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Choosing the Best Bayesian Classifier: An
Empirical Study

Stuart Moran*

Abstract—It is often difficult for data miners to
know which classifier will perform most effectively
in any given dataset. Usually an understanding of
learning algorithms is combined with detailed domain
knowledge of the dataset at hand to lead to the choice
of a classifier. We propose an empirical framework
that quantitatively assesses the accuracy of a selection
of classifiers on different datasets, resulting in a set
of classification rules generated by the J48 decision
tree algorithm. Data miners can follow these rules
to select the most effective classifier for their work.
By optimising the parameters used for learning, a
set of rules were learned that select with 78% accu-
racy (with 0.5% classification accuracy tolerance), the
most effective classifier.

Index Terms—Bayesian networks; Data mining; Clas-
sification; Search algorithm; Decision tree.

I INTRODUCTION

The past 20 years have seen a dramatic increase in the
amount of data being stored in electronic format. The
accumulation of this data has taken place at an explosive
rate and it has been estimated that the amount of infor-
mation in the world doubles every two years [1]. Within
this ocean of data, valuable information lies dormant.

Data mining uses statistical techniques and advanced al-
gorithms to search the data for hidden patterns and re-
lationships. However, as data expands and the impor-
tance of data mining increases, a problem emerges. There
are many different classifiers and many different types of
dataset resulting in difficulty in knowing which will per-
form most effectively in any given case. It is already
widely known that some classifiers perform better than
others on different datasets. Usually an understanding
of learning algorithms is combined with detailed domain
knowledge of the dataset at hand for the choice of classi-
fier. Experience and deep knowledge will of course affect
the choice of the most effective classifier - but are they
always right? It is always possible that another classifier
may unknowingly work better.
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In deciding which classifier will work best for a given
dataset there are two options. The first is to put all
the trust in an expert’s opinion based on knowledge and
experience. The second is to run through every possi-
ble classifier that could work on the dataset, identify-
ing rationally the one which performs best. The latter
option, while being the most rigorous, would take time
and require a significant amount of resources, especially
with larger datasets, and as such is impractical. If the
expert consistently chooses an ineffective classifier, the
most effective classification rules will never be learned,
and resources will be wasted. Neither method provides
an efficient solution and as a result it would be extremely
helpful to both users and experts, if it were known explic-
itly which classifier, of the multitude available, is most
effective for a particular type of dataset.

We therefore propose a framework to quantify which of a
selection of classifiers is most effective at mining a given
dataset in terms of accuracy (for our experiments, speed
was not a focus). From this assessment, the J48 learning
algorithm [2] is used to generate a series of rules in the
form of a decision tree which then enables data miners to
select the most accurate classifier given their particular
dataset. (To the best of our knowledge, no other work
has been attempted in such a way.)

This paper is organised as follows. Section II presents
the proposed empirical framework for automatically se-
lecting the best Bayesian classifier. Section III discusses
the performance evaluation metrics. Section IV presents
the experimental results from the 39 datasets selected.
Finally, Section V concludes the paper.

II PROPOSED FRAMEWORK

The empirical framework for automatically selecting the
best classifier is depicted in Fig. 1, which consists of four
main processes, Dataset Categorisation, Classifier Train-
ing, Results Sampling, and Classification Rules Genera-
tion.

The ultimate aim of this research was to find a set of
rules that would allow a user to predict which is the best
classifier for use on their dataset. It was decided that
this could be attempted by applying a learning algorithm
to the initial analysis of which classifier performs best
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Figure 1: An empirical framework for automatically selecting the best classifier.

for each dataset. If a rational system for selecting the
optimum classifier on the basis of the type of dataset to
be analysed could be identified, then the process of data
mining could be made significantly more effective. For
the ease of use, a set of rules in a decision tree format
is desirable. To create such a tree the effective learning
algorithm J48 [2] was selected. The following will discuss
each of the four processes in details.

A Dataset Categorisation

Categorising the datasets has two advantages. First, it
allows an identification of which classifier performs best
for a particular type of dataset. Secondly, it provides a
means to select a representative sample against which a
learning algorithm is tested.

