
Low-Latency Linux Drivers for Ethernet over
High-Speed Networks

Rainer Finocchiaro, Lukas Razik, Stefan Lankes, Thomas Bemmerl ∗

Abstract—Nowadays, high computing demands are
often tackled by clusters of single computers, each of
which is basically an assembly of a growing number
of CPU cores and main memory, also called a node;
these nodes are connected by some kind of commu-
nication network. With the growing speed and num-
ber of CPU cores, the network becomes a severe bot-
tleneck limiting overall cluster performance. High-
speed interconnects like InfiniBand, SCI, and Dolphin
DX are good for alleviating this communication bot-
tleneck, when the communication software is either
based on IP or specifically adapted to the intercon-
nect. Software written to communicate directly via
Ethernet frames can not be used this way, though.
In this article, we present two drivers for Linux that
fill this gap. ETHOS is a very generic Ethernet over
Sockets driver. With this driver it is possible to use
any interconnect that offers a sockets interface as re-
placement for Ethernet. The second driver, ETHOM,
sacrifices the compatibility with a wide range of in-
terconnects in favour of higher performance on top
of Dolphin’s high-speed networks SCI and DX. It en-
hances their functionality by offering an Ethernet and
with that an IP interface. Both drivers allow usage
of layer-2 kernel functionality like interface bonding
and bridging. By means of various measurements,
we show that ETHOS and ETHOM with InfiniBand,
SCI, or DX offer a two- to threefold increase in com-
munication performance over Gigabit Ethernet.

Keywords: Ethernet, InfiniBand, SCI, Dolphin DX,

Linux, TIPC

1 Introduction

Computational power has always been a scarce resource
and prognoses predict that this situation will not change
any time soon. While computer performance increases,
the demand for more computational power increases at
least at the same pace.

Until very recently, CPUs as the main component of a
computing system grew more powerful by raising the
clock frequency. Today parallelism in the form of ad-
ditional cores per die adds to the performance increase.
From a hardware point of view, the next level of paral-
lelism is the gathering of single computers to form a clus-

∗Chair for Operating Systems, RWTH Aachen University,
Kopernikusstr. 16, 52056 Aachen, Germany,
E-mail: {finocchiaro,razik,lankes,bemmerl}@lfbs.rwth-aachen.de

ter. Traditionally, the single computers – called hosts or
nodes – in these clusters were connected by Ethernet in
one of its incarnations, as it is cheap, stable, and well
supported. Concerning software, the predominant proto-
col used on top of Ethernet is the TCP/IP1 stack. With
software running on the cluster that communicates in-
tensively, the network more and more becomes the real
bottleneck that limits cluster performance.

So, there are two problems to cope with:

1. Ethernet networking hardware does not fit all pur-
poses: In the form of Gigabit Ethernet it is too
slow for several applications; 10 Gigabit Ethernet
is still in the beginnings, not yet very wide-spread,
and rather expensive.

2. There are protocols better suited for cluster comput-
ing than TCP/IP. This protocol suite was designed
for communication in local to wide area networks,
offering elaborate mechanisms for routing, to deal
with even extensive packet loss, etc. With multi-
ple checksums, a two-layer approach, and quite a lot
of functionality that might not be needed in cluster
computing scenarios, it causes some inefficiency.

To tackle these problems, there are mainly two ap-
proaches in order to allow faster2 communication:

1. High-speed networks can be used to replace or com-
plement Ethernet. Each of them has its own low-
level programming interface (API), most provide an
implementation of the POSIX socket API, and some
offer an IP interface. Examples of these networks
include InfiniBand [1], Myrinet [2], QsNet [3], SCI
[4], and Dolphin DX [5]. An IP interface for Dolphin
DX has been presented in [6].

2. Replace the software layer TCP and UDP3 – and
sometimes IP as well – with another protocol while
keeping the Ethernet hardware. Examples of these
replacement protocols include SCTP (Stream Con-
trol Transmission Protocol [7]), DCCP (Datagram
Congestion Control Protocol [8]), UDP-Lite [9], AoE

1Transmission Control Protocol/Internet Protocol
2latency and bandwidth wise
3User Datagram Protocol

IAENG International Journal of Computer Science, 36:4, IJCS_36_4_12
__

(Advance online publication: 19 November 2009)

(ATA over Ethernet [10]), and TIPC (Transparent
Interprocess Communication Protocol [11, 12, 13]).

Being developed originally at Ericsson, TIPC has its roots
in the telecommunication sector, but provides some char-
acteristics making it suitable for high performance com-
puting (HPC) with clusters, such as an addressing scheme
supporting failover mechanisms and less overhead for ex-
changing data within a cluster. TIPC is the transport
layer of choice of the Kerrighed project [14], which is an
enhancement of the Linux kernel with the objective to in-
tegrate all nodes of a cluster into a single unified view of
operating system resources, a so called Single System Im-
age (SSI). The TIPC protocol is used for kernel to kernel
communication, but cannot currently make use of high-
speed networks like InfiniBand or SCI, as they both do
not provide an Ethernet interface, nor does TIPC pro-
vide a specialised “bearer”, which is the adaptation layer
between TIPC and a native network interface.

As a first approach for enabling TIPC to make use of
high-speed networks, we developed ETHOS (ETHernet
Over Sockets driver), a driver offering an Ethernet in-
terface supporting a wide variety of high-speed networks
for communication. This driver is designed to use kernel-
level UDP sockets to deliver data to peers; it enables any
network interconnect providing kernel-space UDP sock-
ets to be used as Ethernet replacement. Measurements
with ETHOS on top of SCI and InfiniBand show signifi-
cantly higher bandwidth and lower latency than Gigabit
Ethernet.

In order to further reduce communication latency, we de-
cided to sacrifice compatibility with other high-speed in-
terconnects and use the next lower software layer avail-
able in the Dolphin Express stack, the Message Queue
Interface. Using this interface for actually transferring
data, ETHOM (ETHernet Over Message Queue driver)
provides an Ethernet interface for SCI and Dolphin DX
hardware. Therefore, in addition to the TCP and UDP
Sockets already provided by the Dolphin Express software
stack, ETHOM offers an Ethernet interface, enabling in-
terface bonding, bridging and other layer 2 kernel fea-
tures, as well as IP routing for the SCI and Dolphin DX
interconnects. Furthermore, TIPC is enabled to make use
of these two network technologies leveraging its Ethernet
bearer, just like any other software that is stacked on top
of an Ethernet interface.

The rest of this article is organised in the following way:
In section 3, we shortly present the Linux network archi-
tecture, serving as background for understanding where
the presented new Ethernet interfaces reside. After that,
we present ETHOS and ETHOM in some detail, provid-
ing information about design decisions. Section 4 gives
an overview of the performance of ETHOS and ETHOM
when used with either TCP/IP or with TIPC, measured
with popular microbenchmarks. Finally, in section 5, we

conclude with the current status and plans for further
improvements.

2 Technical Background

In this section, we will give a brief overview of the tech-
nologies involved in our development. We start with the
high-speed networks, which are actively supported by our
software, and continue with the TIPC protocol, which
constitutes the main reason for developing these drivers.

2.1 High-Speed Networks

There are quite a few high-speed networks available to-
day. In our description below, we concentrate on those
directly available to us for developing the software and
because of that actively supported by us. The above sec-
tion “Introduction” names a few of the other available
options.

2.1.1 Dolphin Express

Dolphin Interconnect Solutions designs interconnect
chips and host adapters for PCI interfaces, and offers
a complete software stack on top of this hardware for
all major operating systems. This software stack allows
to use the hardware efficiently from either user or kernel
space. For reduced application complexity, several APIs
are offered. The software stack consists of kernel drivers,
libraries, tools and cluster management software, and it
is published as open source under the (L)GPL.

Scalable Coherent Interface (SCI) The Scalable
Coherent Interface [15, 16] is an established interconnect
technology for transparent communication on the mem-
ory access level and/or the I/O read/write level. It maps
(parts of) the physical address spaces of the connected
nodes into one global address space, which allows to ex-
port and import memory and access it transparently via
programmed input/output (PIO), or explicitly using di-
rect memory access (DMA) transfers. Cache coherency
between the nodes is supported by the standard, but not
via I/O interfaces like PCI. The nodes are connected
in multidimensional torus topologies without a central
switch, as each host adapter also switches packets be-
tween its multiple links.

