
stability condition (30) can be obtained by setting the state 
bias term i 0=a  and ignoring the S-procedure from the 
similar proof procedure. 

□ 
 

B. ILMI Algorithm 
According to Theorem 2, an ILMI algorithm [12, 14-15] 

is developed to find the feasible solutions for the stability 
conditions (30-31). The purpose of this algorithm is to 
iteratively search for P , S , dP , iF , ijqξ , α  and to update 
the auxiliary constant matrix R  until 1α < . The detail of 
the proposed fuzzy controller design procedure is concluded 
as follows. 
 
<ILMI Algorithm> 
Step 1 Define the iterative auxiliary variables as 

( ) ( )1 1−κ = κ −R P , where κ  denotes an iteration index. 

When 1κ = , the initial conditions of ( )1R  can be obtained 

as follows: 
 

( ) ( )11 0−=R P                 (39) 
 
For the given initial ( )0P , one can solve it from the 
following discrete Riccati equation. 
 

( ) ( )T 0 0ˆ ˆ −A P A P  

( )( ) ( )( ) ( )( )1T T T0 1 0 0 0ˆ ˆˆ ˆ ˆ ˆ−
− + + =A P B B P B B P A Q   (40) 

 

where 
r

i
i 1

1
r

ˆ
=

= ∑A A , 
r

i
i 1

1
r

ˆ
=

= ∑B B  and 0>Q . The matrix Q  

is assigned by the designers. 
Step 2 Set 1κ =  and start the algorithm. 
Step 3 Given the auxiliary variables ( )κR  to solve the 
optimization problem for 
 
Minimize  ( )α κ  

Subject to  ( ) 0κ >P , ( ) 0κ >S , ( )d 0κ >P ,  

( )i κF  and ( )ijq 0ξ κ ≥ , 

(30) for 0i Î∈ , and (31) for 1i Î∈    (41) 
 
If ( ) 1α κ < , then ( )κP , ( )κS , ( )d κP , ( )i κF , and ( )ijqξ κ  
obtained in (41) are feasible solutions for the Theorem 2 and 
stop the iterative manner. Otherwise, if ( ) 1α κ ≥  then go to 
Step 4. 
Step 4 Given ( )α κ  obtained in Step 3 and the same 

auxiliary variables ( )κR  used in Step 3. Resolve the 

optimization problem for ( )κP , ( )κS , ( )d κP , ( )i κF  and 

( )ijqξ κ  such that 
 
Minimize  ( )( )trace κP  

Subject to  ( ) 0κ >P , ( ) 0κ >S , ( )d 0κ >P , ( )i κF   

and ( )ijq 0ξ κ ≥ , 

(30) for 0i Î∈ , and (31) for 1i Î∈    (42) 
 
If the condition ( ) ( )1− κ − κ < υR P  is satisfied for a 

predetermined small value υ . Then the Theorem 2 may not 
be feasible and stop the iterative manner. Otherwise, go to 
Step 5. 
Step 5 Update the auxiliary variables ( )1κ +R  using 

( )κP , where ( )κP  is determined in (42). Set 1κ = κ +  and 
go back to Step 3. 

□ 
In next section, a numerical example is presented to show 

the usefulness of the above fuzzy controller design procedure 
for the inverted pendulum robot system under the framework 
of DPTDA T–S fuzzy model. 
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V. A NUMERICAL EXAMPLE 
According to the results developing in previous 

sections, this section provides a numerical simulation for the 
inverted pendulum robot system presented in section Ⅱ . 
Considering the inverted pendulum robot system (2), one can 
choose three operating points to obtain the linearized models 
for the system (2). Let us choose three operating points as 
follows: 
 

( ) ( )d oper1
,  0 0 88 0 0 0 0 0 0x x , u+ + + = D D ,  

( ) ( )d oper2
,  0 0 0 0 0 0 0 0 0x x , u = D D ,  

( ) ( )d oper3
,  0 0 88 0 0 0 0 0 0x x , u− − − = − D D    

                      (43) 
 
Then, three linear subsystems can be constructed by these 
operating points. In which, ( )d oper2

,  x x , u  is the maintain 

equilibrium point and the others are the off-equilibrium 
points. Through the above three linear subsystems and 
membership functions defining in Fig. 2, one can obtain the 
DPTDA T–S fuzzy model for the inverted pendulum robot 
system (2), which is composed by three fuzzy rules as 
follows: 
 
Rule i:  IF ( )3 kx  is about i1M  THEN 

( ) ( ) ( ) ( ) ( )i i id idk+1 k kx x x= + Δ + + Δ − τA A A A   

( ) ( )i ik ku v+ + +B a E , i 1 3= "             (44) 
 
where 

1

0 998 0 1 0 0
0 0 0917 0 035 0
0 0 1 0 1
0 0 0 1

. .
. .

.

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

A , 

2

0 998 0 1 0 0
0 0 0581 0 0363 0
0 0 1 0 1
0 2 8983 3 127 1

. .
. .

.
. .

⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

A , 

3

0 998 0 1 0 0
0 0 0917 0 035 0 0464
0 0 1 0 1
0 0 0 1

. .
. . .

.