A total of 39 datasets were selected from the UCI Machine
Learning repository!, the WEKA Web site?, and the
Promise repository®. The characteristics of each dataset
and whether univariate outlier detection has been per-
formed are listed in Table 1. Given that the datasets
are of different sizes, in terms of both attributes and in-
stances, it was difficult to use a generic categorising sys-
tem. Nonetheless, having looked at the data as a whole
it was decided that the median values of total instances
and attribute numbers should be used as the basis on
which to categorise them. These were 286 instances and
16 attributes. Using the median values meant that an
equal number of large and small datasets, as defined by
the values, would sit either side of the boundary.

Using these values as thresholds; the datasets were ini-

Thttp://archive.ics.uci.edu/ml/
2http://www.cs.waikato.ac.nz/ml/weka/
Shttp://promisedata.org/

tially split into four groups: those datasets with > 286
and those with <= 286 instances, and within each of
these groups those datasets with > 16 attributes and
those with <= 16. This represented the datasets entirely
in terms of their structure, without reference to the type
of attributes. Using only the structure of a dataset kept
the categorisation simple. No datasets were ever 100%
numeric, due to the fact that the class must always be a
categorical value when used with Bayesian classifiers [2].
For this reason it was decided that three sub-categories
were to be created, one which housed all the datasets
that were 100% categorical and two others which were
50% — 99% categorical and 1% — 49% categorical, respec-
tively. This means that there exist 12 different categories
of dataset. This is summarised in Table 2. Some will hold
more than others, but at least any samples taken will be
representative, using the categorical system as shown in
Table 2.

Table 2: The criteria for categorising datasets based on
the number of instances, attributes and the % of at-

tributes that are categorical.
> 286 Instances
> 16 Attributes < 16 Attributes
100% [ >50% | <50% | 100% | >50% [ < 50%
<286 Instances
> 16 Attributes [ < 16 Attributes
100% | >50% [ <50% | 100% [ >50% [ < 50%

B Classifier Training

After datasets have been categorised, various classifiers
are then trained on them. We mainly focused on Bayesian
network [3] (BN) classifiers. Altogether 8 BN classifiers
have been investigated including Naive Bayes (NB) [4],
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Table 1: List of details of all the datasets used.

Categorical ~ Numeric Missing ~ Univariate

Dataset Inst Attr (%) (%) Values Outliers Source
Balance Scale 625 4 25.00 75.00 0 None UCI
Balloons 20 5 100.00 0.00 0 NA UCI
Breast Cancer 286 10 100.00 0.00 9 NA UCI
Bridges 95 12 66.67 33.33 88 Yes UCI
Car 1728 7 100.00 0.00 0 NA UCI
Chess - krvk 28056 7 57.14 42.86 0 None UCI
Chess - krvskp 3196 36 100.00 0.00 0 NA UCI
CM1 498 22 4.5 95.45 0 Yes Promise
Congress Voting 428 17 100.00 0.00 392 NA UCI
Contact Lenses 24 5 100.00 0.00 0 NA WEKA
Credit Screening 690 16 62.50 37.50 67 Yes UCI
Cylinder Bands 502 39 48.72 51.28 352 Yes UCI
Disease 10 5 100.00 0.00 0 NA UCI
Ecoli 336 9 22.22 77.78 0 Yes UCI
Eucalyptus 736 20 35.00 65.00 448 Yes WEKA
Flag 194 30 10.00 90.00 0 Yes UCI
Grub-Damage 155 9 77.78 22.22 0 None WEKA
Horse-Coli 268 23 69.57 30.43 1927 Yes UCI
Image 210 16 6.25 93.75 0 Yes UCI
Ionosphere 351 35 2.86 97.14 0 None UcCI
KC1 2109 22 4.55 95.45 0 Yes Promise
KC2 522 22 4.55 95.45 0 Yes Promise
Lymphography 148 19 84.21 15.79 0 Yes UCI
Monk 122 7 100.00 0.00 0 NA UCI
Mushroom 8124 22 100.00 0.00 2480 NA UCI
Nursery 12960 8 100.00 0.00 0 NA UCI
PC1 1109 22 4.55 95.45 0 Yes Promise
Pasture 36 23 8.70 91.30 0 None WEKA
Post-Operative 90 9 88.89 11.11 3 None UCI
Segment-Challenge 1500 20 5.00 95.00 0 Yes WEKA
Soybean-large 301 36 2.78 97.22 684 Yes UCI
Soybean-small 47 36 2.78 97.22 0 None UCI
Squash-stored 52 25 16.00 84.00 6 None WEKA
Squash-unused 52 24 16.67 83.33 39 None WEKA
Tae 151 6 16.67 83.33 0 None UCI
Tic-Tac-Toe 958 10 100.00 0.00 0 None UCI
Titanic 2201 4 100.00 0.00 0 None WEKA
‘Weather 14 5 60.00 40.00 0 None WEKA
‘White-Clover 63 32 15.63 84.38 0 Yes WEKA

