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Abstract—Low inter-core communication overheads are crit-
ical for pipelined multithreading (PMT) to using multi-core
processors (MCPs) to improve the performance of general
sequential applications. However, conventional software queue
based communication mechanism will bring significant com-
munication overheads, which limit the potential performance
and hinder the wide commercial use. While dedicated inter-
core communication mechanism has been proposed, it demands
chip redesign effort, costs so much and needs extensions to ISA.

This paper addresses this problem and proposes a novel
clustered communication mechanism to minimize the commu-
nication overheads from the average standpoint. We observe
that the PMT performance is very sensitive to inter-core
communication overheads, but is insensitive to amount of
parallelisms. Based on the observation, we can achieve very low
average communication overheads (ACOs) through sacrificing
a certain amount of parallelisms. The principle of clustered
communication mechanism and how to reduce the ACOs with
this mechanism are presented in detail. A concurrent lock-
free clustered software queue algorithm, which applies this
mechanism, is given to support the pipelined communication.
The algorithm is evaluated on the AMD Phenom four-core
processor and experimental results show its communication
performance is over 10x faster than that of conventional
software queue, and significant PMT performance of real
applications are, therefore, achieved.

Keywords-Pipelined multithreading; commodity multi-core
processors; software queue; clustered communication; low
inter-core communication overheads.

I. INTRODUCTION

Multi-core processors (MCPs) have been widely accepted
as predominant computing architecture. Machines with two
to four cores have dominated current commodity computers,
and future machines promise more cores [1], [2]. Although
MCPs can improve the performance of multiple applications
and multi-threaded applications, they can do nothing to im-
prove the performance of sequential applications. Therefore,
it is an important issue to parallelize sequential applications
into multi-threaded ones executing on multiple contexts for
higher performance.

Recent work (StreamIt[3], Coarse-grained pipeline[4],
Decoupled Software Pipelining (DSWP)[5], and others[6])
shows that pipelined multithreading (PMT) techniques have
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great applicability to parallelizing general programs, such
as uncounted loops, control flow and irregular pointer-based
memory access[7]. These techniques parallelize sequential
applications into multiple stages that are executed by multi-
ple threads. These threads are bound to different cores and
run concurrently.

While PMT techniques show great promise, current MCPs
are without architectural support for pipelined communi-
cation. The significant inter-core communication overheads
limit the potential performance and hinder the wide commer-
cial use. The programmers or compilers have to exploit long
running threads with minimal communication[4], [8]. Al-
though dedicated communication mechanism for multi-core
architecture, termed as synchronization array[9], has been
proposed, it demands chip redesign efforts, costs so much
and needs extensions to ISA. Software queues[10], [11]
avoid these shortcomings. Based on the memory consistency
or cache coherence implementation on general processors,
the shared memory or shared cache can provide complete
support for pipelined communication. However, the main
drawback is the software queue will bring significant over-
heads, which tend to negate most benefit from pipeline or
even lead to performance degeneration over the sequential
applications.

This paper addresses this problem and proposes a novel
clustered communication mechanism to minimize the com-
munication overheads from the average standpoint. Our
researches show that the PMT performance is very sensitive
to the delay from frequent communication operations and
inter-core transit delay, but is insensitive to the amount of
parallelisms. Based on the observation, we can achieve very
low average communication overheads (ACOs) by sacrific-
ing a certain amount of parallelisms. A concurrent lock-
free clustered software queue algorithm, which applies the
clustered communication mechanism, is given. Experiments
on the AMD Phenom four-core processor show that the clus-
tered software queue is over 10x faster than the conventional
software queue. Further evaluation on real applications also
demonstrates that it is very effective to improve the PMT
performance. Thus, the clustered communication mechanism
makes it possible to construct efficient PMT on commodity
MCPs without any specific hardware support.

