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Abstract— This paper presents an alternative energy-based 

algorithm to provide speech/silence classification. The 
algorithm is capable to track non-stationary signals and 
dynamically calculate instantaneous value for threshold using 
adaptive scaling parameter. It is based on the observation of a 
noise power estimation used for computation of the threshold 
can be obtained using minimum and maximum values of a 
short-term energy estimate. The paper presents this novel voice 
activity detection algorithm, its performance, its limitations, 
and some other techniques which deal with energy estimation as 
well. 
 

Index Terms—Speech analysis, speech/silence classification, 
voice activity detection.  
 

I. INTRODUCTION 
An important problem in speech processing applications is 
the determination of active speech periods within a given 
audio signal. Speech can be characterized by a discontinuous 
signal since information is carried only when someone is 
talking. The regions where voice information exists are 
referred to as ‘voice-active’ segments and the pauses between 
talking are called ‘voice-inactive’ or ‘silence’ segments. The 
decision of determining to what class an audio segment 
belongs is based on an observation vector. It is commonly 
referred to as a ‘feature’ vector. One or many different 
features may serve as the input to a decision rule that assigns 
the audio segment to one of the two given classes. 
Performance trade-offs are made by maximizing the 
detection rate of active speech while minimizing the false 
detection rate of inactive segments. However, generating an 
accurate indication of the presence of speech, or its absence, 
is generally difficult especially when the speech signal is 
corrupted by background noise or unwanted interference 
(impulse noise, atd.).  

In the art, an algorithm employed to detect the presence or 
absence of speech is referred to as a voice activity detector 
(VAD). Many speech-based applications require VAD 
capability in order to operate properly. For example in speech 
coding, the purpose is to encode input audio signal such that 

the overall transferred data rate is reduced. Since information 
is only carried when someone is talking, clearly knowing 
when this occurs can greatly aid in data reduction. Another 
example is speech recognition. In this case, a clear indication 
of active speech periods is critical. False detection of active 
speech periods will have a direct degradation effect on the 
recognition algorithm. VAD is an integral part to many 
speech processing systems. Other examples include audio 
conferencing, echo cancellation, VoIP (voice over IP), 
cellular radio systems (GSM and CDMA based) and 
hands-free telephony [1-5]. 
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Many different techniques have been applied to the art of 
VAD. In the early VAD algorithms, short-time energy, 
zero-crossing rate, and linear prediction coefficients were 
among the common feature used in the detection process [6]. 
Cepstral coefficients [7], spectral entropy [8], a least-square 
periodicity measure [9], wavelet transform coefficients [10] 
are examples of recently proposed VAD features. But in 
general, none will ever be a perfect solution to all 
applications because of the variety and varying nature of 
natural human speech and background noise. 

Nevertheless, signal energy remains the basic component 
to the feature vector. Most of the standardized algorithms use 
energy besides other metrics to make a decision. Therefore, 
we decided to focus on energy-based techniques. It will be 
introduced an alternative way how to provide features 
extraction and threshold computation here. The present paper 
is organized as follows. The second section gives a general 
description of embodiment. The third section presents a 
review of earlier works. The fourth section will introduce the 
new algorithm. The fifth section reports the results of testing 
performed to evaluate the quality of the speech/silence 
classification, and the rest of the paper concludes the article. 

II. VOICE ACTIVITY DETECTION – THE PRINCIPLE 
The basic principle of a VAD device is that it extracts 

measured features or quantities from the input signal and then 
compares these values with thresholds usually extracted from 
noise-only periods (see Fig. 1). Voice activity (VAD=1) is 
declared if the measured values exceed the thresholds. 
Otherwise, no speech activity or noise, silence (VAD=0) is 
present. VAD design involves selecting the features, and the 
way the thresholds are updated. Most VAD algorithms output 
a binary decision on a frame-by-frame basis where a “frame” 
of the input signal is a short unit of time such 5-40 ms. The 
accuracy of a VAD algorithm depends heavily on the 
decision thresholds. Adaptation of thresholds value helps to 
track time-varying changes in the acoustic environments, and 
hence gives a more reliable voice detection results. 
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Figure 1. A block diagram of a basic VAD design. 
 