Averaged One Dependence Estimator (AODE) [5], Tree-
Augmented Naive Bayes (TAN), BN with different struc-
ture learning algorithms such as K2 (BN-K2), Genetic
Search (BN-GS), Simulated Annealing (BN-SA), Greedy
Hill Climber (BN-HC), and Repeated Hill Climber (BN-
RHC). The following will briefly discuss each of them in
turn. More details about these well-known algorithms
can be found in the given references.

Bayesian networks are probabilistic directed acyclic
graphs consisting of a set of variables (nodes) and a set
of directed edges (arcs) between variables. Each variable
has a finite set of mutually exclusive states and each vari-
able Ay with parents By, ..., B, is assigned the probabil-
ity distribution table P(Ag|B, ..., Byn). In the network,
each node represents an attribute and the edges repre-
sent the cause-effect relationships between them. Each
node has a node probability table which stores the joint
probability distribution for all the possible states of the
attribute, given all of its parents. These are then used to
predict the class probabilities for any given instance. To
calculate the probability distribution:

n

,Xn) = [ [ P(Xilparent(X;)) (1)

i=1

P(Xy,...

where n is the total number of states of an attribute, X;

is a state of the attribute X and parent(X;) represents
the set of parent nodes for state X;.

When using Bayesian Networks, difficulty arises when a
considerable amount of attributes and classes are looked
at. An enormous number of instances are needed to es-
timate the probabilities for accurate classification. Naive
Bayes [4](NB) is the simplest Bayesian learning classifier
and it assumes each attribute to be equally important
and independent of the others in an instance, given the
class. To calculate the probability distribution:

P(X,y) = P(y)P(X|y) = P(y) [ | P(Xalparent(X))
d=1
(2)

One Dependence Estimators (ODE) are weaker-
independence variants of the naive Bayes classifier, where
one attribute is chosen to be a parent of all the oth-
ers, in addition to the class attribute. Averaged One
Dependence Estimators (AODE) [5] overcome the at-
tribute independence assumption of naive Bayes. A one-
dependence classifier is built for each attribute, in which
an attribute is set to be the parent of all the other at-
tributes, and by averaging over all possible ODE’s a
highly accurate classification can be achieved. To cal-
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culate the probability distribution:

Zi:lgign&F(ri)Zm Py, z:) P(X|y, z;)

P(y,X) = {i:1<i<n&F(x;)>m}

Where F(z;) is the number of instances having attribute-
value z; and is used to enforce the limit m on the condi-
tional probability estimate.

Tree augmented naive Bayes (TAN) [6] is an extension of
the naive Bayes classifier. TAN removes the naive Bayes
assumption that all the features are independent. The
dependencies between variables, other than the class, are
also taken into account. By adding a tree-like structure
to naive Bayes, each attribute may have, in addition to
the class attribute, one other parent from amongst the
others.

The aforementioned methods can be viewed as a search
for a structure that fits the data best. Starting with a
graph with nodes for each attribute but no edges, each
algorithm uses a search method to add edges to the graph,
based on a metric that checks whether the new structure
is better than the old one. If so, the edge is kept and the
process is continued. The algorithm will stop when there
is no better structure (i.e. the best structure has been
found). This means however, that the structure depends
on the type of search and the metric used to measure its
quality, and so each algorithm should produce a different
result.