The current SCI hardware generation achieves remote
store latencies starting at 220 ns and a maximum band-
width of 334 MiB/s per channel.

Dolphin DX The Dolphin DX interconnect [6] is based
on the protocols for the Advanced Switching Interface
(ASI). As such, it also couples buses and memory regions
of distributed machines, but is designed for PCI Express
and not for coherent memory coupling. Also, it does

IAENG International Journal of Computer Science, 36:4, IJCS_36_4_12
__

(Advance online publication: 19 November 2009)

not use distributed switching like SCI; instead, all nodes
connect to a central switch. Current switches offer 10
ports, and can be scaled flexibly.

Nevertheless, DX offers many of the same features as
SCI from a programmers perspective, namely transpar-
ent PIO and DMA access to remote memory and remote
interrupts. This makes it possible to integrate it into the
existing software stack for SCI, offering the same APIs as
for SCI.

The performance of DX has significantly improved com-
pared to SCI for both, PIO and DMA transfers. The
latency to store 4 bytes to remote memory is 40 ns, while
the bandwidth reaches about 1.397 GiB/s already at
64 bytes transfer size.

2.1.2 InfiniBand

Usage of shared bus architectures for attaching I/O pe-
ripherals to the CPU/memory increasingly becomes a
bottleneck. When launching the InfiniBand Trade As-
sociation4 in 1999, its main aim was to define a high
performance interconnect, which is called InfiniBand and
breaks the bandwidth limitation of traditional shared bus
architectures. In InfiniBand, computing nodes and I/O
nodes are connected to a switched fabric. The fabric itself
may consist of a single switch in the simplest case or a
collection of interconnected switches and routers. Using
such a switched fabric removes the bottleneck of shared
bus architectures.

In contrast to SCI and DX, InfiniBand does not support
transparent communication on the memory access level.
The other features like DMA access to remote memory
and remote interrupts are also supported by InfiniBand.

The current InfiniBand hardware generation (x4 QDR)
achieves remote store latencies starting at 1500 ns and a
maximum bandwidth of 2.8 GiB/s per channel.

2.1.3 Driver Stacks

Figure 1 shows the current network driver architecture.
There are several paths of execution that could forward a
message from an application at the top of the illustration
to a network interface controller (NIC) at the bottom.

The most popular and established interface for using a
network is the Berkeley sockets interface, which is part
of the glibc. The address family switch decides the fur-
ther path through the kernel. By using the socket fam-
ily AF_INET (in the middle of the illustration), the mes-
sage has to pass through the TCP/IP or UDP/IP stack.
These stacks are not optimal for reaching the maximum

4The home page of the InfiniBand Trade Association can be
found at http://www.infinibandta.org

bandwidth and the lowest possible latency. Therefore,
high-speed networks provide mechanisms to bypass these
stacks, thereby offering excellent performance, while still
maintaining compatibility to the established Berkeley
socket interface. If the highest possible performance is
essential for the applications, high-speed networks also
provide interfaces, which disclose all available features to
the applications. Usage of these interfaces, implies a re-
design of the applications for each network.

The SISCI API [17] is the most efficient possibility to use
SCI or DX as high-speed interconnect. SISCI is a shared-
memory programming interface that makes the features
of the SCI interconnect accessible from user space. It
consists of a user-space shared library (libsisci, shown
on the left in the illustration) which communicates with
the SISCI kernel driver via ioctl() operations to create
and export shared memory segments, map remote mem-
ory segments to the address space of the calling process,
send and wait for remote interrupts, and perform DMA
transfers from and to remote memory segments. Next to
this, functions for error checking and information query-
ing, plus other miscellaneous operations are included.

These means allow processes running on different ma-
chines to create common, globally distributed shared
memory regions and read and write data from and to
there either via PIO or DMA operations. Synchroniza-
tion can be performed via shared memory or via remote
interrupts.

To obtain optimal communication performance, data
transfers need to be aligned to suitable SCI packet and
buffer sizes (16, 64 and 128 bytes), and remote read oper-
ations should be avoided except for very small data sizes.
Error status checks should be performed as rarely as pos-
sible, as they involve a costly read access via the PCI
bus.

SISCI does not provide means to pass messages between
processes except for writing to some shared memory lo-
cation and synchronizing via either shared memory or
remote interrupts. While it is not very complicated
to create a simple message queue on top of this, Dol-
phin supplies a thin software layer for communication via
message queues (MBox/Msq). It allows to establish uni-
directional communication channels between machines
which can be operated via simple send() and recv() op-
erations, either using PIO or DMA. This software layer
takes care of alignment, data gathering, error checking
and so forth, and offers different optimized protocols for
small, medium, and large data sizes.

It is also the basis for Dolphin’s SuperSockets (SSocks
in Figure 1), which in user space offer a Berkeley API
compliant sockets interface via libksupersockets. By
using this interface, applications are able to bypass the
TCP/IP software stack of the kernel, thereby reducing
latency. Support of this established and widely used in-

IAENG International Journal of Computer Science, 36:4, IJCS_36_4_12
__

(Advance online publication: 19 November 2009)

AF_SCI AF_INET

SISCI MBox/Msq

AF_SDP

SDP

libsisci

UDP TCP

IP

libksuper-
sockets

libsdp

IRM (GENIF) IB Core and HCA Driver
TG3/E1000

Driver

IB
Interconnect

GE
Interconnect

glibc
Socket-API

IPoIB

Address Family Switch

Applications

SCI
Interconnect

DX
Interconnect

DX

libibverbs

SSocks

K
er

ne
l S

pa
ce

U
se

r
S

pa
ce

Link Level
Device

Interface

H
ar

dw
ar

e

Figure 1: Network Driver Architecture of Dolphin DX, SCI, Ethernet and InfiniBand

terface increases the usability of the SCI and DX network.

InfiniBand provides a similar socket interface via the
Sockets Direct Protocol (SDP) supplied by the SDP ker-
nel module in kernel space and libsdp in user space.
By using remote direct memory access (RDMA) with a
zero-copy data transfer mechanism, SDP provides a low
latency and a high bandwidth. However, this interface
deals only with stream sockets. All other socket types
are supported by the Linux IP stack and operate over
the IP over InfiniBand (IPoIB) link to the driver (com-
pare Figure 1).

The counterpart of the SISCI interface for the Infini-
Band interconnect is IB Verbs. The IB Verbs inter-
face – provided by the IB Core module and the Host
Channel Adapter (HCA) driver in kernel space and by
libibverbs in user space – is a programming interface
that makes it possible to use RDMA transfers directly
in user space. It provides the lowest overhead, lowest la-
tency, and the maximum bandwidth, however, requires a
network-dependent rework of existing applications.

2.2 The TIPC Protocol

Our main aim was to supply Kerrighed with support for
communication over high-speed networks. Kerrighed uses
TIPC instead of IP as communication protocol for all its

communication needs, so we turned our focus to enabling
TIPC to use high-speed networks. As TIPC is not so well
known, but offers a lot of interesting features for the realm
of cluster computing, it will be presented in this section.

Since it introduces new terminology, we start with de-
scribing the network topology as it is seen by TIPC.

2.2.1 Network Topology

A TIPC network consists of individual computers, called
nodes, that are grouped in a hierarchical manner as de-
picted in Figure 2:

Nodes Nodes represent the lowest level of a TIPC net-
work. They are individual computers, that communicate
with peers over direct links.

Cluster A group of nodes forms a cluster, if every one
of these nodes can reach any other node directly (one
hop). Directly refers to the logical link; i. e. nodes con-
nected via a switch – as is standard with Ethernet –
are considered directly connected. Two nodes that are
connected via a third one, which is equipped with two
network interface cards (NICs), would not be considered

IAENG International Journal of Computer Science, 36:4, IJCS_36_4_12
__

(Advance online publication: 19 November 2009)

Zone <1>

Cluster <1.1> Cluster <1.2>

Node
<1.1.1>

Node
<1.1.2>

Node
<1.1.3>

Node
<1.1.1>

Node
<1.1.12>

Node
<1.1.33>Secondary

Node
<1.1.3000>

Zone <1>

Cluster <2.3> Cluster <2.5> Cluster <2.14>

Figure 2: TIPC Network Topology

directly connected. In standard configuration, a cluster
can comprise up to 4095 nodes.

Zone The next bigger organisational unit is called a
zone. A zone consists of interconnected clusters. In stan-
dard configuration, a zone can include up to 4095 clusters.