It should be mentioned as well that a general guideline for 
a good VAD algorithm for all speech enhancement (i.e., 
noise reduction) systems is to keep the duration of clipped 
segments below 64 ms and no more than 0.2 % of the active 
speech clipped [G.116]. 

A. Desirable Aspects of VAD Algorithms 
In speech enhancement systems, a reliable VAD is often a 
keystone component, for instance, for noise estimation and 
for adaptive echo cancellation. So the list of desirable aspects 
of good VAD algorithms for speech enhancement is the 
following: 

• VAD algorithm must implement a good decision rule 
that exploits the properties of speech to consistently 
classify segments of speech into inactive and active. 

• It should adapt to non-stationary background noise to 
enhance robustness. 

• The computational complexity of VAD algorithm 
must be low to suit real-time applications.  

• VAD must have minimum errors of misclassifying 
speech as noise. 

• Toll quality voice should be achieved after applying 
VAD algorithm. 

The assumptions on the VAD algorithm proposed here is 
based on the following characteristics 

• Speech is quasi-stationary. Its spectral form changes 
over short periods, e.g. 20-30ms. 

• Background noise is relatively stationary, changing 
very slowly with time. 

• Energy of the speech signal is usually higher than 
background noise energy; else speech will be 
unintelligible. 

B. Choice of Frame Duration 
Speech samples that are transmitted should be stored in a 

signal-buffer first. The length of the buffer may vary 
depending on the application. For example in the AMR 
Option 2 VAD divides the 20-ms frames into two subframes 
of 10 ms [2]. A frame is judged to be active if at least one 
subframe is active there. Through this paper a 10 ms frame 
with 8 kHz sampling, linear quantization (8/16 bits linear 
PCM) and single channel (mono) recording will be used. The 
advantage of using linear PCM is that the voice data can be 
transformed to any other compressed code (G.711, G.723, 
and G.729). Frame duration of 10 ms corresponds to 80 
samples in time domain representation. 

Let x(i) be the i-th sample of speech. If the length of the 
frame was N samples, then the j-th frame can be represented 
as, 

( ){ } ( )
Nj

Njij ixf ⋅
+⋅−== 11                (1) 

C. Energy of Frame 
The most common way to calculate the full-band energy of 

a speech signal is 
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∑
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where, Ej – energy of the j-th frame and fj is the j-th frame is 
under consideration. 

D. Initial Value of Threshold 
The starting value for the threshold is important for its 

evolution, which tracks the background noise. Though an 
arbitrary initial choice of the threshold can be used, in some 
cases it may result in poor performance. Two methods were 
proposed for finding a starting threshold value [11]. 
Method 1: The VAD algorithm is trained for a small period 
using a prerecorded speech samples that contain only 
background noise. The initial threshold level for various 
parameters then can be computed from these speech samples. 
For example, the initial estimate of energy is obtained by 
taking the mean of the energies of each frame as in 

∑
=

⋅=
υ

υ 0

1

m
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where, Er – initial threshold estimate, υ – number of frames in 
prerecorded sample. 

This method can not be used for most real-time 
applications, because the background noise can vary with 
time. Thus it would be used the second method given below. 
Method 2: Though similar to the previous method, here it is 
assumed that the initial 100 ms of any call does not contain 
any speech. This is a plausible assumption given that users 
need some reaction time before they start speaking. These 
initial 100 ms are considered inactive and their mean energy 
is calculated using Eq.4. 

III. E-VAD ALGORITHMS – A LITERATURE REVIEW 
Scenario: the energy of the signal is compared with the 

threshold depending on the noise level. Speech is detected 
when the energy estimation lies over the threshold. The main 
classification rule is, 

( )

INACTIVEisframecurrent
else

ACTIVEisframecurrent

kwhereEkEif rj 1, ff ⋅

         (5) 

In this equation, Er represents the energy of noise frames, 
while k.Er is the ‘Threshold’ being used in the 
decision-making. Having a scaling factor, ‘k’ allows a safe 
band for the adaptation of Er, and therefore, the threshold. 