Bayesian Network classifiers use different search algo-
rithms to find the optimal way of representing the data.
The accuracy of classification will be different depending
on which particular search algorithm is used by the clas-
sifier. Thus the following search algorithms have been
investigated and treated as classifiers in their own right.

e K2 (BN-K2) [7]. K2 is a score-based greedy search
algorithm for learning Bayesian networks from data.
It maximises the probability of an optimal graph
topology, given a dataset, by using a Bayesian score
to rank different graphs. The algorithm is restricted
by an order on the variables.

e Genetic Search (BN-GS) [2]. Genetic Algorithms
(GAs) are search algorithms based on the idea of ex-
ploring a set of solutions represented by a population
of individuals by using the principle of natural selec-
tion. This results in finding the best solution, or
structure in this case, to be used.

e Simulated Annealing (BN-SA) [8]. Simulated
annealing (SA) is a general purpose combinational
optimisation algorithm. The algorithm has been in-
spired by the process of annealing metal, to harden
it. The basic idea of simulated annealing is to as-
sign to the problem a temperature (a control param-
eter) and think of the cost of a solution as an energy

level. The solution then corresponds with the state
of the metal; as the temperature is lowered, the solu-
tion becomes more defined, with less moves or states
available to it to change to.

e Greedy Hill Climber (BN-HC) [2]. Imagine that
all of the possible solutions to a given problem are
represented as a three-dimensional landscape. HC
will follow the graph from node to node, always in-
creasing the value of the solution, until a local max-
imum is reached. This Bayes Network learning algo-
rithm uses a hill climbing algorithm adding, deleting
and reversing arcs. The search is not restricted by
an order on the variables (unlike K2).

e Repeated Hill Climber (BN-RHC) [2]. Re-
peated Hill Climber searches for Bayesian network
structures by repeatedly generating a random net-
work and applying to it the hill climbing algorithm
mentioned above. The best network found is re-
turned. The advantage of this algorithm is that when
HC gets stuck at a node, a new node is chosen at ran-
dom and HC is restarted. This is repeated k times
and the algorithm returns the best maximum found.

The 8 classifiers described above are then applied to the
39 fully prepared datasets (See Table 1). Each algorithm
has a variety of parameter settings available and all pos-
sible combinations are tested (29 in total). The software
used to complete this testing is the WEKA [9] workbench.
The number of parameters investigated were however re-
stricted by what was provided by WEKA, and are listed
in Table 3. Each of the parameters is explained below [2]:

e UseKernelEstimator (k). The kernel estimator,
when set to true, is designed for use with numeric
attributes rather than a normal distribution. This
means that a difference in performance should be
seen depending on the number of numeric values
available.

o UseSupervisedDiscretisation (Sd). Supervised dis-
cretisation is used to convert numeric attributes to
nominal ones.

e initAsNaiveBayes (iNb). When set to true (default),
the initial structure used for learning learning is a
naive Bayes Network. When set to false, an empty
network is used as the initial network structure.

o markovBlanketClassifier (Mb).  After a network
structure is learned, a correction is applied ensuring
all nodes in the network are a part of the Markov
blanket of the classifier node.

e RandomOrder (R). The order of the nodes in the
network is random, as opposed to the order found in
the dataset.
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e useArcReversal (Ar). When set to true, an arc be-
tween two nodes is reversed by adding arcs from the
opposite parents respectively.

o useTournamentSelection (Ts). This determines the
method of selecting a population in a genetic search
algorithm. When set to true, tournament selection is
used where two networks are picked at random and
the best solution is allowed to contine. When set to
false, the top scoring structures are selected.