The rest of this paper is organized as follows. Section II
analyzes the PMT performance characteristics and motivates
this research. Section III presents the principle of clustered
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             1. while(node=node->child){
             2.    sum+= node->value;
                  } 
(a) Loop containing recursive data structure

while(node=node->child){
   enqueue(node);
} 
     (b) Producer thread

while(node=dequeue()){
    sum+= node->value;
}
   (c) Consumer thread

Figure 1. A PMT example
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Figure 2. Effect of COMM-OP and transit delays on PMT performance

communication and analyzes how to reduce communication
overheads with this mechanism. Section IV gives a clus-
tered software queue algorithm, which applies the clustered
communication mechanism, to support single-producer and
single-consumer pipelined communication. Section V evalu-
ates the clustered software queue on commodity MCPs and
also demonstrates its effectiveness on some real applications.
The related work is discussed in Section VI, and Section VII
concludes the paper.

II. PMT PERFORMANCE CHARACTERISTICS

This section analyzes the PMT performance character-
istics from two major aspects: communication overheads
and amount of parallelisms, to show their effects on the
performance. This theoretically illustrates why clustered
communication is appropriate for PMT.

A. Sensitive to Communication Overheads

To illustrate the basic concepts of PMT, we give an
example, as shown in Figure 1, in which a loop containing
recursive data structure is decomposed into two threads:
producer thread and consumer thread. These two threads
execute different parts of the loop body and run concur-
rently. One important feature of PMT is the dependent data
between stages is acyclic. The data only flows in the forward
direction. The inter-thread communication is supported by
concurrently enqueuing (dequeuing) data via a shared queue.
Due to the enqueue and dequeue operations, significant
communication overheads occur, which become the PMT
performance bottleneck.

The inter-core communication overheads can be further
divided into communication operation (COMM-OP) delay

and transit delay[10]. The COMM-OP delay refers to the
time taken to execute communication instructions to en-
queue (dequeue) data into (from) queue. This delay depends
on the amount of instructions, synchronization mechanism
and specific hardware implementation. Fewer instructions
and responsive synchronization mechanism tend to lower
COMM-OP delay. The transit delay refers to the time taken
to transfer a data value from one core to another. This
delay will increase with the physical separation among cores.
Compared with shared memory, shared cache due to closer
connection among cores tends to lower transit delay.

Figure 2 shows the effect of COMM-OP and transit delays
on the PMT performance. Assume the queue has three slots.
The executions of producer and consumer overlap at least
three times. The producer first does the useful computation,
labeled as computation time. Then, it writes the data into
the queue if there is empty slot. The time taken to execute
enqueue operation is labeled as COMM-OP delay. Since
there are three slots, it can execute next two iterations
without waiting for the consumer. The time taken to execute
one producer’s iteration is the sum of computation time and
COMM-OP delay. Since the producer does not request data
from other cores and only write the data into the local cache,
there is no inter-core transit delay.

The consumer thread, on the other hand, first executes the
dequeue operation and reads the data. Since the requested
data exists in the remote (producer’s) cache, it has to fetch
the data to the local (consumer’s) cache. The time taken
to fetch data is labeled as transit delay, and the time taken
to execute dequeue operation is also labeled as COMM-OP
delay. After getting the data, the consumer continues to do
the useful computation, also labeled as computation time. As
a result, the time taken to execute one consumer’s iteration is
the sum of transit delay, COMM-OP delay and computation
time.

Besides the two kinds of overhead, there also are other
overheads. Since some queue slots may be located in a
single cache line, the concurrent access to a single cache line
will incur cache line ping-ponging between producer and
consumer, and result in frequent cache misses. This over-
head, referred to as false sharing overhead, will increase the
COMM-OP delay. Furthermore, the actual data bandwidth
on specific machine also affects the COMM-OP and transit
delays.

The above analysis shows that the COMM-OP and transit
delays are both on the critical execution path of PMT, and
they directly prolong the execution time of PMT, so the PMT
performance is very sensitive to these delays, especially
for fine-grained pipeline, and reducing them can directly
improve the PMT performance.

