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Abstract— Topic-based stochastic models such as
the probabilistic latent semantic analysis (PLSA) are
good tools for adapting a language model into a spe-
cific domain using a constraint of global context. A
probability given by a topic model is combined with
an n-gram probability using the unigram rescaling
scheme. One practical problem to apply PLSA to
speech recognition is that calculation of probabili-
ties using PLSA is computationally expensive, that
prevents the topic-based language model from in-
corporating that model into decoding process. In
this paper, we proposed an algorithm to calculate
a back-off n-gram probability with unigram rescaling
quickly, without any approximation. This algorithm
reduces the calculation of a normalizing factor drasti-
cally, which only requires calculation of probabilities
of words that appears in the current context. The ex-
perimental result showed that the proposed algorithm
was more than 6000 times faster than the naive cal-
culation method.

Keywords: probabilistic latent semantic analysis, uni-

gram rescaling, n-gram, back-off smoothing

1 Introduction

A language model is an important component of a speech
recognition system [1]. Especially an n-gram model is
widely used for speech recognition purpose. Although an
n-gram is a simple and powerful model, it has a drawback
that it is strongly affected by a domain of the training
data, and thus the performance is greatly deteriorated
when applied to speech from other domain.

To overcome this problem, language model adaptation
techniques have been developed so far [2]. There are
various types of language model adaptation methods;
among them, adaptation methods based on topic models
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are promising because they exploit global constraint (or
“topic”) of a speech into calculation of word occurrence
probabilities.

There are many topic models, including the latent seman-
tic analysis (LSA) [3], the probabilistic latent semantic
analysis (PLSA) [4], and the latent Dirichlet allocation
(LDA) [5]. They use a vector representation of a word or
a document. In these models, a word or a document is
regarded as a point in a vector space or a continuous prob-
ability space. Then a probability of a word is calculated
by estimating a point in the space under a constraint of
the adaptation data.

These topic models only estimate unigram probabilities,
where the occurrence probability of a word is indepen-
dent of the previous or following words. However, bi-
gram or trigram model is used as a language model of
speech recognition, where a word occurrence probabil-
ity is determined based on one or two preceding words.
Therefore, we need to combine the unigram probabil-
ity obtained from the topic model with the bigram or
trigram probability. Gildea and Hofmann proposed the
unigram rescaling for combining these probabilities [6].
The unigram rescaling is a method to adjust an n-gram
probability according to the ratio between the unigram
probability from the topic model and the unigram model
without the topic model. The unigram rescaling can be
applied any topic model [7, 6], and is proved to be effec-
tive compared with other combination methods such as
linear combination [8]. The probability combination of a
topic model and an n-gram model is widely used in many
speech recognition researches [9, 10, 11].

A problem of the unigram rescaling is its computational
complexity. The unigram rescaling needs a normalization
of probability, and calculation of the normalizing factor
needs calculation of probabilities that is proportion to
the vocabulary size. Furthermore, we need to compute
the normalizing factor for all word history independently,
the number of which are proportion to the vocabulary
size for bigram, and to the square of the vocabulary size
for trigram. When the adaptation data are fixed, the
calculation of the normalizing factor is not a big problem
because we need to calculate them only once when the
adaptation data are given. However, the calculation of
the normalizing factor can be a matter when we adapt
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the language model dynamically (for example, word-by-
word) [6]. In this case, the calculation of word occurrence
probability becomes several thousand times slower.

In this paper, we propose an algorithm to expedite the
calculation of unigram-rescaled n-gram probability. The
basic idea of the proposed algorithm is to combine the cal-
culation of unigram rescaling with calculation of the back-
off n-gram. Using the proposed algorithm, we can calcu-
late the rescaled probability by only considering those
words actually appear in the linguistic context.

2 Unigram rescaling

A PLSA or other topic-based model gives an occurrence
probability of a word w in a document d as

P (w|d) =
∑

t

P (w|t)P (t|d) (1)

where t is a latent topic. To combine a document-
dependent word occurrence probability with an n-gram
probability, the unigram rescaling is used:

P (w|h, d) =
1

Z(h, d)
P (w|d)
P (w)

P (w|h) (2)

Here, h is a word history where a word w occurs. P (w) is
a unigram probability and Z(h, d) is a normalizing factor
calculated as follows.