AODE had no optional parameter settings. A problem
with the AODE classifier is that it can only be applied
to datasets that are completely categorical, meaning any
numeric data must be discretised via the minimum de-
scription length method. During preliminary tests of
the WEKA software, it was often found that no inter-
vals were created and all of the variables were included
for each class. This would place an unfair bias on the
data, and be non-representational of the original dataset,
which would affect the classification accuracy. For this
reason, it was decided to not use discretisation, meaning
the AODE classifier could only be used on 12 datasets
instead of 39 datasets. After Classifier Training , a large
‘results’ dataset (1073 instances) is formed consisting of
the accuracy of the classifiers learned for all the combi-
nations of the parameters tested.

C'  Results Sampling

Using a variety of sampling techniques, different sam-
ples are taken from the results dataset and stored in a
smaller test dataset. The sampling techniques used is
stratified sampling where the datasets are divided into
sub-populations (in this case categories) and then a sam-
ple is taken from each sub-category to make a larger sam-
ple set. The sample in this case is almost artificial as it
is specifically chosen; the advantage is that the sample is
guaranteed to be representative of the category where it
comes from. The purpose of the Results Sampling step
is to extract the representative samples from each of the
39 datasets to form a test set. The remaining instances
then form a training set to derive the classification rules
as will be described in the subsequence subsection.

D C(lassification Rules Generation

The last step is to use a learning algorithm to analyse
the results generated. Here, the J48 [2] decision tree al-
gorithm is used to generates classification rules in the
form of a decision tree. A set of rules will have been cre-
ated that assigns the most effective classifier available (of
those tested) to a particular dataset (See Figure 4).

The accuracy of these rules is easily discovered by apply-
ing the appropriate decision tree to the test data (sam-
pled from the results dataset). This is possible as we

know which classifier performed the best on each dataset
within the sample from the Classifier Training step.

In summary, the framework generates two main outputs:

o A method for choosing the best classifier. Using the
decision tree learned by J48 from the ‘results’ data,
the user can simply follow the binary tree answering
the relevant questions about their dataset. Eventu-
ally they will reach a leaf node which will tell them
the best classifier to use.

o The most effective Bayesian classifier for a specific
category of dataset. Given that a method for cate-
gorising datasets was created, it is possible to find
which classifier performs the best in any given cat-
egory. Data miners could then consider which cat-
egory their particular dataset belongs to and know
which classifier performs best for that category. This
provides a practical human solution to the problem
of choosing the best classifier in addition to the de-
cision tree produced by J48.

While only a limited subset of classifiers and dataset
types could be tested here, this research shows the feasi-
bility and the potential of the proposed framework. With
a more comprehensive analysis, the final set of rules gen-
erated can expected to be more successful.

III PERFORMANCE EVALUATION METRICS

A statistical analysis is carried out to assess the perfor-
mance of the different classifiers for comparison. These
statistics are explained here.

e Accuracy. In our experiments, accuracy measures
how well each classifier performs during the cross-
validation.

e Mean absolute error. An absolute error is the range
of possible values in terms of the unit of measure-
ment e.g. 10cm+0.5cm. The mean absolute error is
then the weighted average of all the absolute errors
found from cross validations.

e Relative absolute error. This measure is a ratio of
the mean absolute error of the learning algorithm
over the mean absolute error found by predicting the
mean of the training data. The lower the percentage,
the better the performance of the classifier compared
to just predicting the mean.

Once each classifier was run against every dataset, the
statistics of their performance are collated against each
dataset in the form of a table. This detailed statisti-
cal comparison is a comprehensive way of analysing the
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Table 3: The parameter settings each BN classifier makes use of is indicated by a 'X’.

Parameters

NB TAN BN-K2

BN-HC BN-GS BN-SA BN-RHC

KernelEstimator (k) X
S-Discretisation (Sd) X
Intiate As NB (iNb)
markovBlanket (Mb) X
RandomOrder (R)

ArcReversal (Ar)
TournamentSelect(Ts)

eRalle

<>
~
ol el

performance of different classifiers. However, such a de-
tailed analysis can be difficult to interpret. Therefore a
more robust method was created to represent the relative
performance of each classifier. For each dataset, every
algorithm was ranked by assigning a score to its perfor-
mance. The lowest accuracy was given 1, and this value
was incremented for each algorithm that performed bet-
ter. If two algorithms had the same performance, they
were both given the same score. The best performing al-
gorithm for each individual dataset could then be easily
identified.