Network A group of interconnected zones constitutes
a network, if all of these zones are directly linked to each
other. Up to 255 zones are supported inside of one net-
work.

Typically, geographical position of nodes leads to a group-
ing in clusters, zones, and networks. In that sense, com-
monly, nodes put together inside a cabinet or a room form
a cluster; clusters inside the same building or site usually
form a zone. One of the assumptions that TIPC makes
is that the far biggest part of communication takes place
between nodes inside a cluster, while communication be-
tween clusters is rare, even more so between zones.

Each TIPC network is attributed a network identifier
(netID), so that different logical networks can utilise the
same physical media (e. g. Ethernet cards and cables)
without interfering with each other.

A node as part of a TIPC network communicates with
its peers using one or more network interfaces, each of
which must be connected to a physical medium supported
by TIPC. If configured correctly, TIPC automatically de-
tects peers of a node and sets up logical links to each of
them.

2.2.2 Addressing

While TIPC supports physical addressing, which is quite
similar to the IP addressing scheme5, its real strength
lies in functional addressing, which allows for location-
agnostic services, supporting e. g. redundancy, if a service
is provided by more than one node.

For physical addressing, each node (not interface!) is at-
tributed a network address consisting of the three parts
zone identifier (Z), cluster identifier (C), and node identi-
fier (N); i. e. <Z.C.N>. A particular connection endpoint
is described with a port identifier as <Z.C.N:ref>, i. e. a
network address plus a unique reference number. Apart
from nodes, clusters can be addressed (<Z.C.0>), as well
as zones (<Z.0.0>) – the address <0.0.0> has a special
meaning and is operation specific.

Functional addressing is accomplished by means of port
names, denoted as {type, instance}. Often, type indi-
cates a class of service provided by a port and instance

a sub-class. Port names do not have to be unique inside
a TIPC network. Multiple port names can be assigned
to one port or vice versa. When binding a port name to
a port, an application can restrict the visibility or scope
of the name to e. g. node or cluster scope.

Using functional addressing, a client directly gains two
advantages: First, his message is sent to the nearest des-
tination delivering the specific service as quickly as possi-
ble; second, load balancing is achieved as TIPC automat-
ically selects one of the service providers at the nearest
distance in a round-robin manner.

2.2.3 Further Functionality

In addition to load balancing by using multiple service
providers, described above, TIPC automatically shares
network load across the available physical links, if they
are set to the same priority. This way, the aggregated
bandwidth is used. Furthermore, TIPC supports a mech-
anism for link changeover, which cares for the correct
order of messages. This mechanism comes into action
in case another link with the same priority comes up
and even if one of the available links goes down or fails.
TIPC actively monitors the state of peer nodes, allowing
it to directly recognise failing nodes, nodes taken off the
net, or nodes added to the net. In high-load situations,
TIPC provides flow control effectively slowing down a
fast sender, if the receiver is not able to cope with the
amount of incoming data.

5The major difference is that TIPC attributes one address per
node, while IP attributes one address per interface.

IAENG International Journal of Computer Science, 36:4, IJCS_36_4_12
__

(Advance online publication: 19 November 2009)

2.2.4 Interfaces to Upper and Lower Layers

TIPC provides a software layer between applications, in-
teracting with TIPC from above, and packet transport
services below. Although the protocol specification [13]
does not make any assumptions on the API used for in-
teracting with TIPC from above, the available implemen-
tations provide a standard socket API and a so called na-
tive interface. As transport service providers, the spec-
ification mentions various interfaces like Ethernet, pro-
tocols like DCCP and SCTP, and hardware mechanisms
like mirrored memory. The combination of each of these
transport services with a corresponding small software
adapter are abstractly called bearers.

The only available bearer today in an existing TIPC
implementation is the Ethernet bearer, although an IP
bearer is in the works. For that reason, only Ethernet is
currently supported as hardware transport.

3 Architecture of the Drivers

In order to describe the architecture of our Ethernet re-
placement drivers, an overview of the different hardware
and software layers involved is given in section 3.1. Build-
ing on that, we describe our first development ETHOS,
which uses sockets as “communication medium”, in sec-
tion 3.2. With this background, we go into some detail
about the implementation and design decisions of our sec-
ond approach ETHOM in section 3.3. Where appropri-
ate, we cross reference to the ETHOS explanations.

3.1 Linux Ethernet Network Architecture

Seen from a rather high level of abstraction, the Linux
Ethernet network architecture consists of three layers
that are used by an application to communicate with a
counterpart on another node (see Figure 3). The first
layer consists of a programming interface like for example
the well-known and wide-spread sockets interface. This
layer is available for user-space application processes as
well as for the kernel space. It expects user data in any
form from the application and builds Ethernet frames
which are passed to the next lower layer. The layer be-
low is represented by the Ethernet interface layer. This
layer takes Ethernet frames from above and passes them
on to the hardware. It is usually implemented in the de-
vice driver for a specific Ethernet network interface card
(NIC). The third and lowest is the hardware layer, as rep-
resented by the Ethernet NIC itself, which is responsible
for the physical transmission of data from a sender to its
peer.

3.2 Architecture of ETHOS

ETHOS is an Ethernet driver built to use the Linux ker-
nel sockets API instead of real hardware to send and re-
ceive data. Looking again at Figure 3, you could think of
the ETH interface layer being implemented by ETHOS

user

kernel

HW

ETH interface

Application

Standard
Sockets

Ethernet NIC

Other

OtherStandard
Sockets

TIPC
Sockets

TIPC
native/
Sockets

Figure 3: Linux Network Architecture

user

kernel

HW

ETH interface (ETHOS)

Application

Ethernet
NIC

Other

Other

Standard
SocketsSCI

Sockets
Other
Sockets

SCI/DX
NIC

Infiniband
NIC

Other
NIC

IPoIB ETH

Standard
Sockets

Standard
Sockets

TIPC
Sockets

TIPC
native/
Sockets

Figure 4: Network Architecture with ETHOS

instead of the NIC driver, and the hardware (HW) layer
being replaced by another layer of sockets. These sock-
ets must certainly have some hardware somewhere below
in order to physically transfer data from one host to an-
other. This hardware layer, however, can be provided
by any network offering kernel-space UDP sockets, not
only by Ethernet. If a network device does not offer na-
tive UDP kernel sockets but an IP driver, as depicted in
Figure 4, standard UDP kernel sockets on top of this IP
driver are deployed.6

In the following sections, we will go into some level of de-
tail for three important aspects of ETHOS, the configu-
ration, connection establishment, and the communication
phase.

6Note that the Ethernet NIC shown in Figure 4 is used for test-
ing and demonstration purposes only. It is in general not reasonable
to use it for applications, as performance should by principle always
lag behind the native interface.

IAENG International Journal of Computer Science, 36:4, IJCS_36_4_12
__

(Advance online publication: 19 November 2009)

3.2.1 Configuration

Simplified, configuration of ETHOS can be subdivided
into three phases according to the question: “At what
time are the parameters needed?” The categories would
then be: at compile time of the driver, at load time of
the driver, or at run time of the driver.

An incomplete list of necessary parameters contains the
following: the socket family of the UDP socket to be used
for low-level transmission, a unique host id and Ether-
net “hardware address”7, a transmit timeout value, the
number of hosts in the network and their physical IP
addresses, the number of ETHOS interfaces, and the IP
addresses and Maximum Transmission Units (MTUs) of
these ETHOS interfaces.

For simplicity of the implementation of this prototype,
many parameters have to be specified at compile time.
Exceptions are host id and transmit timeout, that have
to be specified at load time, and the IPs and MTUs of the
ETHOS interfaces, which can be specified at run time.

Summarising, before compiling the driver, a table has to
be configured for every desired ETHOS interface, hold-
ing information about the socket family to be used for
low-level communication and the IP addresses that all
nodes in the given subnet can be reached by in the or-
der of their host_ids. Again, these IP addresses are for
the low-level interfaces, i. e. the addresses of the IP over
InfiniBand (IPoIB) interfaces for communication over In-
finiBand, the addresses that Dolphin’s SuperSockets are
configured with for SCI and DX, and the IP addresses
assigned to the physical Ethernet devices for “Ethernet-
over-Ethernet” communication (compare Figure 4 and
the lower Receive Socket addresses in Figure 5). In order
to be able to use the same binary on every node in the
network, the host_id is specified as a module parameter;
with this host_id, a unique Ethernet hardware address is
generated. After loading the driver, the provided ETHOS
interface behaves just like a normal Ethernet interface; IP
addresses etc. can be configured with ifconfig.