A hang-over of several frames is also added to compensate 
for small energy gaps in the speech and to make sure the end 
of the utterance, often characterized by a decline of the 
energy (especially for unvoiced frames), is not clipped. 

A. LED: Linear Energy-Based Detector 
This is the simplest energy-based method that was first 

described in [12]. Since a fixed threshold would be ‘deaf’ to 
varying acoustic environments around the speaker, an 
adaptive threshold is more suitable. The rule to update the 
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threshold value was specified as, 
( ) silenceoldrnewr EpEpE ⋅+⋅−= 1          (6) 

Here, Er new – is the updated value of the threshold, Er old – is 
the previous energy threshold, and Esilence – is the energy of 
the most recent noise frame. 

The reference Er is updated as a convex combination of the 
old threshold and the current noise update. Parameter ‘p’ is 
chosen considering the impulse response of Eq.(6) as a first 
order filter (0<p<1) [12]. 

B. ALED: Adaptive Linear Energy-Based Detector 
The drawback of LED is coefficient ‘p’ in Eq.(6) being 

insensitive to the noise statistics. The threshold value Er can 
be computed alternatively based on the second order statistics 
of inactive frames [11]. A noise buffer of the most recent ‘m’ 
silence frames should be used then. Whenever a new noise 
frame is detected, it is added to the buffer and the oldest one 
is removed. The variance of the buffer, in terms of energy is 
given by 

[ silenceEVAR= ]σ                (9) 
A change in the background noise is detected by 

comparing the energy of the new inactive frame with a 
statistical measure of the energies of the past ‘m’ inactive 
frames. 

To understand the mechanism, consider first the instant of 
addition of a new inactive frame to the noise buffer. The 
variance, just before the addition, is denoted by σold. After the 
addition of the new inactive frame, the variance is σnew. A 
sudden change in the background noise would mean 

oldnew σσ f                 (10) 
Thus, a new rule to vary ‘p’ in Eq.(6) can be set in steps as 

per Table I (refer to algorithm LED to chose the range of ‘p’).  

Table I. Value of ‘p’ depending on 
old

new

σ
σ
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           25.1≥
old

new

σ
σ

 0.25 

10.125.1 ≥≥
old

new

σ
σ

 0.20 

00.110.1 ≥≥
old

new

σ
σ

 0.15 

old

new

σ
σ

≥00.1  0.10 

 
The coefficient ‘p’ in Eq.(6) now depends on variance of 

Esilence. It would make the threshold to respond faster to 
changes in the background environment. The classification 
rule for the signal frames continues to be the same as in 
Eq.(5). 

C. LED II: Linear Energy-Based Detector with double 
threshold 

Another VAD design is in application of two different 
thresholds for speech and silence periods separately. It avoids 
switching when the energy level is near to the single 
threshold. This algorithm works as it is described below. First 
the noise level is estimated using sliding window and defined 
as [13], 

( ) joldrnewr EEE ⋅−+⋅= 11 1 λλ          (11) 

for active segments and 
( ) joldrnewr EEE ⋅−+⋅= 22 1 λλ         (12) 

for inactive segments, respectively. 
λ1 [0.85,0.95] and λ2 [0.98,0.999] are the adaptation factors. 
They define a low-pass filtering. The value of the decay 
defined by λ1 is fixed according to following constraints: it 
should be small enough to track noise variation, but greater 
than the speech variation. It is made so to avoid the 
adaptation following the variation of the energy when speech 
is present. This leads to decays between 60 ms and 200 ms, 
when the sampling period for the energy is 10 ms. λ2 is fixed 
with similar constraints: the decay must be big enough to 
avoid tracking the variation of the speech energy, but small 
enough to adapt to variations in the background noise, which 
leads to values between 500 ms to one second [13]. 

The noise and speech thresholds are defined as, 

speechnewrnewspeech

silencenewrnewsilence

ET

ET

δ

δ

+=

+=
          (13) 

where, δsilence [0.1,0.4] and δspeech [0.5,0.8] are additive 
constants used to determine the thresholds. When the energy 
is greater than the speech threshold, speech is detected and 
when the energy is lower than the noise threshold no-speech 
is detected. Thus, the use of double threshold reduces the 
problem of sudden variations in the VAD’s output which 
may be obtained if a single threshold is used. 