Performance was evaluated and scores assigned on the
basis of the accuracy of each of the algorithms. This is
a good indicator of performance at a glance. However
it was found that many of the algorithms had a simi-
lar accuracy, and so the mean absolute errors were also
taken into account. The algorithm with the highest accu-
racy and the lowest mean absolute error (MAE) was then
ranked as the best performing algorithm. Given the sit-
uation where two different algorithms produce the same
accuracy and mean absolute error, the relative absolute
error was used. If this value turned out to be the same,
then the algorithms were considered to be equally effec-
tive.

IV EXPERIMENTAL RESULTS
A The Best Algorithm for Each Category

The criteria for each category of data has been discussed
in Section A. In the first instance it was necessary to
place the datasets into categories so that a fair sample
of datasets could be taken for subsequent analysis by a
learning algorithm. An additional benefit of categorising
the dataset is that the best performing classifier for each
type of dataset can be identified. This can be used as a
guide for data miners who wish to quickly identify a clas-
sifier for the type of dataset they are working with. Each
algorithm for each category was ranked on the scoring
algorithm described in Fig. ??. This allows the perfor-
mance of the different algorithms to be easily visualised.
An example of the performance of each algorithm with
various parameter settings for the Category A datasets is

shown in Fig. 2. The best performing parameter settings
for each category are summarised in Table 4.

Table 4: Best performing classifier with its parameter
settings per category.
Category Best Performing
BN-GS and BN - SA
TAN
BN-HC (-iNb)
No datasets
TAN
TAN
TAN, BN-RHC and BN-HC
TAN
No datasets
TAN
BN-HC (-iNb) and BN-HC (-iNb Mb Ar)
TAN

FRe—~ZOQHEHTOQWE >

For categories B, E, H, J and L it is clear that TAN
performs the best. Categories A, C, F, G, and K are
discussed below.

e Category A. BN-GS and BN-SA were proved to work
the best on category A datasets. TAN performed
extremely poorly on this category. It is interesting to
note that all parameter settings for the NB classifier
performed the same in this category.

e Category C. It is interesting to note that BN-HC
(-INDb) performed the best, but BN-RHC (-iNb) per-
formed the worst. When used in conjunction with
-iNb on these datasets, it can be seen that Mb ac-
tually reduces the accuracy for BN-HC, BN-k2 and
BN-RHC. This reduction, as a result of Mb used
with -iNb is the only exception to the rule that Mb
with -iNb improves performance. Both this and the
difference between BN-RHC and BN-HC, is highly
likely to be a result of the content of the data, as
opposed to the structure itself.

e (Category F. In this category TAN performed the
best, and BN-k2(-iNb R) performed the worst.
When Mb is used on its own accuracy is decreased

(Advance online publication: 19 November 2009)



TAENG International Journal of Computer Science, 36:4, IJCS 36 4 09

Dizease O
Category A Contact Lenzes [
hdonk
Ballons =
45
40 ] 1
35 — ] - —
30 ] — -
2
S
n
© 20 4
°
= 15
10 4
5 4
w a T = —_ = 5 & = Q 3 = 5 B o ~ = z 5y = 9 2 © B B =
g c8Yesgzggg 1232238 eg2 5z 38z 5% E 2 g
< Z 2 5 ¥ ¢ ¥y =% 8¢ =5 232 8 8¢ 2 2 35 =z 2 = g 2 =
> ¥ ¢ o Z o T~ 2 [ = ;@ g o £ < 2
g 7 2 ¥ = z ¥ » o £ z 0 = I 2 o Z
> z . S @ . z I < ) T & >z : I
) z X z @ ' Q z &) [ z 4 Q
o \ @ z I & = o . I
z o é ) % \?
[} o z
o
Classifier and Parameters
Figure 2: The performance of each classifier with various parameter settings on category A.

but when used with -iNb it increases. This adds to
the evidence that the use of Mb with -iNb does im-
prove performance.