3.2.2 Connection Establishment

After loading and configuring the local ETHOS interface,
data can be sent to remote hosts. Looking at Figure 5,
this could be an application on node 1 willing to send
data to an application on node 2. The application on
node 1 addresses its data to 192.168.0.5.

At this time, however, the kernel on node 1 does not yet
know which node in the network provides an interface
with IP address 192.168.0.5; it still has to find out, which
Ethernet address to put as destination address into the

7With ETHOS, this is the 6-byte-address assigned to an ETHOS
interface; i. e. not a real hardware address.

node ... n

kernel

HW

ethif (ETHOS)

Application

NIC

Send
Socket

Receive
Socket

eth2: 192.168.0.1

192.168.14.1

ethif (ETHOS)

Application

NIC

Send
Socket

Receive
Socket

eth2: 192.168.0.5

192.168.14.2

user

node 1 node 2

Figure 5: Implementation of ETHOS

Ethernet frame that it passes down to ETHOS. There-
fore, prior to sending IP packets with data to the desti-
nation, the Address Resolution Protocol (ARP) is used to
determine the Ethernet hardware address of the remote
interface providing the requested IP. For this purpose,
the kernel sends so called ARP requests, Ethernet frames
with the hardware address ff:ff:ff:ff:ff:ff, that ETHOS for-
wards to all hosts in the network. The interface providing
the IP address encapsulated in the request answers with
its hardware address and after that the correct mapping
between destination’s IP address and Ethernet hardware
address is known at the sending kernel.

3.2.3 Communication Phase

We will now have a closer look at what happens when a
node transfers data to another node in the cluster. Fig-
ure 6 gives a quite detailed overview of the internal archi-
tecture of ETHOS. This illustration will serve as a basis
for the following explanation.

Sending Figure 6 shows two nodes, one with ETHOS
host ID 1 on the left – the sending node – and one with
ETHOS host ID 4 on the right side – the receiver. Inside
of each host, various elements involved in the send and
receive process are depicted, roughly subdivided into the
user-space elements at the top, kernel-space elements in
the middle, and the hardware at the bottom. The trans-
fer starts at the left node’s top – a user-space application
has opened a TCP socket and starts writing data to it
– and it ends on the right node’s top, where a receiv-
ing user-space application reads the incoming data again
from a TCP socket. ETHOS host 1 provides two Ether-
net interfaces (eth2 and eth3), which are each configured
with an IP address, a corresponding network, and a hard-
ware address. The same applies to ETHOS host 4 with
Ethernet interfaces eth3 and eth5.

IAENG International Journal of Computer Science, 36:4, IJCS_36_4_12
__

(Advance online publication: 19 November 2009)

TCP-Socket
connected to
192.168.10.14

IP: 192.168.10.11
NET: 192.168.10.0/24
HW: 00:45:54:48:00:01

dev_id

host_id

ethos_tx()

ethos_enqueue_skb()

ethos_queue_work()

ethos_tx_action()

ethos_dequeue_skb()

192.168.0.24

sock_sendmsg()

eth2 (dev_id = 0)

UDP kernel socket
connectionless (TX)

IP: 192.168.0.21
driver

NETIF

Network adapter

write (payload)

IP: 192.168.13.10
NET: 192.168.13.0/24
HW: 00:45:54:48:01:01

eth3 (dev_id = 1)

TCP-Socket
connected to
192.168.10.11

IP: 192.168.10.14
NET: 192.168.10.0/24
HW: 00:45:54:48:00:04

dev_id

host_id
eth3 (dev_id = 0)

IP: 192.168.13.40
NET: 192.168.13.0/24
HW: 00:45:54:48:01:04

eth5 (dev_id = 1)

ethos_sk_data_ready()
netif_rx()

IP: 192.168.0.24
driver

NETIF

Network adapter

UDP kernel socket
connectionless (RX)

Socket Callback
skb_recv_datagram()

skb_clone() +
skb_pull()

ETHOS Host = 01 ETHOS Host = 04

kernel activity

Setting attributes
like protocol, device,
CHECKSUM_NONE
(checksumming
is done by upper
levels)

physical transfer

K
er

ne
l S

pa
ce

U
se

r
S

pa
ce

H
W

ETH IP TCP payload

ETH IP TCP payloadUDP

read (payload)

1Thread per
logical CPU
dequeues work

ETH IP TCP payload
ETH-Frame

dst: 00:45:54:48:00:04
src: 00:45:54:48:00:01 dst_host=4

4 192.168.0.24

tx_dates[dst_host]
...

...

...

...

ethos_tx()

ethos_work_q ethos_tx_q

zoom

UDP Message

skb

Figure 6: Data Transfer through ETHOS from Sender to Receiver

In the example provided, user data shall be sent over
the TCP socket connected to 192.168.10.14 on ETHOS
host 4; therefore Ethernet interface eth2 is chosen. The
user data is split by the kernel into packets (Ethernet
frames) the size of which must not exceed the speci-
fied maximum transmission unit (MTU) of interface eth2.
These packets are then handed over to the driver of this
Ethernet interface, i. e. ETHOS.

Every single Ethernet frame is encapsulated in a socket
buffer (skb), which is passed to ETHOS by the kernel call-
ing the ethos_tx() function. This way, ETHOS receives
an Ethernet frame, that can be transferred via a UDP
kernel socket. As ethos_tx() is executed in the so called
interrupt context (see [18] and [19] for details), the Eth-
ernet frame cannot be sent by sock_sendmsg(), because
this function might sleep, which is not allowed in interrupt
context. To circumvent this problem, the skb is enqueued
in an ethos_tx_queue with ethos_enqueue_skb(). This
ethos_tx_queue is a single queue per driver and there-
fore accepts skbs from other ETHOS interfaces as well.
In order to initiate further processing of the enqueued
data, a work_struct is enqueued in the ethos_work_q

at the end of ethos_tx().

The ethos_work_q is a Linux Kernel Work Queue [18]
and is used in order to postpone the execution of tasks

that must not be executed from within ethos_tx() un-
til a later time. It is important to mention that the
ethos_work_q is processed by the Linux kernel very soon
after ethos_tx() returns; i. e. this does not cause too
much added latency.

After termination of ethos_tx() and possibly other in-
terrupt handlers, a kernel thread dequeues the work
struct from the ethos_work_q and calls the embedded
handler, in this case ethos_tx_action(). The handler
function is executed, and it starts dequeuing and pro-
cessing skbs until ethos_tx_q is empty. If the host pos-
sesses more than one execution unit (CPU, core, or log-
ical CPU) and there are more than one work structs in
the ethos_work_q, each of these execution units could
possibly run one kernel thread dequeuing work simulta-
neously. For every skb that ethos_tx_action() pulls
from the queue, the encapsulated Ethernet frame is in-
spected. The Ethernet frame consists of the Ethernet
header and Ethernet data, that in turn in our example
in Figure 6 consists of an IP header, followed by a TCP
header and the user data that our application wants to
transfer. In order to determine the IP address of the
receiving host, the destination hardware address (dst) as
part of the Ethernet header is examined; more specifically
the host_id part (dst host) residing in the last byte of
this address (see Figure 6, inside ethos_tx_action() of

IAENG International Journal of Computer Science, 36:4, IJCS_36_4_12
__

(Advance online publication: 19 November 2009)

the left node).

Looking at the Ethernet frame (ETH-Frame) in the pic-
ture, one could ask why not simply take the IP address
(192.168.10.14) available in the IP header as distinguish-
ing factor to determine the destination node’s IP address.
The reason is simple: As we want to support other proto-
cols on top of Ethernet, we can not count on an IP header
inside the Ethernet frame. With TIPC for example, the
addressing is different and there is no IP header, that we
could use. The Ethernet hardware address on the other
hand is always available.

The destination hardware address in our example is
the hardware address of the receiver’s NIC (eth3), i. e.
00:45:54:48:00:04. The last byte of this address indicates
the ETHOS destination host (dst_host=04). The last
byte of the source hardware address 00:45:54:48:00:01
represents the ETHOS source host (src_host=01).
These hardware addresses are assigned during initialisa-
tion of the driver; every ETHOS interface (e. g. eth2, eth3
on host 1 in Figure 6) in the whole network possesses a
unique address. After determining the destination host
(dst_host=4), the IP address of the specific destination
NIC can be read from a lookup table; this table is spec-
ified during the configuration phase (see section 3.2.1).
The IP address is written to the header of a UDP mes-
sage, which is finally sent through a UDP kernel socket
with sock_sendmsg().