B. Insensitive to Amount of Parallelisms

The basic parallelization feature of PMT is the threads’
execution overlaps each other. The overlap times will affect
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Figure 3. Effect of amount of parallelisms on PMT performance

Table I
RATIO OF LOST SPEEDUP TO MAXIMUM SPEEDUP

Stage number
Amount of parallelisms (N)

10 50 100 150 200

2 0.091 0.020 0.010 0.007 0.005

3 0.167 0.038 0.020 0.013 0.010

4 0.231 0.057 0.029 0.020 0.015

5 0.286 0.074 0.038 0.026 0.020

6 0.333 0.091 0.048 0.032 0.024

how much benefit can be obtained from the pipelined
execution. We use the amount of parallelisms to denote
the overlap times. This subsection tries to show the effect
of amount of parallelisms on performance, and concludes
that the performance becomes insensitive to the amount of
parallelisms, once it is large enough. When the dependent
data is communicated one by one between stages, the
amount of parallelisms equals to the iteration number.

To illustrate the effect of amount of parallelisms on
PMT performance, we assume an ideal pipeline, in
which the communication overheads are neglected, and the
pipeline stage sizes are well balanced. An general speedup

formula,
∑S

1
Ti

TL+

∑
i6=L

Ti

N

, can be concluded to calculate the

PMT speedup, where N is the amount of parallelisms, S
is the stage number, Ti is the execution time of stage i ,
and stage L is the longest stage. Because the stages are
well balanced (T1=T2=...=TS), the formula can be further
simplified to N×S

N+S−1 . This means for a specific pipeline the
PMT performance only depends on the stage number and the
amount of parallelisms. According to this speedup formula,
we plot the PMT speedup, shown in Figure 3, with the
increase of amount of parallelisms, when the stage number
is 2, 3, 4, 5 and 6 respectively.

This figure shows that the performance improvement is
nonlinear with the increase of amount of parallelisms. When
it is large enough, the PMT performance is almost close to
the theoretical maximum performance. Table I lists the ratio
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K

(a) Abstract PMT execution model
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(b) Execution procedure of producer and consumer

Figure 4. Pipeline execution model with clustered communication

of lost speedup to theoretical maximum speedup,SP∞−SPN

SP∞
,

when the amount of parallelisms is 10, 50, 100, 150 and
200. For example, the ratio of lost speedup to theoretical
maximum speedup for a four-stage pipeline is 5.7%, when
N is 50. This fact shows that the PMT performance becomes
insensitive to the amount of parallelisms, only if it is
large enough. Although we utilize the above ideal pipelines
to illustrate the effect of amount of parallelisms on the
performance, this fact also applies to general pipelines.

Considering the PMT performance characteristics, we
propose a novel clustered communication mechanism below
for pipelined communication, which can minimize the com-
munication overheads from the average standpoint through
sacrificing a certain amount of parallelisms. Since the com-
munication overheads are reduced, the PMT performance
can be improved.

III. CLUSTERED COMMUNICATION MECHANISM

A. Principle of Clustered Communication

In conventional pipeline, the data between stages is com-
municated one by one in the forward direction, and the
execution is driven by the first stage. The producer (P)
produces a single data item and then enqueues this item
into the queue (Q). When the consumer (C) finds there is
available data item in Q, it will dequeue the item and do the
useful work.

If the producer delays the enqueue operation until it
produces multiple data items, and the consumer delays the
useful computation until it dequeues multiple data items, the
pipeline will execute in a different model[15], as shown in
Figure 4 (a). In this model, the communication unit between
stages is not a single data item, but multiple data items.
We call this kind of communication mechanism clustered
communication. The meaning of ”clustered” is the multiple
data items are clustered together as a communication unit.

Figure 4 (b) further illustrates the execution process of
producer and consumer threads. In each pipeline frame,
the producer will execute multiple (K) iterations and then
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enqueue the multiple data items. The consumer will dequeue
multiple data items and then execute multiple iterations.
The labeled computation time refers the time taken to
execute multiple iterations, and the labeled communication
time refers the time taken to enqueue (dequeue) multiple
data items. When K is one, the PMT will execute like
conventional pipeline.

The clustered communication mechanism has the follow-
ing five features:

1) Delayed threads’ execution. The producer delays the
enqueue operation until it completes specified multiple
iterations, and the consumer delays the useful compu-
tation until it dequeues specified multiple data items.