e (Category G. In this category TAN, BN-RHC and
BN-HC all performed equally best which is an in-
teresting result considering the search algorithms
work in different ways. NB parameters all performed
the same again, suggesting some correlation between
performance and the percentage of the dataset that
is categorical. AODE performed very well on this
dataset and is highly likely due to the fact that the
dataset is 100% categorical.

e Category K. BN-HC(-iNb Mb Ar) performed the
best in this category. TAN actually performed quite
badly on this category when taking into account its
overall excellent performance on the other categories.
Ar makes no real difference to BN-HC and BN-RHC.
After an in depth comparison, it is also clear that
the following patterns hold true for the majority of
datasets when put into categories.

In most cases, the use of the Markov Blanket on a dataset
improves the results. One of the few exceptions to this
is the BN-GS, where accuracy appears to reduce. When
used without using a naive Bayes structure initially (-
iNb), it was found that for BN-HC and BN-RHC the
accuracy drops. The only exception was on category C,
where BN-HC (-iNb) performed the best.

Arc Reversals did have a small positive effect, but in gen-
eral added no improvements to the accuracy and in some
cases did worse than if it had not been used. So it can be

suggested that it is better not to use Arc Reversal. BN-
HC and BN-RHC should in general not be used without
an initial naive Bayes structure.

For the BN-K2 classifier, when used with -iNb and a
random ordering R, its accuracy decreases significantly.
When looking at how the algorithm performs when only
used with -iNb, it is clear that a random ordering should
not be used.

B The Best Performing Classifier Overall

The algorithms were all ranked using the scoring method
described in Section III. The comparison of the overall
performance of the algorithms based on their ranking is
shown in Fig. 3. It is clear from this analysis that the
TAN classifier performed the best with approximately 20
more points than the next best performing, the BN-HC
classifier with parameters (-iNb and Ar).

The BN-RHC classifier did show an overall better accu-
racy than the BN-HC, which was expected, even if there
was only a slight difference. However when BN-RHC was
initialised without a naive Bayes structure (-iNb), it per-
formed significantly worse than when the Markov Blanket
(Mb) was found. For most of the search algorithms, us-
ing the Markov Blanket improved the results, regardless
of other parameters.

This improvement occurred because all the nodes were
ensured to be conditionally independent given the class,
and would effectively be forced into a naive Bayes-like
structure. This meant that the Markov blanket was the
only knowledge needed to predict the behaviour of the
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Figure 3: Comparison of overall performance of various classifiers based upon the proposed scoring algorithm.
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class, and is possibly why naive Bayes does not outper-
form other Bayesian classifiers.

Of the BN-K2 parameters, BN-K2(-iNb R) performed the
worst, with a large difference between this and the next
best performing. Given that the BN-K2 (-iNb) performed
significantly better without R, this provides suitable evi-
dence against the use of R. If -iNb is used with R, then the
whole modelling process is random, including the original
structure and the structure of the nodes in the network
(as opposed to the order found in a dataset).

Naive Bayes performed relatively well, especially when
considering its strong conditional independence property,
adding to Webb’s evidence [5] relating to the power be-
hind the naive Bayes classifier. It should be noted that
the naive Bayes algorithm performed best with the use
of Kernel estimator (parameter k). It outperformed all
the other Bayesian classifiers on the following datasets:
Balloon, Cylinder Band, E.coli and Tae. Table 5 gives a
summary of the top five algorithms in order of ranking.

Table 5: List of the best performing classifiers overall.

Rank  Algorithm

1st = TAN

I1st = TAN (Mb)

2nd  BN-HC (-iNb Mb)

3rd  BN-HC (-iNb Mb Ar)
4th  BN-K2 (-iNb)

5th BN-RHC (-iNb Mb Ar)

C  Evaluation of the Classification Rules Generated

After obtaining the results from the Classifiers Training
step, a decision tree could be generated by J48 to auto-
matically select the best classifier to be used for a partic-
ular dataset. The output of the decision tree could either
be one of the 8 classifiers, or a classifier with a specific
parameter settings. For the latter case, the decision tree
would be able to predict precisely which classifier to use
and also with what kinds of parameter settings. How-
ever, the total number of classes (the classifier types) to
be captured by the decision tree increased dramatically
to 29 in total.