If the software stack of the NIC provides kernel-space
UDP sockets, as does the Dolphin stack for SCI and DX,
this UDP kernel socket can be used to transfer the Eth-
ernet frames directly via the high-speed interconnect.

Receiving Our message has now left host 1 and is
physically transferred to host 4 using whatever kind of
network offered the UDP kernel socket interface. When
the UDP message arrives on host 4, ETHOS could use
the function sock_recvmsg(), which blocks until a mes-
sage has been received. However, as a long time (typically
about 1 ms) may pass between message reception and the
return of sock_recvmsg(), a faster asynchronous mech-
anism is used for fetching the message, which is received
by the UDP kernel socket.

On the receiving side, ETHOS uses a call-back mechanism
in order to get directly informed of arriving messages. To
achieve that, a call-back function is registered with the
UDP kernel socket. For this purpose, the socket provides
the function pointer sk_data_ready(), which is called
by the kernel as soon as a message is available. The call-
back function is registered at loading time of the ETHOS
driver, where our function ethos_sk_data_ready() re-
places the standard sk_data_ready() function.

When a message arrives at the receiving UDP kernel
socket, the first thing that ethos_sk_data_ready() does

is to fetch the message with skb_recv_datagram(). The
UDP message or UDP datagram, which is encapsulated
in an skb consists of a UDP header and UDP data, where
the UDP data is nothing else but the Ethernet frame that
has been sent through the network from the sending host.

The UDP header provides a checksum that could be used
to proof the integrity of the UDP message. However,
the encapsulated user data – which is still prepended
by the Ethernet, IP, and TCP header – is secured by
a second checksum on the Ethernet frame level8. The IP
header inside the Ethernet frame is again protected by its
own checksum, and the whole TCP packet is protected
by another checksum residing inside the TCP header.
Again, we can not count on TCP/IP being used on top of
our Ethernet driver, but we certainly transfer Ethernet
frames. For that reason, the additional checksumming on
the lower UDP level is not necessary, and we can strip off
the UDP header without verifying the checksum.

The received skb is cloned with skb_clone() [19], i. e.
the administrative data is copied so that it can easily
be adapted, while the Ethernet frame is referenced by
pointers. After that, the UDP header is stripped off by
calling skb_pull(), effectively moving the start pointer
from the beginning of the UDP header to the beginning
of the Ethernet header. As shown in Figure 6, our mes-
sage now consists of the Ethernet, IP, and TCP headers
followed by the original user data.

At the end of the function sk_data_ready(), the at-
tributes of the skb clone are set; dev, protocol,
ip_summed are adapted, so that the kernel level above
ETHOS accepts the skb. A very important part of that
is to set ip_summed to CHECKSUM_NONE in order to inform
the upper level that checksumming was not performed by
ETHOS and therefore has to be done by the upper level.
At last, the skb clone is passed upwards by the function
netif_rx() and the original skb is freed. Freeing the
clone and its data (the Ethernet frame) is done by the
the upper kernel levels.

3.3 Architecture of ETHOM

As our second approach, a thinner layer of indirection
is inserted below the Ethernet interface (see Figure 7).
This layer passes the Ethernet frames to the SCI Mes-
sage Queues, which represent the lowest message passing
layer of the Dolphin software stack (compare section 2.1.3
and Figure 1), sacrificing compatibility with other high-
speed interconnects for better performance at the addi-
tional cost of higher system load. At the lowest level,
SCI or DX cards physically deliver the data to the peer
nodes.

As depicted in Figure 8, on each node of the cluster there
are two message queues for every peer. Each message

8To be precise, this checksum is located at the end of the Eth-
ernet frame. For simplicity reasons it is not shown in our Figure.

IAENG International Journal of Computer Science, 36:4, IJCS_36_4_12
__

(Advance online publication: 19 November 2009)

user

kernel

HW

ETH interface (ETHOM)

Application

Other

Other

SCI Message Queues

SCI-NIC

Standard
IP-Sockets

Standard
Sockets

TIPC
Sockets

TIPC
native/
Sockets

DX-NIC

Figure 7: Network Architecture with ETHOM

node ... n

kernel

HW

ethif (ETHOM)

Application

NIC

eth2: 192.168.0.1

ethif (ETHOM)

Application

NIC

eth2: 192.168.0.5

user

node 1 node 2

Send
MSQ

Receive
MSQ
MSQ-2MSQ-1

Send
MSQ

Receive
MSQ
MSQ-2MSQ-1

Send
MSQ

Receive
MSQ
MSQ-2MSQ-1

Send
MSQ

Receive
MSQ
MSQ-2MSQ-1

Send
MSQ

Receive
MSQ
MSQ-2MSQ-1

Send
MSQ

Receive
MSQ
MSQ-1MSQ-2

Figure 8: Implementation of ETHOM

queue is identified by a cluster-wide unique ID.

Memory requirements for each message queue are dom-
inated by the buffer, which is currently hard-coded to
13 KB. As the SCI network allows a maximum of 512
nodes when setup as a 3D torus, total memory require-
ment per node would amount to: number of peers × 2
queues × size of queue = 511 × 2 × 13 KB = 13 MB.
So, concerning memory consumption, our driver should
be quite scalable.

As it is very improbable to have more than one card of
either SCI or Dolphin DX inside of one node, currently
only one Ethernet interface is supported by ETHOM, al-
though most of the code is already prepared for using
multiple.

3.3.1 Configuration

Just like ETHOS, ETHOM is configured in three phases:
at compile time, at loading, and at run time of the driver.
For simplicity reasons, basic configuration is rather static;
number of peers in the network and their ETHOM host id
to SCI node IDs mapping have to be specified at com-
pile time. At load time, most importantly the ETHOM
host_id has to be passed as a parameter enabling the
use one binary for all hosts in the network. Optionally,
direct flushing after each call to send_msg() can be en-
abled for the sender side, dynamic polling for the receive
thread. A transmit timeout can be specified that tells the
kernel after which period of time to drop packets. With
the above mentioned parameters, the Ethernet interface
is set up and ready to go. The IP address, MTU etc.
can be assigned at run time with ifconfig. All module
parameters specified at load time can be changed at run
time.

3.3.2 Connection Establishment

As shown in Figure 8, after loading the driver, on each
node two unidirectional message queues are created for
every peer node in the network (e. g. 14 message queues
on each node in case of 7 peer nodes). Message queue IDs
are calculated from the local and the peer node number
as

IDReceiveQueue = #hosts × peer + local
IDSendQueue = #hosts × local + peer

This way they are guaranteed to be unique throughout
the cluster.

For each peer node, two threads are started (e. g. 14
threads on each node in case of 7 peers), one trying to
connect the local send to the distant receive queue and
one waiting for a connection on the local receive queue.
As soon as the first of the threads waiting on the local re-
ceive queue has accomplished its connection, this thread
becomes the master thread that polls on all connected
receive queues. All the other send and receive threads
terminate as soon as their connection is established, ef-
fectively reducing the number of remaining threads to
one. In case the peer node does not connect directly, a
new connection attempt is made periodically.

In case of IP communication on top of ETHOM, IP ad-
dresses can be specified arbitrarily, they do not have to
correspond to node numbers. Just like with hardware
Ethernet devices and as described in the corresponding
ETHOS section 3.2.2, the ARP protocol is used at first
contact to find the node that provides the sought-after
IP address. The ARP broadcast request is sent to each
connected node sequentially, as Dolphin’s message queue

IAENG International Journal of Computer Science, 36:4, IJCS_36_4_12
__

(Advance online publication: 19 November 2009)

TCP-Socket
connected to
192.168.10.14

IP: 192.168.10.11
NET: 192.168.10.0/24
HW: 00:45:54:48:00:01

host_id

ethom_tx()

eth2 (dev_id = 0)

Dolphin driver stack

NETIF

SCI/DX Network adapter

write (payload)

TCP-Socket
connected to
192.168.10.11

IP: 192.168.10.14
NET: 192.168.10.0/24
HW: 00:45:54:48:00:04

host_id
eth3 (dev_id = 0)

Dolphin driver stack

NETIF

SCI/DX Network adapter

ETHOM Host = 01 ETHOM Host = 04

kernel activity physical transfer

K
er

ne
l S

pa
ce

U
se

r
S

pa
ce

H
W

read (payload)

zoom

ETH IP TCP payload
ETH-Frame

skb

ethom_tx_action()

ETH IP TCP payload
Message

dst: 00:45:54:48:00:04
src: 00:45:54:48:00:01

dst_host=4

4 Message Queue to Host 4

tx_dates[dst_host]
...