2) Fully utilize high level caches. The produced data
items can be temporarily stored in the producer’s
cache before being communicated. The total useful
computation time of producer and consumer is not
changed, but the inter-core communication overheads
can be greatly reduced.

3) Low average communication overheads (ACOs). The
key advantage of this mechanism is the ACOs per
each data item are greatly reduced. Next subsection
illustrates the reasons in detail. It is by reducing the
ACOs that the PMT performance is improved.

4) The number of clustered data items, called clustered
data number (CDN), is an important parameter. It
greatly affects the actual communication performance,
and it is critical to select an appropriate CDN for ideal
PMT performance.

5) As a penalty, a certain amount of parallelisms is sac-
rificed. The left amount of parallelisms is dN

K e, where
K is the CDN value. This penalty is acceptable, since
the PMT performance is insensitive to the amount of
parallelisms (only if dN

K e is large enough).

B. Communication Overheads Reduction

Next, we analyze how the communication overheads
are reduced by this mechanism. As illustrated above, the
communication overheads mainly include COMM-OP delay
and transit delay. Besides that, the false sharing also should
be eliminated to avoid the extra overhead due to frequent
cache misses.

False Sharing Elimination: False sharing occurs when
the producer and consumer will be accessing the queue slots
located in a single cache line. It will lead to significant
coherence traffic and bring significant extra overhead. Thus,
it is very important for software queue to eliminate false
sharing.

In clustered communication mechanism, the communi-
cation unit is composed of multiple data items and is
like a chunk that can only be accessed by one thread
(producer or consumer) at a time. During the time when the
producer (consumer) is enqueuing (dequeuing) the chunk,
the consumer (producer) is not permitted to access any data

item of the chunk. This chunk may occupy one or several
cache lines, and forces the producer and consumer can
only access data items located in different cache lines. The
CDN determines the chunk size. There exists a theoretical
minimum CDN to make the chunk size equal to the cache
line size. For example, assume the data item size is 8
bytes, and the cache line size is 64 bytes. The theoretical
minimum CDN will be 8 to make the chunk occupy a
single cache line. A larger CDN value is also effective
to eliminate false sharing, since the chunk will occupy
several cache lines. Compared with previous approach of
eliminating false sharing by inserting empty pads[10], the
clustered communication can avoid wasting large portions
of cache space and make the data transfer more efficient.

Low Average COMM-OP Delay: In conventional single
datum queues, each datum requires one communication
operation and results in one COMM-OP delay. The total
delays are the COMM-OP delay multiplied by iteration
number (N). However, in clustered communication, multiple
data items require only one communication operation, and
the actual total delays are COMM-OP delay multiplied by
dN

K e. Furthermore, the synchronization delay can also be
reduced, since the condition variable (or control data) will
not be frequently modified by the producer and consumer.
This reduces the significant contention on the same location.
On the average standpoint, the COMM-OP delay will be
reduced for each data item.

Low Average Transit Delay: Generally, the data trans-
fer unit between cache to cache or cache to memory is
a single cache line. Although the requested datum only
occupies several bytes of one cache line, the whole cache
line has to be transferred. Because of this, conventional
single datum queues not only make the inter-core data
transfer inefficient, but also will incur conflict access to
the same cache line. However, the clustered communication
mechanism can effectively avoid these shortcomings. As
illustrated early, the communication unit can occupy one or
several cache lines. The data transfer unit is one or several
cache lines data items, which make the data transfer much
more efficient. Furthermore, clustered communication also
provides a chance for a hardware prefetch unit to reduce the
penalties of compulsory cache line misses by transparently
prefetch cache lines into the consumer’s high level cache.
Prefetching provides additional potential for performance
improvement. Thus, the average transit delay can be reduced
overall.

The above analysis shows the clustered communication
mechanism can reduce the communication overheads from
the average standpoint. The actual ACOs can be estimated by
O/K, where O is the time taken to enqueue/dequeue K data
items within one operation. Since the COMM-OP and transit
delays are both on the critical execution path, reducing them
can result in higher PMT performance.
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IV. CLUSTERED SOFTWARE QUEUE ALGORITHM

This section gives a concurrent lock-free (CLF) clus-
tered software queue algorithm, which applies the clus-
tered communication mechanism. This algorithm is suitable
for the single-producer/single-consumer (SP/SC) pipelined
communication. This section also discusses the policy to
select an appropriate CDN parameter to achieve ideal PMT
performance.