Z(h, d) =
∑
w∈V

P (w|d)
P (w)

P (w|h) (3)

where V is a vocabulary.

According to the Eq. (3) naively, calculation time of the
normalizing factor Z(h, d) is in proportion to the vocab-
ulary size, which means the calculation of a unigram-
rescaled probability takes several thousands times slower
than calculation time of a simple n-gram probability.
This is a problem when using unigram-rescaled proba-
bilities in a decoding process.

3 Back-off n-gram

To calculate an n-gram probability, back-off
smoothing[12] is often used. Consider calculating a
trigram probability P (wi|wi−1

i−2), where wk
j denotes a

word sequence wj . . . wk. The trigram probability is
calculated based on a trigram count N(wi

i−2), which is
the number of occurrence of word sequence wi−2wi−1wi

in a training corpus. Based on maximum likelihood
estimation, the trigram probability is estimated as

PM (wi|wi−1
i−2) =

N(wi
i−2)

N(wi−1
i−2)

. (4)

However, the probability PM becomes zero when the
word sequence wi

i−2 does not occur in the training corpus.

To avoid the “zero-frequency” problem, probabilities of
unseen trigrams are estimated from bigram frequencies.

P (wi|wi−1
i−2) = β(wi

i−2)PM (wi|wi−1
i−2) if N(wi

i−2) > 0
α(wi−1

i−2)P (wi|wi−1) if N(wi−1
i−2) > 0

P (wi|wi−1) otherwise
(5)

In this equation, 0 < β(wi
i−2) < 1 denotes a discount

coefficient, which is used to reserve a certain amount
of probability mass for unseen n-grams. Various meth-
ods for determining the discount coefficient β have been
proposed, including the Good-Turing discounting [12],
Witten-Bell discounting [13] and Kneser-Ney discounting
[14]. α(wi−1

i−2) is a normalizing factor of n-gram calcula-
tion, calculated as follows.

α(wi−1
i−2) =

1 −
∑

w∈V1(w
i−1
i−2) β(wi

i−2)PM (w|wi−1
i−2)∑

w∈V0(w
i−1
i−2) P (w|wi−1)

(6)

Here, V0(wi−1
i−2) denotes a set defined as

V0(wi−1
i−2) = {w|w ∈ V and N(wi−2wi−1w) = 0}, (7)

and V1(wi−1
i−2) is a complementary set of V0, i.e.

V1(wi−1
i−2) = {w|w ∈ V and N(wi−2wi−1w) > 0}. (8)

The bigram probability P (wi|wi−1) in Eq. (5) is calcu-
lated using the back-off smoothing recursively. Note that
the coefficients α and β are calculated when the language
model is generated.

4 Fast calculation of unigram rescaling

4.1 The bigram case

Let us consider calculating a bigram probability with un-
igram rescaling. By rewriting Eq. (2), we obtain

P (wi|wi−1, d) =
1

Z(wi−1, d)
P (wi|d)
P (wi)

P (wi|wi−1). (9)

When wi ∈ V1(wi−1), we calculate Eq. (9) as

P (wi|wi−1, d) =
β(wi

i−1)
Z(wi−1, d)

P (wi|d)
P (wi)

PM (wi|wi−1), (10)

and when wi ∈ V0(wi−1), assuming P (wi) = PM (wi), we
obtain

P (wi|wi−1, d) =
α(wi−1)

Z(wi−1, d)
P (wi|d)
P (wi)

PM (wi) (11)

=
α(wi−1)

Z(wi−1, d)
P (wi|d)

Therefore the normalizing factor Z(wi−1, d) is calculated
as

Z(wi−1, d) =
∑
w∈V

P (w|d)
P (w)

P (w|wi−1) (12)
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=
∑

w∈V1(wi−1)