...

...

...

Dolphin Message Queue, TX

send_flush_msg()

ethom_rx()

ETH IP TCP payload

Setting attributes
like protocol, device,
CHECKSUM_NONE
(checksumming
is done by upper
levels)

netif_rx()

dev_alloc_skb()

ethom_rx_thread_action()

ETH IP TCP payload
Message

Dolphin Message Queue, TX

polling of
recv_msg()

Figure 9: Data Transfer through ETHOM from Sender to Receiver

API does not provide a broadcast function, and answered
by the node in question. From that point on, communi-
cation over IP is possible.

3.3.3 Communication Phase

Exchanging data between two nodes in a network is de-
scribed on the basis of Figure 9. Exactly as in Figure 6,
an application on ETHOM host 1 on the left sends data
through a TCP socket to an application on ETHOM
host 4 on the right.

Sending When an application on host 1 writes data
to a TCP socket connected to a receiver on host 4,
this data is passed to the kernel networking stack. The
kernel then splits it into packets fitting into the previ-
ously specified MTU (Fragmentation) – if necessary –
and equips each packet with an Ethernet header. This
newly constructed Ethernet frame is passed to ETHOM
by calling its ethom_tx() function. There, the min-
imum length of the packet is checked and if needed
padding bytes are added, before the Ethernet frame is
given to ethom_tx_action(). In ethom_tx_action(),
the last byte of the destination hardware address (indi-
cating dest_host, here “04”) encapsulated in the Ether-

net header is used to find the send (TX) message queue
which is connected to the receive (RX) message queue on
the destination host. Depending on the flush parameter
either send_msg() or send_flush_msg() is called to for-
ward the message to the Dolphin driver stack and finally
the hardware. send_msg() should be beneficial for data
throughput, while send_flush_msg() – which we chose
for our measurement and general operation – should re-
duce latency.

Comparing this send process to the ETHOS send pro-
cess, no asynchronous forwarding of the message between
ethom_tx() and ethom_tx_action() is needed, as the
low-level functions used to finally send the message (ei-
ther send_msg() or send_flush_msg()) are completely
non-blocking. Hence, we do not have to leave interrupt
context.

Receiving On the receiving side on host 4 on the right
hand side in Figure 9, the data is directly written to the
message queue’s data space in main memory by the Dol-
phin hardware; no interrupt is called to signal the arrival
of data. As described in section 3.3.2, a thread is started
executing the function ethom_rx_thread_action() that
either dynamically or not polls on the receive mes-
sage queue. This thread, repeatedly calling Dolphin’s

IAENG International Journal of Computer Science, 36:4, IJCS_36_4_12
__

(Advance online publication: 19 November 2009)

recv_msg() function fetches the data shortly after arrival
and passes it upwards to ethom_rx(). In ethom_rx(),
an skb structure is allocated with dev_alloc_skb(), the
same attributes are set as in the ETHOS case (compare
section 3.2.3) and the Ethernet frame is passed upwards
with netif_rx(). Here, the IP packets are reassembled
from several Ethernet frames (if they were fragmented
before), IP and TCP headers are stripped off again and
the user data reaches its final destination, the application
on host 4.

By handling Ethernet frames from above layers, ETHOM
– unlike IP interfaces like IPoIB – directly supports all
protocols that rely on Ethernet (like e. g. TIPC) in addi-
tion to IP.

As the Dolphin message queue API does not support
broadcasting of data to all connected peers, broadcast
is implemented in ETHOM. Currently, data is sent to
each peer sequentially in a simple Round-Robin fashion.

In case of a node failure or shutdown, all other nodes con-
tinue working as before. Reconnection of message queues
as soon as a node comes up again is not yet implemented,
though.

4 Experimental Results

Measurements were performed on two clusters as SCI and
DX cards are built into separate clusters:

1. The first cluster, called Xeon throughout this paper,
consists of two nodes equipped with two Intel Xeon
X5355 four-core CPUs running at 2.66 GHz. The
mainboard is an Intel S5000PSL with two on-board
Gigabit Ethernet controllers (Intel 82563EB). Each
node is equipped with a DX adapter from Dolphin
(DX510H, 16 Gb/s) in a PCIe x8 slot, and an Infini-
Band adapter from Mellanox (MHGS18-XTC DDR,
20 Gb/s), which is plugged into a PCIe x8 slot, too.
The DX cards are connected directly without an in-
termediate switch, while Gigabit Ethernet and In-
finiBand use a switch; Cisco Catalyst 2960G-24TC-
L (Ethernet) and Mellanox MTS-2400-DDR (Infini-
Band).

2. The second cluster, called PD, consists of 16 nodes,
two of which were used for measurements. Each node
features a Pentium D 820 dual-core CPU running at
2.8 GHz. The mainboard is from ASUSTek (P5MT-
M). It is equipped with two on-board Gigabit Ether-
net controllers (Broadcom BCM5721). In addition
to that, each node is equipped with an SCI card
from Dolphin (D352, 10 Gb/s), which resides in a
PCIe x4 slot, and with an InfiniBand adapter from
Mellanox (MHGS18-XTC DDR, 20 Gb/s), which is
plugged into a PCIe x8 slot. The SCI cards are con-
nected in a 4x4 torus topology.

All nodes run an unpatched kernel 2.6.22, 64-bit on Xeon
and 32-bit on PD. Kernel preemption was enabled. For
InfiniBand, we used the drivers included in kernel 2.6.22,
for SCI and DX, version 3.3.1d of Dolphin’s software
stack.

In order to measure the performance of our driver in
comparison with hardware drivers for Ethernet and In-
finiBand, we measured TCP socket performance, concen-
trating on latency (see section 4.1.1) and bandwidth (see
section 4.1.2) for various message sizes. In addition to
that, we performed two measurements with TIPC replac-
ing TCP/IP (see section 4.2) in order to see what perfor-
mance to expect from our approach to enable TIPC over
high-speed interconnects.

For the TCP experiments, we used NPtcp from the Net-
PIPE9 suite in version 3.7.1, which is described in [20]
and Dolphin’s sockperf10 in version 3.3.1d as it records
information about interrupt and CPU usage. TIPC per-
formance was measured with tipcbench11, which is part
of the “TIPC demo v1.15 package”.

After testing with several different MTU settings, we
chose to use the biggest possible MTU for ETHOS and
ETHOM, as it does not have a negative effect on latency
but proved positive for bandwidth. Apart from that, we
did not touch the default settings for the other parame-
ters of our Ethernet, SCI, DX, and InfiniBand NICs (like
interrupt coalescing, message coalescing, and any other).

Currently, we use a protocol of the message queues which
is restricted to 8 KB, therefore the largest MTU for
ETHOM is 8 KB minus header length at the moment.
We expect greatly improved bandwidth when usage of a
protocol supporting larger messages is implemented.

4.1 TCP/IP Benchmarks

As TCP/IP is far more wide spread than TIPC, our first
curiosity concerned basic benchmark performance using
this protocol suite. We focus on latency and bandwidth
and then give some information on system resource util-
isation.

4.1.1 Latency

In Figure 10, the round-trip latency (RTT/2) for mes-
sages of varying sizes measured with NPtcp is shown.