A. Queue Structure and Algorithm

To implement the clustered communication, we should
make sure that the multiple data items can only be accessed
by one thread at a time. That is, before the producer
completely enqueues the multiple data items, the consumer
is not permitted to dequeue any data item. And, before the
consumer completely releases the queue slots, the producer
is not permitted to enqueue any data item.

Figure 5 shows a two-level array based queue structure,
which is composed of a tail index, a head index, and
an array based slots in the first level. And in the second
level, each slot is further composed of a pair of nodes: a
flag condition variable and a chunk of array based sub
slots. Figure 6 shows the CLF clustered software queue
algorithm based on the two-level queue structure. Since
only a single producer enqueues the data and a single
consumer dequeues the data, no explicit mutex is required to
protect the queue[12]. The tail and head indices are updated
exclusively by the producer and consumer, and they as
thread-local variables can be stored locally in the producer’s
and consumer’s cores respectively. This avoids any penalty
for data coherent. The queue utilizes conditional variable
as fine-grained signal to make sure the correct sequential
access of producer and consumer to the queue slots (first-
level). The chunk nodes containing multiple sub slots are
used to store the multiple data items.

To enqueue data items, the producer (consumer) will
spin[13] until the flag condition variable shows the queue
slot is empty (full). Then it will acquire the right to access
the sub slots to enqueue (dequeue) all data items. The data
items are enqueued (dequeued) between the chunk node
and the private data array. This kind of memcpy block data
transfer achieves much higher bandwidth. After that, the flag
condition variable is signaled, and the tail (head) index is
updated to point to next queue slot.

Two parameters, SLOTS and SUB SLOTS, are defined in
the queue. The SLOTS represents the available queue slot
size, and the SUB SLOTS corresponding to the CDN value
represents the available sub slot size. The actual total queue
size is SLOTS×SUB SLOTS. These two parameters affect
the actual communication performance.

It is easy to prove the correctness of above algorithm. Like
conventional single datum software queues, the clustered
software queue treats the multiple data items as a chunk.
The flag condition variable, head and tail indices ensure
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Figure 5. Two-level array based queue structure

void enqueue_clustered (int *data) {
    //if all slots are full, spin
    while (queue[tail].flag) ;
    //enqueue a chunk of data items
    memcpy(queue[tail].chunk,data,
                SUB_SLOTS*sizeof(int));
    queue[tail].flag=1;
    tail=(tail+1)%SLOTS;
}

void dequeue_clustered(int *data) {
    //if all slots are empty, spin
    while (!queue[head].flag) ;
     //dequeue a chunk of data items
     memcpy(data,queue[head].chunk,
                 SUB_SLOTS*sizeof(int));
     queue[head].flag=0;
      head=(head+1)%SLOTS;
}

Figure 6. Clustered software queue algorithm

the producer and consumer can only access one queue slot
each time. Since each queue slot contains multiple sub slots
which are closely coupled, it makes the multiple data items
can only be accessed by one thread at a time. The sub slot
is implemented based on array structure, which makes the
data items located in the contiguous spaces and improves
the efficiency of data transfer. As a result, accessing multiple
data items will be accessing one or several cache lines.

B. Policy of Clustered Data Number Selection

The clustered data number (CDN) is an important pa-
rameter. It greatly affects the communication performance
of clustered software queue. Experiment results (given in
evaluation section) show that there is a regular reduction
pattern of ACOs with the increase of CDN, and the ACOs
become stable when the CDN is large enough (≥64) in spite
of a little reduction.