The most accurate decision tree is shown in Figure 4.
Using this decision tree, the predicated classifiers for
the test datasets obtained through stratified sampling is
listed in Table 6. It can be observed from Table 6 that
our proposed framework is able to select the best per-
formed Bayesian classifier for 5 datasets out of the to-
tal 9 datasets. For the ‘KC2’ and ‘Mushroom’ datasets,
although the framework failed to select the best classi-
fier, there is no significant difference between the actual
classification accuracies and the best classification accu-
racies with a marginal drop of 0.3% and 0.4% respec-

Instances

<=690 > 690

% Categorical Attributes

BN-K2 Attributes BN-HC TAN
<=20 220
% Categorical BN-HC
<=60 > 60
Instances Attributes
<=268 >268 <=1 >16
TAN NB Instances TAN

<=122 >122

Instances BN-RHC
<=14 >14

BN-RHC BN-K2

Figure 4: The most accurate binary decision tree learned.

tively. Thus, with 0.5% classification accuracy tolerance,
the overall accuracy achieved by the decision tree is 78%.

Table 6: The predicated classifier for the 9 test datasets
using the most accurate decision tree.

Best Best Predicted  Test

Dataset Classifier ~ Accuracy Classifier  Accuracy
Ballons BN-GS 100 BN-K2 100
Bridges BN-K2 76.8421 BN-RHC 73.6842
Car TAN 94.6181 TAN 94.6181
KC2 BN-K2 82.567 BN-HC 82.1839
Mushroom TAN 100 BN-HC 99.5446
Pasture BN-K2 83.3333 BN-HC 770778
PC1 TAN 92.3354 TAN 92.3354
Soybean-large  BN-K2 92.0266 BN-K2 92.0266
Squash-stored ~BN-HC 67.3077 BN-HC 67.3077

D Discussion

The TAN classifier has proven to be the best perform-
ing overall, and if a user is unsure as to which algorithm
to use on their datasets, then TAN would be the recom-
mended option.

With regards to the various parameter settings used, it
was found that when a Markov Blanket correction is
made (Mb), the performance of an algorithm in general
improves. However, if the correction is made while using
a random order of nodes (R), performance drops dra-
matically. When R is used with BN-K2 on its own, its
accuracy also falls.

If the initial network used for learning a structure is ini-
tialised as a naive Bayes network (-iNb) both the accu-
racies of BN-HC and BN-RHC drop.

The BN-SA classifier will probably have found the opti-
mal Bayesian network structure during the long periods
of computing time given to it on many of the datasets,
but the ‘temperature’ may have stayed too high forcing
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the algorithm to search too many high energy states, or
the algorithm may have been stuck in a local minima as
a result of a too low temperature.

The BN-GS algorithm may also have found the optimal
solution during the first stages of the search, but the algo-
rithm continues to search for more solutions until a near
optimal solution is found. If the algorithm could have
been halted and the solution pulled out near an optimal
state, the algorithm will have most likely performed bet-
ter than the TAN algorithm. Finally, on datasets with
100% categorical data, the naive Bayes classifier performs
the same regardless of which parameter settings are used.

V  CONCLUSIONS

This paper provides a means for judging which classifiers
are the best to be used for a given dataset. This therefore
contributes a very useful resource to inexperienced or ca-
sual data miners. Also, this paper presents to the best of
our knowledge a first attempt to produce a set of rules
through learning algorithms to identify the best classi-
fiers available. The results show that the J48 algorithm
derived a decision tree that could, with 78% accuracy
(with 0.5% classification accuracy tolerance), predict the
best classifier to use on an unseen dataset. The fact that
this degree of accuracy was achieved on a limited number
of datasets, and a limited number of classifiers and their
parameter settings, shows the potential of the framework
in generating more accurate decision trees — which in turn
would allow a user to choose the best algorithm for their
dataset.
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