The green curve represents Gigabit Ethernet, the refer-
ence that ETHOS and ETHOM compete with. The low-
est latencies are delivered by ETHOM on SCI, followed

9The NetPIPE benchmark suite is available for download at
http://www.scl.ameslab.gov/netpipe/

10The sockperf benchmark is part of the Dolphin Driver Package
available from http://www.dolphinics.com

11The tipcbench benchmark as part of the TIPC demo package
is available at http://tipc.sourceforge.net/tipc linux.html

IAENG International Journal of Computer Science, 36:4, IJCS_36_4_12
__

(Advance online publication: 19 November 2009)

100

90

80

70

60

50

40

30

20
19

16
 1 4 16 64 256 1024

R
ou

nd
-T

rip
/2

 [u
s]

Message size [Byte]

Xeon: ETHOS on IPoIB connected mode (ETHOS MTU=65493, MTU=65520)
Xeon: Gigabit Ethernet (MTU= 1500)

PD: ETHOS on SCI (ETHOS MTU=34790)
PD: ETHOM on SCI (ETHOM MTU= 8000)

Xeon: ETHOM on DX (ETHOM MTU= 8000)

Figure 10: Latency measured with NPtcp

 0.0625

 0.25

 1

 4

 16

 64

 256

 1024

 4096

1 32 1024 32768 1048576

T
hr

ou
gh

pu
t [

M
bi

t/s
]

Message size [Byte]

Xeon: ETHOS on IPoIB connected mode (ETHOS MTU=65493, MTU=65520)
Xeon: Gigabit Ethernet (MTU= 1500)

PD: ETHOS on SCI (ETHOS MTU=34790)
PD: ETHOM on SCI (ETHOM MTU= 8000)

Xeon: ETHOM on DX (ETHOM MTU= 8000)

Figure 11: Throughput measured with NPtcp

by ETHOM on DX; the highest times are the Ethernet
times. A dramatic decrease in latency can be seen for
Ethernet with message sizes between 16 and 48 B, which
indicates polling for new messages on the receiving side.
For larger messages, the high raw bandwidths of Infini-
Band and DX lead to lower latency as for SCI. Comparing
ETHOM on SCI with ETHOS on SCI, an improvement
in latency of around 10µs for small messages and around
15µs for larger ones can be observed.

Summarising, ETHOM on SCI provides an improvement
in latency by a factor of two and above on our measure-
ment platform over Gigabit Ethernet and about a 30%
improvement over its companion ETHOS.

4.1.2 Bandwidth

Figure 11 shows the bandwidth for varying message sizes
measured with NPtcp.

Gigabit Ethernet delivers for all message sizes the low-

est bandwidth (excluding the aforementioned interval be-
tween 16 and 48 B). For small messages, ETHOM on
SCI performs best with ETHOM on DX and ETHOS
on IPoIB close by. At about 1 KB, the three curves split
again each gradually approaching its maximum, which is
at 1.5 Gb/s for SCI and 3 Gb/s for DX (with their cur-
rent limitation to an MTU of 8 KB) and about 5 Gb/s
for ETHOS on InfiniBand. Comparing ETHOM with
ETHOS on SCI, it can be noticed that for small messages
(until 8 KB) ETHOM provides a 50% increase in band-
width. For large messages (256 KB and above) ETHOS
benefits from the support for larger low-level packets and
maybe additional buffering in the sockets layer.

To sum up, ETHOM on SCI exhibits a twofold increase in
bandwidth for messages up to 1 KB over Gigabit Ethernet
and about a 50% increase over ETHOS.

4.1.3 Interrupts and CPU Utilisation

In this section, we show the drawbacks of ETHOM, which
uses polling and therefore a higher system load to achieve
its high performance. Figure 12 and Figure 13 have to be
examined together in order to get some meaningful state-
ment. In Figure 12 the number of interrupts triggered by
each device are recorded over the message size.

Two points are immediately eye-catching:

1. ETHOM on SCI and DX does not trigger any in-
terrupts, which is obvious considering that ETHOM
uses polling mechanisms instead of relying on an in-
terrupt.

2. With 45000 IRQs/s, ETHOS on InfiniBand puts by
far the highest load onto the IRQ-processing rou-
tines, sharply decreasing with messages bigger than
512 Byte. At a second glance, it can be seen that our
Ethernet adapter is limited to 20000 IRQs/s, which
is a clear indication of coalescing intermediate inter-
rupts.

As mentioned before, we have to keep the interrupts in
mind when discussing the system load. Figure 13 shows
only the system time and not the time needed for IRQ
processing. Several aspects are worth mentioning here:
First of all, ETHOM on SCI has a very high system load,
as one thread is constantly polling for new messages, ef-
fectively occupying one of the 2 cores available on each
node of PD. The curve for ETHOM on DX, which is
measured on the 8-core Xeon system, indicates that a
multi-core platform is a much better basis for our polling
approach and alleviates the high load. The system load
amounts to 12.5%, which again reflects one core fully oc-
cupied with polling, and there is very low IRQ load to be
expected as no interrupt is triggered by the DX adapter.

IAENG International Journal of Computer Science, 36:4, IJCS_36_4_12
__

(Advance online publication: 19 November 2009)

 0

 10000

 20000

 30000

 40000

 50000

1 4 16 64 256 1024 4096 16384 65536

In
te

rr
up

ts
 [1

/s
]

Message size [Byte]

Xeon: ETHOS on IPoIB connected mode (ETHOS MTU=65493)
Xeon: Gigabit Ethernet (MTU= 1500)

PD: ETHOS on SCI (ETHOS MTU=34790)
PD: ETHOM on SCI (ETHOM MTU= 8000)

Xeon: ETHOM on DX (ETHOM MTU= 8000)

Figure 12: Interrupts measured with sockperf

 0

 10

 20

 30

 40

 50

 60

 70

1 4 16 64 256 1024 4096 16384 65536

C
P

U
 u

til
is

at
io

n
[%

]

Message size [Byte]

Xeon: ETHOS on IPoIB connected mode (ETHOS MTU=65493)
Xeon: Gigabit Ethernet (MTU= 1500)

PD: ETHOS on SCI (ETHOS MTU=34790)
PD: ETHOM on SCI (ETHOM MTU= 8000)

Xeon: ETHOM on DX (ETHOM MTU= 8000)

Figure 13: Systime measured with sockperf

The next point worth mentioning is the very low system
time for Gigabit Ethernet and ETHOS on InfiniBand. On
InfiniBand, due to the high interrupt rate, non-negligible
time will be spend in the interrupt routines, but on Eth-
ernet, the overall system load in general is very low.

The unsteadiness of the ETHOS on SCI curve seems to
stem from changing between polling and interrupt mode
in Dolphin’s SCI sockets, which ETHOS uses.

System utilisation can be summarised with very low load
for Gigabit Ethernet, moderate load for ETHOS on SCI
and ETHOS on InfiniBand. At the other end is ETHOM,
which causes a very high load. ETHOM will clearly ben-
efit very much from upcoming many-cores12.

4.2 TIPC Benchmarks

As one of the main aims in our motivation was to speed
up communication over TIPC, we finally measured per-
formance of Ethernet, SCI, DX, and InfiniBand with

12Many-core or sometimes massively multi-core is the term used
for a very high number of cores per CPU die.

 300

 200

 100 100
 90
 80
 70

 60

 50

 40

 30

 20

 30

 20

 13
 64 128 256 512 1024 2048 4096 8192 16384

R
ou

nd
-T

rip
/2

 [u
s]

Message size [Byte]

Xeon: ETHOS on IPoIB c. mode (ETHOS MTU=65493, IPoIB MTU=65520)
Xeon: Gigabit Ethernet (MTU= 1500)

PD: ETHOS on SCI (ETHOS MTU=34790)
PD: ETHOM on SCI (ETHOM MTU= 8000)

Xeon: ETHOM on DX (ETHOM MTU= 8000)

Figure 14: Latency measured with tipcbench

the TIPC protocol replacing TCP/IP. The only “semi-
official” benchmark, that was publicly available at the
time of our measurements, is tipcbench.

4.2.1 Latency

In Figure 14, the latency for varying message sizes mea-
sured with tipcbench is depicted.

With the TIPC protocol, ETHOM on DX reaches the
lowest latencies we ever measured, amounting to 14µs.
ETHOM on SCI lies at 19µs for small messages. Gigabit
Ethernet has the highest latencies for all message sizes.
ETHOS on InfiniBand has a latency of 20µs for small
messages, starting from 8 KB it has the lowest latency of
the measured interconnects.

Comparing ETHOM and ETHOS on SCI, a decrease in
latency of between 10 and 20µs can be observed for mes-
sages smaller than 8 KB. For 8 KB and above the bigger
packet size supported by ETHOS leads to a latency which
is on par with ETHOM.