P (w|d)
P (w)

β(wi−1w)PM (w|wi−1) + (13)

∑
w∈V0(wi−1)

α(wi−1)P (w|d)

=
∑

w∈V1(wi−1)

P (w|d)
P (w)

β(wi−1w)PM (w|wi−1) + (14)

α(wi−1)

1 −
∑

w∈V1(wi−1)

P (w|d)


Equation (14) indicates that the normalizing factor
Z(wi−1, d) can be calculated by summing up all words
in V1(wi−1), which is a set of words that appears just
after wi−1. As we can assume |V1(wi−1)| ≪ |V0(wi−1)|,
we can expect reduction of calculation time.

4.2 The trigram case

The reduction of calculation in the previous section relies
on the fact that the back-off bigram probability can be
reduced to a unigram probability when the word is con-
tained in V0(wi−1) and the unigram probability cancels
out the denominator of unigram rescaling factor. This
does not hold for the trigram case. However, we can
reduce calculation time of a trigram probability with un-
igram rescaling by considering the bigram normalizing
factor Z(wi−1, d).

The normalizing factor for a trigram probability is calcu-
lated as

Z(wi−1
i−2, d) =

∑
w∈V

P (w|d)
P (w)

P (w|wi−1
i−2) (15)

=
∑

w∈V1(w
i−1
i−2)

P (w|d)
P (w)

P (w|wi−1
i−2) + (16)

∑
w∈V0(w

i−1
i−2)

P (w|d)
P (w)

P (w|wi−1
i−2).

Let the second term of Eq. (16) be

Z0(wi−1
i−2, d) =

∑
w∈V0(w

i−1
i−2)

P (w|d)
P (w)

P (w|wi−1
i−2). (17)

Then Z0(wi−1
i−2, d) can be rewritten as

Z0(wi−1
i−2, d) =

∑
w∈V0(w

i−1
i−2)

P (w|d)
P (w)

α(wi−1
i−2)P (w|wi−1)(18)

= α(wi−1
i−2)

∑
w∈V0(w

i−1
i−2)

P (w|d)
P (w)

P (w|wi−1) (19)

Here, from equation (9) we obtain

Z(wi−1, d)P (wi|wi−1, d) =
P (wi|d)
P (wi)

P (wi|wi−1). (20)

Then Eq. (19) can be rewritten as

Z0(wi−1
i−2, d)

= α(wi−1
i−2)

∑
w∈V0(w

i−1
i−2)

Z(wi−1, d)P (w|wi−1, d) (21)

= α(wi−1
i−2)Z(wi−1, d) × (22)1 −

∑
w∈V1(w

i−1
i−2)

P (w|wi−1, d)


= α(wi−1

i−2) × (23)Z(wi−1, d) −
∑

w∈V1(w
i−1
i−2)

P (w|d)
P (w)

P (w|wi−1)


Finally, we obtain

Z(wi−1
i−2, d) =

∑
w∈V1(w

i−1
i−2)

P (w|d)
P (w)

P (w|wi−1
i−2) + (24)

α(wi−1
i−2)

Z(wi−1, d) −
∑

w∈V1(w
i−1
i−2)

P (w|d)
P (w)

P (w|wi−1)

 .

This equation contains only summation over V1(wi−1
i−2),

which is a set of words that appear just after wi−1
i−2. Note

that calculation of Z(wi−1, d) requires summation over
V1(wi−1), which is larger than V1(wi−1

i−2). However, as we
have only |V| kinds of Z(wi−1, d), we can cache the cal-
culated value of Z(wi−1, d) for a specific d. Therefore, on
calculating Z(wi−1

i−2, d), if Z(wi−1, d) has not been calcu-
lated yet, we first calculate Z(wi−1, d) and then calculate
Z(wi−1

i−2, d). On the other hand, if Z(wi−1, d) has been
calculated, we just use the cached value of Z(wi−1, d) to
calculate Z(wi−1

i−2, d).