Since the amount of parallelisms will be reduced due to
the clustered communication, we can select an appropriate
CDN for applications according to the iteration number and
the regular reduction pattern. For large iteration number, it
is natural to select a large CDN (such as 64) for lower
ACOs. This can result in higher PMT performance. For
small iteration number, it is a trade-off on the left amount
of parallelisms and the ACOs. For actual applications, the
loop should have at least 103 iterations for ideal PMT
performance.
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Table II
EXPERIMENTAL PLATFORM

Cores
AMD Phenom 9600, four cores, 2.3GHz

L1: 128KB*4, 64B line size, 3-cycle latency

L2: 512KB*4, 64B line size, 13-cycle latency

Shared cache L3: 2MB*1, 64B line size, 32-cycle latency

Memory 4.0GB, 138-cycle latency

V. EVALUATION

This section evaluates the above clustered software queue
algorithm on commodity MCPs. Experimental results show
that the clustered software queue can achieve much higher
communication performance, and is also effective on im-
proving the PMT performances of real applications.

The AMD Phenom[14] was used as the experimental
platform. This platform has four cores. One important fea-
ture of the multi-core processor is that it has a L3 cache
shared among the four cores. It provides low inter-core
communication latency. Detailed parameters, such as cache
line size, cache and memory latencies, are listed in Table II.

We first used the sample loop of Figure 1, which is
isolated from the benchmarks, to evaluate the clustered
software queue. This two-stage pipeline was rewritten to
support the clustered communication with the approach
in[15]. This sample loop provides conveniences to control
the queue parameters, such as queue slot size, sub slot size
and data size. The iteration number was set 10,000.

To demonstrate the effectiveness of clustered software
queue, we also applied the clustered software queue to
some real applications extracted from SPEC CPU 2000
benchmarks. The results show that the PMT performances
were generally improved so much compared with the per-
formances without using this mechanism.

A. Communication Performance

As the clustered software queue utilizes a two-level array
structure, we first kept queue slot size (first level) constant
and set its size 64, and varied the sub slot (second level) dif-
ferent sizes, which correspond to CDN values. The average
communication overheads (ACOs) were calculated through
dividing the execution time of single enqueue or dequeue
operation by CDN value.

In the evaluation, we also considered the impact of data
size. Two factors affect the data size. One is the data type.
Each data type has its own data size. Another is the data
count. In practice, it is usual that there is more than one
data dependence between stages. To avoid inserting multiple
communication operations, compound structure may be used
to pack the multiple data dependences into a compound data,
which is forwarded as one data item. The actual compound
data size varies with the contained data count. We set the
data size 8B, 16B, 32B, 48B and 64B.
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Figure 7. Communication performances of enqueue and dequeue opera-
tions with the increasing of CDN value

Figure 7 shows the communication performances of en-
queue and dequeue operations with the increasing of CDN
value. The x axis represents the CDN values, and the y axis
represents the ACOs (cycles) for a specific CDN. For each
data size, there is one curve showing how the ACOs are
reduced with the increase of CDN.

A common characteristic of the two operations is that their
ACOs are both reduced along with the increase of CDN. The
curves present a regular reduction pattern of ACOs, which
may be divided into two reduction stages. In the first stage
(<64), the reduction of ACOs is very soon and great. The
reasons of that are the false sharing is eliminated and the
average COMM-OP and transit delays are reduced at the
same time. In the second stage (≥64), the reduction becomes
slow and stable. This shows that the false sharing has been
eliminated and the COMM-OP delay and transit delay also
have been reduced almost to their lower limits. The regular
reduction pattern shows that the ACOs have a lower limit
and can’t be continually reduced through increasing CDN.
We use the value 64 to divide the two stages, since the
ACOs become almost stable after this value in spite of a
little reduction.

Comparing the curves for different data sizes, we can find
that larger data size tends to larger ACOs for the same CDN.
The key reason is the larger data size will take more data
transfer time. For producer, the data is transferred between
high level cache to the shared cache (to memory in first
access), and for consumer the data is transferred among the
local cache to the remote cache. When CDN is 64, the ACOs
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Figure 8. The average communication performances of enqueue and
dequeue operations across all data sizes

of enqueue operation are 8 cycles, 12 cycles, 20 cycles, 27
cycles and 37 cycles corresponding to the data size 8B, 16B,
32B, 48B and 64B.