4.2.2 Bandwidth

Figure 15 shows the bandwidth for varying message sizes
measured with tipcbench. Several facts are interesting
about this measurement:

1. Gigabit Ethernet provides the best throughput for
small messages, has a significant decrease at a mes-
sage size of 4 KB and reaches a maximum of clearly
below 500 Mb/s. It is not clear to us why Ether-
net performs so well for small messages in this test,
but we suspect that this is influenced by polling and
very efficient buffering. The fact that the maximum
throughput is rather low indicates that the strength

IAENG International Journal of Computer Science, 36:4, IJCS_36_4_12
__

(Advance online publication: 19 November 2009)

 8

 16

 32

 64

 128

 256

 512

 1024

 2048

 4096

 64 256 1024 4096 16384 65536

T
hr

ou
gh

pu
t p

er
 d

ire
ct

io
n

[M
ib

it/
s]

Message size [Byte]

Xeon: ETHOS on IPoIB connected mode (ETHOS MTU=65493, MTU=65520)
Xeon: Gigabit Ethernet (MTU= 1500)

PD: ETHOS on SCI (ETHOS MTU=34790)
PD: ETHOM on SCI (ETHOM MTU= 8000)

Xeon: ETHOM on DX (ETHOM MTU= 8000)

Figure 15: Bandwidth measured with tipcbench

of the TIPC protocol lies in low latency rather than
high bandwidth.

2. The severe decrease in bandwidth of ETHOM on
DX for messages of 8 KB and above is eye-catching.
Part of the problem should be related to the limita-
tion of 8 KB for packets that can in our implementa-
tion currently be sent via message queues. Another
part seems to be the way that ETHOM deals with
send failures. As this problem does not appear with
NPtcp, we suspect another part of the problem in
the way TIPC uses the ETH interface or in the way
tipcbench works. We are still investigating this issue
and hope for improvement when we get rid of the
“8 KB limit”.

Comparing ETHOM and ETHOS on SCI, we see an im-
provement in bandwidth for practically all message sizes.
An increase for message sizes above 8 KB is expected after
modification of ETHOM.

Summarising the TIPC benchmark results, we can re-
capitulate that ETHOM on SCI and DX shows a very
low latency. Compared with Ethernet, it provides a de-
crease by the factor 2 to 3 for small messages and up
to 4 at 4 KB. Concerning bandwidth, Ethernet performs
surprisingly well for small messages. Tipcbench and the
effects with ETHOM on DX have to be studied more
thoroughly.

5 Conclusions and Outlook

The tests performed within the scope of this article show
that ETHOS and ETHOM – making use of a high-speed
interconnect like InfiniBand, SCI, or Dolphin DX – pro-
vide solutions that offer better performance than Giga-
bit Ethernet, latency wise and bandwidth wise. Regard-
ing the completely different price range of Gigabit Ether-
net and these high-speed interconnects, this comparison
is only reasonable, when low-latency (and maybe high-

bandwidth) Ethernet interfaces are required, that can not
be provided by Gigabit Ethernet.

Comparing the results of ETHOS and ETHOM, we ob-
serve a 30%-70% improvement in bandwidth for small
to medium-sized messages and about a 30% decrease in
latency, when SCI is used.

The advent of many cores should have a twofold positive
effect on ETHOM:

1. The network should become an even more constrain-
ing bottleneck for communicating applications, as
the connection is shared by a larger number of cores;
so better communication performance is highly ap-
preciated.

2. Having a smaller ratio between the one core sacri-
ficed for communication and the number of cores
still available for computation reduces the relative
communication overhead.

With ETHOM, we present a driver for Linux, that makes
effective use of the lowest message passing layer of the
Dolphin software stack. Processing Ethernet frames from
the layer above, it enables a potentially wide range of
software to make use of Dolphin’s high-speed networks.
It has a low overhead and is small with about 1000 lines of
code. ETHOS on the other hand offers good performance
for a broad range of high-speed interconnects.

Currently, ETHOM fulfils our main aim to enable TIPC
– and any other software communicating via Ethernet
frames – to use SCI and DX. Besides ETHOS, it provides
the only Ethernet interface for SCI and DX; as a side
effect, support for IP-routing is now offered using the
standard kernel IP stack on top of ETHOM.

On the other hand, porting software to the native inter-
faces of high-speed interconnects almost always provides
better performance and efficiency at runtime – obviously
at the cost of porting effort. As usual, it remains to the
user to balance the pros and cons.

Having succeeded to let TIPC run on top of InfiniBand,
SCI, and DX, our next goal is to sacrifice compatibility
to Ethernet (as the upper interface layer) and design a
native TIPC bearer for SCI and DX. This way, we hope
to further improve performance. Apart from that, the
effect of the performance improvement onto applications
and higher-level Single System Image (SSI) functionality
will be studied.

References

[1] InfiniBand Trade Association, “Infiniband Architec-
ture Overview.”
http://www.infinibandta.org/events/past/

it roadshow/overview.pdf, 2002.

IAENG International Journal of Computer Science, 36:4, IJCS_36_4_12
__

(Advance online publication: 19 November 2009)

[2] Myricom Inc., “Myrinet 2000 Product List.”
http://www.myri.com/myrinet/ product list.html,
2008.

[3] Quadrics Ltd., “Quadrics QsNetII.”
http://www.quadrics.com, 2003.

[4] Dolphin Interconnect Solutions, “The Dolphin SCI
Interconnect.”
http://www.dolphinics.com, 1996.

[5] Dolphin Interconnect Solutions, “The Dolphin DX
Interconnect.”
http://www.dolphinics.com/products/

pent-dxseries-dxh510.html, 2007.

[6] V. Krishnan, “Towards an Integrated IO and Clus-
tering Solution for PCI Express,” in Proc. IEEE
International Conference on Cluster Computing
(CLUSTER’07), (Austin, Texas), Sept. 2007.

[7] S. Fu and M. Atiquzzaman, “SCTP: state of the
art in research, products, and technical challenges,”
in Computer Communications, 2003. CCW 2003.
Proceedings. 2003 IEEE 18th Annual Workshop on,
pp. 85–91, 2003.

[8] E. Kohler, M. Handley, and S. Floyd, “Datagram
Congestion Control Protocol (DCCP).”
http://ietfreport.isoc.org/rfc/PDF/rfc4340.pdf,
2006.

[9] L.-A. Larzon, M. Degermark, S. Pink, L.-E. Jon-
sson, and G. Fairhurst, “The Lightweight User
Datagram Protocol (UDP-Lite).”
http://ietfreport.isoc.org/rfc/PDF/rfc3828.pdf,
2004.

[10] S. Hopkins and B. Coile, “AoE (ATA over Ether-
net).”
http://www.coraid.com/site/co-pdfs/AoEr10.pdf,
2006.

[11] J. Maloy, “TIPC: Providing Communication for
Linux Clusters,” in Proceedings of the Ottawa Linux
Symposium, pp. 347–356, 2004.
http://www.linuxsymposium.org/proceedings/

LinuxSymposium2004 V2.pdf.

[12] A. Stephens, J. Maloy, and E. Horvath, “TIPC
Programmer’s Guide.”
http://tipc.sourceforge.net/doc/

tipc 1.7 prog guide.pdf, 2008.

[13] J. Maloy and A. Stephens, “TIPC Specification.”
http://tipc.sourceforge.net/doc/

draft-spec-tipc-02.html, 2006.

[14] The Kerrighed Team, “Kerrighed: a Single System
Image operating system for clusters.”
http://www.kerrighed.org, 2008.

[15] H. Hellwagner and A. Reinefeld, eds., SCI: Archi-
tecture and Software for High Peformance Compute
Clusters, vol. 1734 of Lecture Notes in Computer Sci-
ence. Berlin, Germany: Springer-Verlag, 1999.

[16] IEEE, ANSI/IEEE Std. 1596-1992, Scalable Coher-
ent Interface (SCI), 1992.

[17] Dolphin Interconnect Solutions, SISCI Interface
Specification 2.1.1, May 1999.

[18] R. Love, Linux Kernel Development (2nd Edition).
Novell Press, 2 ed., 2005.

[19] C. Benvenuti, Understanding Linux Network Inter-
nals. O’Reilly Media, Inc., Dec. 2005.

[20] Q. Snell, A. Mikler, and J. Gustafson, “Netpipe: A
network protocol independent performace evalua-
tor,” in In Proceedings of the IASTED International
Conference on Intelligent Information Management
and Systems, 1996.
http://www.scl.ameslab.gov/netpipe/paper/

full.html.

IAENG International Journal of Computer Science, 36:4, IJCS_36_4_12
__

(Advance online publication: 19 November 2009)