4.3 Estimation of calculation time

Let us estimate how fast the proposed calculation algo-
rithm is, based on a simple assumption. When calcu-
lating probabilities of word occurrences in an evaluation
corpus based on Eq. (2), we have to calculate normalizing
factors for all word w in the vocabulary and all history
h in the evaluation corpus. Let Kn be the number of
distinct n-grams that appears in the training corpus, and
Hn be that in the evaluation corpus.

Considering the bigram case, the number of calculation
of probabilities of all distinct bigrams in the evaluation
corpus can be estimated as O(H1K1), because we have
to calculate probabilities of all words in the vocabulary
for each of word history that appears in the evaluation
corpus. On the other hand, the calculation based on Eq.
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(14) only requires probability calculation for those words
that appears just after the current context. Because

Ew[|V1(w)|] =
1
|V|

∑
w

|V1(w)| (25)

=
K2

|V|
=

K2

K1
, (26)

the computational complexity of the proposed mathod is
proportion to O(H1K2/K1).

As for the trigram case, the naive calculation needs
O(H2K1). According to Eq. (24), we need to calculate
all Z(wi−1, d) to calculate the normalizing factors for tri-
gram probabilities, which means the calculation time is
in proportion to O(H1K2/K1 + H2K3/K2).

5 Evaluation by an experiment

5.1 Experimental conditions

We carried out an experiment to actually calculate proba-
bilities of trigrams in a corpus using the naive calculation
method and the proposed algorithm. In this experiment,
we calculated probabilities of all distinct trigrams in the
corpus, that means the calculation of a specific trigram
is conducted only once.

We used the Corpus of Spontaneous Japanese (CSJ) [15]
for both training and testing purpose. The text is ex-
tracted from the XML representation of the corpus, and
we employed the short-unit word (SUW) as a definition
of words. All inter-pausal units were enclosed by the
beginning-of-sentence and end-of-sentence symbols.

We used 2668 lectures drawn from academic presenta-
tions and public speaking, which contain 833140 sen-
tences (word sequences between pauses) and 8486301
words. The vocabulary size was 47309, which includes
words that appeared more than once in the training cor-
pus. We trained a trigram model from the training cor-
pus. The cut-off frequency was set to 1 for the bigram
and 3 for the trigram, which means that the bigrams that
occurred only once were excluded from the n-gram calcu-
lation, and the trigrams that occurred less than four times
were also excluded from the n-gram calculation . We also
trained a PLSA model from the training corpus using a
parallel training algorithm of PLSA [16]. We used 10
lectures (test-set 1) as an evaluation corpus, which con-
tained 1217 sentences and 30837 words. Numbers of
distinct n-grams in the training and evaluation corpora
are shown in Table 1. In this table, Kn shows the num-
ber of n-grams in the generated n-gram model. Therefore,
the number of distinct trigrams is smaller than that of
bigrams because the trigram counts with small frequency
were cut off while constructing the language model.

Calculation of the PLSA was conducted using a computer
equipped with Intel Celeron 2.80GHz and 1GB memory.

Table 1: Number of distinct n-grams

n-gram Kn Hn

unigram 47100 665
bigram 327604 34296
trigram 208234 72618

Table 2: CPU time for evaluation

Calculation CPU time [sec]
Naive 5683.00
Proposed 0.85

Table 2 shows the evaluation result. Note that this result
does not include the calculation time for PLSA adap-
tation. This result shows that the proposed algorithm
was about 6700 times faster than the naive method that
calculates the normalizing factors for all words in the vo-
cabulary.

6 Conclusion

In this paper, we proposed an algorithm that calculates
probabilities that are calculated by back-off n-gram and
unigram rescaling. This algorithm drastically reduces
calculation of a normalizing factor of unigram-rescaled
probability. From the experimental result, the proposed
algorithm could calculate the unigram-rescaled probabil-
ities 6700 times faster.

We used the proposed algorithm for combining n-gram
and PLSA probabilities, but the proposed algorithm can
be used for combining any language models by unigram
rescaling. Using this calculation algorithm, it becomes re-
alistic to incorporate a unigram-rescaled language model
into the decoder.
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