Figure 8 compares the average performances of enqueue
and dequeue operations across all the five data sizes. This
figure shows that although the performance of enqueue
operation is generally higher than that of dequeue operation,
the actual performance gap is not so large. This shows that
the shared cache is effective to lower the inter-core transit
delay.

To calculate the actual communication performance im-
provement, we compared the performances when CDNs are
1 and 64. When CDN is 1, the clustered software queue is
same to the conventional single datum queue. We selected 64
as the CDN value, because this value is not so large, but can
result in much low ACOs. The ACOs of enqueue operation
are 246.2 cycles and 20.8 cycles, and the ACOs of dequeue
operation are 248.8 cycles and 23 cycles, corresponding to
the CDN values 1 and 64. As a result, the performances of
enqueue and dequeue operations are 11.8x and 10.8x faster
than those of single datum software queue.

B. Impact of Slot Size on Communication Performance

In above experiments, the queue slot size was constant
and was set 64. We further evaluated its impact on the
communication performance. We kept the sub slot size
(CDN) constant and set the value 64, but varied the queue
slot size from 32 to 256. The five data sizes were same to
the above experiments.

Figure 9 shows the impact of queue slot size on the
performances of enqueue and dequeue operations. For each
data size, there is a group of bars that show the ACOs
for five queue slot sizes (32-slot, 64-slot, 96-slot, 128-slot
and 256-slot). According to the figures, we found that the
performance of enqueue operation is sensitive to the queue
slot size. The performance is improved for large queue slot
size, especially when forwarding large data size, such as
the 64-byte data size. While, the performance of dequeue
operation is almost insensitive to the queue slot size for
all data sizes. These two figures also clearly show the
actual communication performances of enqueue operation
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Figure 9. Impact of queue slot size on communication performances of
enqueue and dequeue operations

and dequeue operation. The average ACOs of enqueue
(dequeue) operation across the five queue slot sizes are 7.6
(11) cycles, 11 (15) cycles, 17.6 (22.4) cycles, 24.2 (30.4)
cycles and 32.2 (37.4) cycles, corresponding to the data size
8B, 16B, 32B, 48B and 64B.

C. Effectiveness on Improving PMT Performance

We have shown the clustered software queue can achieve
higher communication performance with an appropriate
CDN. We further evaluate its effectiveness on improving
PMT performance.

Five loops were extracted from SPEC CPU 2000 bench-
marks, as shown in Table III. The 181.mcf and 188.ammp
benchmark loops contain recursive data structure, and the
179.art, 183.equake and 300.twolf benchmark loops contain
cross-iteration data dependences, so they all could not be
parallelized with DOALL parallelism[7]. The queue slot size
and the sub slot size were both set 64 (so the total queue
size is 4096). The loops whose iteration number is under
103 were excluded to keep enough parallelisms (at least 10
for two-stage pipeline). Compound structure was utilized to
pack multiple data dependences.

Because the experimental platform has only four cores,
we decomposed the benchmark loops into four threads at
most. Taking into account the relative sizes of computa-
tion and communication, we decomposed the 181.mcf and
188.ammp loops into two-threaded pipeline and decomposed
179.art, 183.equake and 300.twolf loops into four-threaded
pipelines[15], which contain parallel sub stages, as shown
in the last column of Table III, to balance the stage sizes.
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Table III
STATISTIC INFORMATION OF SPEC CPU 2000 BENCHMARK LOOPS

Benchmark Function
Dependence Data Iteration dN

K
e Decomposed pipeline

count size number

181.mcf refresh potential() 1 8B 18101 283 one producer/one consumer

188.ammp a tether() 1 8B 9582 150 one producer/one consumer

179.art simtest2() 1 8B 10000 157 one producer/three consumers

183.equake smvp() 2 16B 30169 30 one producer/three consumers

300.twolf initialize cost() 1 8B 1920 30 three producers/one consumer
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Figure 10. PMT performance over single threaded version when CDN=1
and CDN=64

The single threaded (baseline) and the multi-threaded appli-
cations were compiled with the GNU C compiler.