IV. DYNAMICAL VAD - DESCRIPTION 
It occurs that in classical energy-based algorithms, 

detector can not track the threshold value accurately, 
especially when speech signal is mostly voice-active and the 
noise level changes considerably before the next noise level 
re-calibration instant. The ‘dynamical’ VAD was proposed to 
provide its classification more accurately in comparisson 
with abovementioned techniques. The main idea behind this 
algorithm was that the threshold level is estimated without 
the need of voice-inactive segments by using minimums and 
maximums of the speech energy. In the rest of this section we 
will present the algorithm and discuss some of its statistical 
properties. 

A. RMS Energy 
Another common way to calculate the energy of a speech 

signal is the root mean square energy (RMSE), which is the 
square root of the average sum of the squares of the 
amplitude of the signal samples. It is given as, 

( )
( )

2
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⎥
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N
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all the abbreviations here are the same as in Eq.(3). 
The ‘dynamical’ VAD is based on the observation that the 
power estimate of a speech signal exhibits distinct peaks and 
valleys (see Fig. 2).While the peaks correspond to speech 
activity the valleys can be used to obtain a noise power 
estimate. Therefore, the RMSE is more appropriate. 
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Figure 2. Short-time vs. Root Mean Square energy. 

B. Threshold 
Threshold estimation is based on energy levels, Emin and 

Emax, obtained from the sequence of incoming frames. These 
values are stored in a memory and the threshold is calculated 
as, 

min2max1 EkEkThreshold ⋅+⋅=         (15) 
Where, k1 and k2 are factors, used to interpolate the threshold 
value to an optimal performance. If the current frame’s 
energy is less than the threshold value the frame is marked as 
inactive. However this does not mean that the transmission 
immediately will be halted. There is also a hangover period 
that should consist of more than four inactive frames before 
the transmission is to be stopped. If the energy increases 
above the threshold the communication is resumed again. 

Since low energy anomalies can occur there is a prevention 
needed for this. The parameter Emin is slightly increased for 
each frame and this is defined by, 

)()1()( minmin jjEjE ∆⋅−=           (17) 
The parameter ∆ for each frame is defined as, 

0001.1)1()( ⋅−∆=∆ jj             (18) 

C. Algorithm Enhancement - Scaling Factor 
It is possible to introduce Eq.(15) as a convex combination 

of a single parameter λ (i.e., λ = k2): 
( ) minmax1 EEThreshold ⋅+⋅−= λλ        (19) 

Here, λ – a scaling factor controlling estimation process. 
Voice detector performs reliably when λ is in the range of  
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Figure 3. RMS energy, maximum energy, minimum energy 
and threshold curves. 

 
[0.950,…,0.999]. However, the values for different types of 
signals could not be the same and a priori information has 
still been necessarily to set up λ properly. The equation below 
shows how to make the scaling factor to be independent and  
resistant to the variable background environment 

max

minmax

E
EE −

=λ               (20) 

Figure 3 depicts the curves estimated from the speech signal 
shown in Fig. 2 (a). It can be seen how the algorithm tracks 
energy levels and calculates corresponding threshold value. 
A flowchart of the whole embodiment is given in Fig. 4 
respectively. The results of testing performed to evaluate the 
quality of the proposed algorithm together with described 
energy-based algorithms will be discussed through the next 
section. 

V. EXPERIMENTAL RESULTS - DISCUSSION 

A. Database 
Described VAD algorithms were evaluated using speech data 
(short monologues and numbers) from Czech Speech 
database. The test templates used varied in loudness, speech 
continuity, background noise and accent. The data was 
recorded in a quiet environment, sampled at rate of 8 kHz, 
and quantized to 16 bit per sample. The utterances tested 
were drawn from eight speakers, four male and four female.   