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

A , 

( )

( )1 2 3

0 001 t 0 0 0
0 0 0 0
0 0 0 003 t 0
0 0 0 0

. sin

. cos

⎡ ⎤
⎢ ⎥
⎢ ⎥Δ = Δ = Δ =
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

A A A , 

1d 2d 3d

0 002 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

.⎡ ⎤
⎢ ⎥
⎢ ⎥= = =
⎢ ⎥
⎢ ⎥
⎣ ⎦

A A A ,  

1

0
0 0549

0
3 0154

.

.

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
−⎣ ⎦

a , 2

0
0
0
0

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

a , 3

0
0 0549

0
3 0154

.

.

⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

a ,  

1 2 3

0
0 0726

0
0 2233

.

.

⎡ ⎤
⎢ ⎥
⎢ ⎥= = =
⎢ ⎥
⎢ ⎥
−⎣ ⎦

B B B  , and 

0
0

0 2
0
.

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

E .      (45) 

 

and the corresponding matrices of S-procedure [12, 18] are 
presented as follows: 
 
For Rules 11, i.e., ( )390 t 80x≤ ≤D D  

111

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

T ,  
( )111

0
0

1 80 90 180
2

0

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎡ ⎤− + π⎢ ⎥⎣ ⎦

⎢ ⎥
⎢ ⎥⎣ ⎦

n   

and ( ) ( )111v 90 180 80 180/ /= π × π               (46) 
 
For Rules 33, i.e., ( )390 t 80x− ≤ ≤ −D D , the matrices of 
S-procedure are given as follows: 

331

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

T ,  
( )331

0
0

1 80 90 180
2

0

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎡ ⎤− − − π⎢ ⎥⎣ ⎦

⎢ ⎥
⎢ ⎥⎣ ⎦

n   

and ( ) ( )331v 90 180 80 180/ /= − π × − π              (47) 

 

90− ° 80− ° 80° 90°

31M 21M 11M

( )3 kx

0

1

 
Fig. 2   Membership functions of ( )3 kx  

 
For the DPTDA T–S fuzzy model (44), the fuzzy 

controller can be designed by applying Theorem 2 and the 
ILMI algorithm [12, 14-15]. In this example, it is assumed 
that the H∞  control performance is guaranteed for an 
attenuation 2 0 32.γ = . Then, we can get a feasible solution 
after four iterations of the ILMI algorithm. The final decay 
rate α  is 0 9999.  and the feasible solutions are obtained as 
follows: 
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4.4530 2.0824 7.3099 1.4670⎡ ⎤
⎢ ⎥2.0824 3.3681 9.5516 1.8320⎢ ⎥=
⎢ ⎥7.3099 9.5516 41.5488 7.8826
⎢ ⎥
1.4670 1.8320 7.8826 1.5450⎣ ⎦

P , 

d

0 0327 0 0186 0 0430 0 0118
0 0186 0 0238 0 0366 0 0134
0 0430 0 0366 0 1136 0 0225
0 0118 0 0314 0 0225 0 0081

. . . .

. . . .

. . . .

. . . .

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

P , 

0 0076 0 0046 0 0107 0 0030
0 0046 0 0059 0 0092 0 0034
0 0107 0 0092 0 0284 0 0056
0 0030 0 0034 0 0056 0 0020

. . . .

. . . .

. . . .

. . . .

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

S , 

0 3419 0 1082 0 0601 0 5031
0 1082 0 8916 0 1470 0 2054
0 0601 0 1470 0 7670 3 7935
0 5031 0 2054 3 7935 20 7108

. . . .
. . . .
. . . .
. . . .

− −⎡ ⎤
⎢ ⎥− − −⎢ ⎥=
⎢ ⎥− −
⎢ ⎥
− − −⎣ ⎦

R , 

111ξ = 186.4773 , 331ξ = 186.4773                 (48) 
 
and the fuzzy controller has the following form: 
 
Rule 1:  IF ( )3 kx  is about 11M THEN 

( ) [ ] ( )k 5 2530 1 0054 43 6819 9.2813 ku . . . x= − − − − −  

Rule 2: IF ( )3 kx  is about 21M THEN 

( ) [ ] ( )k 5 1953 18 5910 49 8976 9.2234 ku . . . x= − − − − −  

Rule 3: IF ( )3 kx  is about 31M THEN 

( ) [ ] ( )k 5 2530 1 0054 43 6819 9.2813 ku . . . x= − − − − −  
                        (49) 
 
The output of the PDC type fuzzy controller (49) is 
determined by the following summation 
 

( ) ( )( ) ( ){ }
3

i 1 i
i 1

k h k ku x x
=

= −∑ F           (50) 

 
The disturbance input noise ( )kv  is given with 

variance one. The simulation results are shown in Fig. 3 to 
Fig. 6. From the simulated results, one can find that the 
controlled nonlinear perturbed time-delay inverted pendulum 
robot system (2) is quadratically stable under the fuzzy 
controller (50). 
 

VI. CONCLUSION 
A robust fuzzy controller design procedure has been 

developed for the nonlinear inverted pendulum robot system 
which can achieve the H∞  performance constraints and cope 
with the worst case effect of disturbances. Firstly, the 
Lyapunov criterion was applied to analyze the stability 
conditions for the nonlinear inverted pendulum robot system. 
Secondly, an ILMI algorithm was developed to solve the 
stabilization conditions of synthesis problems for the 
nonlinear inverted pendulum robot system. Finally, in order 
to illustrate the applicability of the present fuzzy controller 

design procedure, a numerical simulation for the inverted 
pendulum robot system has been shown. 
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