Figure 10 shows the PMT performances of the five
selected loops over the single threaded version. For each
loop, the graphs compare the loop speedups obtained by
setting CDN 1 and 64 (this is the only difference). When
CDN is 1, the speedup ranges from 61.3% to 152.4%,
and the geometric mean speedup is 94.4% across these
loops. In comparison, when CDN is 64, the speedups range
from 118% to 221.1%, and the geometric mean speedup is
156.7%. The 183.equake benchmark loop is a long running
loop body, which makes the speedup not so sensitive to the
communication overheads, and the loop speedup is improved
from 152.4% to 173.3%. The 300.twolf benchmark loop is
decomposed into a two-stage pipeline, in which there are
three producer threads and one consumer thread. The parallel
sub stages greatly improve the PMT performance. The
experiment results indicate that the clustered software queue
with an appropriate CDN value is effective on improving the
PMT performance.

VI. RELATED WORK

Concurrent software queues have been widely researched
in multiprocessor architecture to ensure the consistency of
concurrent accesses. Generally, algorithms for concurrent
software queues have two principal strategies: blocking and
non-blocking (lock-free). Blocking algorithms mostly use
critical sections protected by mutual exclusion locks. Since
the performance of mutual exclusion locks is degraded

significantly in parallel applications due to busy-waiting[16],
lock-free algorithms were widely researched and used in
parallel applications and operating systems[17], [18], [19],
[20], [21], [22].

Most of the previous work on CLF software queues
focused on providing general implementation for multi-
producer/multi-consumer (MP/MC). Based on some hard-
ware atomic primitives, such as compare-and-swap (CAS) or
load-linked/store-conditional (LL/SC), provided on modern
processors, these algorithms may guarantee at least one
process of those trying to concurrently update queue will
succeed in completing its operation within finite time. How-
ever, the ABA problem[16] introduced by the synchroniza-
tion primitives should be avoided to keep the correctness
of concurrent accesses. Michael[16], Ladan-Mozes [17],
Prakash[19], Scherer III[20] implemented efficient CLF soft-
ware queues with hardware atomic primitives and presented
their methods to avoid the ABA problem.

As a special case of MP/MC queues, the SP/SC software
queues are suitable for the pipelined communication. Some
extra operations in MP/MC queues are not necessary any
more. For example, the ABA problem does not exist in
SP/SC queues. Lamport[12] proved that the locks could be
removed in SP/SC case under sequential consistency, and
presented the well known Lamport’s queue that removed the
explicit synchronization at the algorithmic level. However,
in the Lamport’s queue, there are still coupled control data
(head and tail indices) between producer and consumer. The
producer and consumer have to frequently modify the same
control data and result in poor performance. Giacomoni[11]
further eliminated the implicit synchronization on the control
data by replacing the head and tail indices with NULL,
and presented the FastForward queue for efficient pipelined
communication. To eliminate false sharing, it introduced
a temporal slip technique. In comparison with the clus-
tered communication, the temporal slip couldn’t reduce the
COMM-OP delay and transit delay, so the communication
performance was limited.

Compared with the previous SP/SC software queues,
the clustered software queue technique applies a clustered
communication mechanism that can minimize the inter-core
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communication overheads from the average standpoint. It is
not only can avoid the penalty from false sharing, but also
can greatly reduce the average COMM-OP delay and aver-
age transit delay. Actual experiments showed this clustered
software queue can achieve much higher communication
performance, and therefore can significantly improve the
PMT performance.

VII. CONCLUSIONS

Although pipelined multithreading (PMT) techniques have
shown great promise to parallelizing general programs for
higher performance, significant inter-core communication
overheads limit the potential performance and hinder the
wide commercial use. To handle this problem, this paper
proposed a clustered communication mechanism, which can
achieve much higher average communication performance
by eliminating false sharing and reducing COMM-OP and
transit delays. A CLF clustered software queue algorithm,
which applied this mechanism, was given. Actual experi-
mental results showed its communication performance was
over 10x faster than that of conventional software queue,
and higher PMT performance improvement, therefore, was
achieved. As a result, the clustered communication mech-
anism makes it possible to construct efficient PMT on
commodity multi-core processors without relying on specific
hardware.
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