B. Computation 
MATLAB environment was used to test the algorithms 

developed on various sample signals. The speech data is 
segmented into 20ms frames (160 samples per frame). For 
each frame RMS energy and threshold value are computed. 
The values of thresholds Emax a Emin are also renewed 
every frame, based on comparison of current frame energy to 
initial Emax a Emin. The algorithm is working as it is shown in 
Fig. 4. 

IAENG International Journal of Computer Science, 36:4, IJCS_36_4_16
______________________________________________________________________________________

(Advance online publication: 19 November 2009)



 
 

 

Figure 4. A flowchart of the proposed VAD. 
 

C. Experimental Results 
Performance of the algorithms was studied on the basis of 

the following parameters: 
1. Percentage compression: The ratio of total ‘inactive’ 

frames detected to the total number of frames formed 
expressed as a percentage. A good VAD should have high 
percentage compression. It is necessary to note that the 
percentage compression also depends on the speech samples. 
If the speech signal was continuous, without any brakes, it 
would be unreasonable to expect high compression levels; 

2. Subjective Speech Quality: The quality of the samples 
was rated on a scale of 1 (poorest) to 5 (the best) where 4 
represents toll grade quality. The input signal was taken to 
have speech quality 5. The speech samples after compression 
were played to independent jurors randomly for an unbiased 
decision; 

3. Objective Assessment of Misdetection: The number of 
frames which have speech content, but were classified as 
‘inactive’ and number of frames without speech content but 
classified as ‘active’ are counted. The ratio of this count to 
the total number of frames in the sample is taken as the 
‘misdetection’ percentage. This gives a quantitative measure 
of VAD performance. 

From figures it can be observed the following  percentage 
of compression, subjective quality and misdetection for 
different speech templates. Each figure shows the response of 
all the above algorithms for a particular type of input signal: 
 Compression: the LED 2 has the highest percentage of 

compression for both different templates compared to other 
algorithms (see Fig. 5, for comparison). The proposed 
‘dynamical’ linear energy-based detector (DLED) takes the 
second place, leaving behind LED and ALED. However, 
inspite of its high compression rate, the LED 2 has an 
inadmissible percentage of the active speech segments 
clipped. For this reason, the quality of the output signal 
becomes unacceptable. 
 Subjective Quality: for all algorithms, except the LED 2, 

the speech quality was nearly the same. Because the most 
common misdetection mistake in case of the LED and ALED 
was marking ‘inactive’ frames as ‘active’. It was reflected on 
the percentage of compression and did not lead to the poor 
quality of speech.  
 Misdetection: with respect to the rate of misdetection, the 

DLED outperformed LED and ALED algorithms. The LED 2 
has the worse results. In Fig. 6, it can be observed the way 
how two algorithms work. The proposed VAD compared to 
another one performs more accurately classifying speech 
frames. 

LED LED 2 ALED DLED
0

10

20

30

40

50

60

70

80

P
er

ce
nt

ag
e 

[%
]

 

 

Compression Subjective Quality Misdetection

 
(a)  

LED LED 2 ALED DLED
0

10

20

30

40

50

60

70

80

P
er

ce
nt

ag
e 

[%
]

 
(b) 

Figure 5. Discontinuous telephone speech (a) monologue  
(b) numbers. 
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Figure 6. Example telephone speech (a) numbers 

 (b) monologue. 
 

VI. CONCLUSION 
This article is a forecast on voice activity detection 

algorithms employed to detect the presence/absence of 
speech components in audio signal. A new alternative 
energy-based VAD to provide speech/silence classification 
was presented. The aim of this work was to show the 
principle of the proposed algorithm, compare it to other 
known energy VADs, discuss its advantages and possible 
drawbacks. 

The algorithm has several features, which characterizes its 
behaviour: the root-mean square energy is used to calculate 
the power of a speech segment; estimation of threshold is 
based on the observation that the short-time energy exhibits 
distinct peaks and valleys corresponding to speech activity or 
silence periods; an adaptive scaling factor, λ, makes the 
threshold to be independent on signal characteristics and 
resistant to the variable environment as well. 

It is easy to realize that the expounded algorithm is very 
independent and easily can be integrated into most VADs 
used by speech coders and other speech enhancement 
systems. 
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