
A Closed-Form Algorithm for Converting
Hilbert Space-Filling Curve Indices∗

Chih-Sheng Chen†,‡, Shen-Yi Lin†, Min-Hsuan Fan†, and Chua-Huang Huang †

Abstract—We use the tensor product theory to for-
mulate a closed-form algorithm for converting Hilbert
space-filling curve indices of individual points. A two-
dimensional Hilbert space-filling curve is specified as a
permutation which rearranges two-dimensional 2n×2n

data elements stored in the row-major order as in
C language or the column-major order as in FOR-
TRAN language to the order of traversing a two-
dimensional Hilbert space-filling curve. The closed-
form algorithm converts the row-major index or the
column index of a single point to the index of Hilbert
space-filling curve order. The time complexity of the
closed-form algorithm is a function of the length of
the binary representation of the index and its space
complexity is bounded by a constant. In addition,
the closed-form tensor product formula can be di-
rectly translated into computer programs which can
be used in various applications such as image com-
pression. The process of program generation is ex-
plained in the paper.

Keywords: Hilbert space-filling curve, tensor product,

closed-form, program generation

1 Introduction

The Hilbert space-filling curve is a space-filling curve
that traverses every point once on a two-dimensional
2n × 2n square grid and without crossing the path [1].
Typically, a 2n × 2n Hilbert space-filling curve is recur-
sively constructed from 2n−1 × 2n−1 Hilbert space-filling
curve. For example, the 2 × 2, H1, and the 4 × 4, H2,
Hilbert space-filling curves are shown in Figure 1. H2 is
a curve connecting four copies of H1 in different orienta-
tions. It is first described by David Hilbert in 1891 and
used to express the locality of two-dimensional data in
a one-dimensional space [2]. Digital data stored in the
Hilbert space-filling curve order have important advan-
tages of locality efficiency between neighboring points,
so various applications use it to arrange data elements
in a linear order and preserves spatial locality. In im-
age processing, applying the Hilbert space-filling curve

∗This work was supported in part by National Science Council,
Taiwan, R.O.C. under grant NSC 92-2218-E-035-013.

†Department of Information Engineering and Computer Science,
Feng Chia University, Taichung, Taiwan 40724 Email: {chenc,
sylin, mfan, chh}@pmlab.iecs.fcu.edu.tw ‡Department of Health
Administration, Tzu Chi College of Technology, Hualien, Taiwan
97005 Email: chen@tccn.edu.tw

to images, and get better compression rate than that of
a raster scanned image [3, 4, 5]. Using the properties
of the Hilbert space-filling curve, VLSI component lay-
out [6, 7] can fully exploit the available silicon area and
optimal area complexity. Multi-dimensional data struc-
ture R-tree uses the Hilbert space-filling curve indexing
to cluster the data and makes searching more efficient
[8, 9, 10, 11, 12]. Furthermore, the Hilbert space-filling
curve is beneficial in the design of small antennas be-
cause it can pack the maximum length of a line in a
given area [13]. Recently, three-dimensional space-filling
curve are used to detect and classify functional Magnetic
Resonance Imaging (fMRI) activation patterns of clinical
medical images [14].

Since Hilbert space-filling curves are extensively used
in various applications, different methods of curve gen-
eration have been suggested for reducing computation
time and/or space complexities. Jagadish analyzes the
clustering properties of Hilbert space-filling curves [15].
He shows that the Hilbert space-filling curve order can
achieve the best clustering, i.e., it is the best space-filling
curve order in minimizing the number of clusters. Butz
uses an iterative algorithm to compute a mapping func-
tion with byte-oriented technique such as exclusive OR,
shifting, etc. [16, 17]. Sagan presents an arithmetic
method for the generation of the nodes and produces an
approximating polygon to represent the Hilbert space-
filling curve [18]. Ohno and Ohyama describe Hilbert
space-filling curves with the Lindenmayer system which
be can used to generate self-similar fractals [19]. Quin-
queton and Berthod present an algorithm for computing
all addresses of scanning path by recursive procedure [20].
Kamata et al. propose a non-recursive algorithm for N -
dimensional Hilbert space-filling curve using look-up ta-
bles [21, 22]. Using tensor product formulation present,
we design both recursive and iterative coding algorithms
which scan all space points of two-dimensional and three-
dimensional Hilbert space-filling curves [23, 24].

Some application problems, such as finding nearest neigh-
bor points and retrieving partial of satellite picture in ge-
ographic information system, are not required to scan all
data elements of a Hilbert space-filling curve, i.e., Liu and
Schrack present a haphazard point mapping algorithm
between one-dimensional and two-dimensional data [25].
This algorithm does not depend on look-up tables and is

IAENG International Journal of Computer Science, 37:1, IJCS_37_1_02
__

(Advance online publication: 1 February 2010)

�
r

� c
�

�

�
r

� c
�

�

H1 H2

Figure 1: 2 × 2 and 4 × 4 Hilbert space-filling curves

faster then Fisher’s interpretation [26]. Recently, Chen
et al. design an encoding and decoding algorithms based
on the replication of the Hilbert matrix [27]. These al-
gorithms work better when the data area is smaller then
the entire space.

In this paper, we use the tensor product theory to for-
mulate a closed-form algorithm for converting Hilbert
space-filling curve indices of individual points. A point
on the m × n two-dimensional space is usually indexed
as a pair of coordinates, (r, c), where 0 ≤ r < m and
0 ≤ c < m. Usually, the data elements of m × n the
two-dimensional are stored in computer memory of lin-
ear address space in the row-major order, as in C lan-
guage, or in the column-major order, as in FORTRAN
language. For 2n × 2n two-dimensional space, conversion
of a row-major or column-major index (r, c) to its corre-
sponding Hilbert space-filling curve index h is expressed
as a tensor product formula. The time complexity of the
closed-form algorithm is a function of the length of the
binary representation of the point index and its space
complexity is bounded by a constant. In addition, the
tensor product formula can be directly translated into a
high-level language program with bit-wise operators and
few subtractions.

The paper is organized as the following. We briefly re-
view the algebraic theory of tensor product and other re-
lated operations in Section 2. In Section 3, we derive the
closed-form algorithm for two-dimensional Hilbert space-
filling curve based on previous research. Program gen-
eration of the closed-form Hilbert space-filling curve al-
gorithm from the tensor product formula is explained in
Section 4. The time and space complexities of the al-
gorithm are discussed in Session 5. Concluding remarks
and future works are given in Section 6.

2 Overview of Tensor Product Opera-
tions

In this section, we give an brief overview of the algebraic
operations and some of their properties used in formulat-
ing the closed-form for Hilbert space-filling curve permu-
tation. The operations explained include tensor product,
direct sum, vector reversal, and stride permutation.

Tensor product is a matrix operation which builds a
“large” matrix from two “small” matrices. It is defined

as below:

Definition 2.1 (Tensor Product) If A is an m × n
matrix and B is an p× q matrix, then the tensor product
of A and B is the block matrix obtained by replacing each
element ai,j by ai,jB, denoted by A ⊗ B, is an mp × nq
matrix defined as

A ⊗ B =

⎡
⎢⎣

a0,0Bp×q · · · a0,n−1Bp×q

...
. . .

...
am−1,0Bp×q · · · am−1,n−1Bp×q

⎤
⎥⎦ .

Let Fm be the vector space of m-tuples over field F and
let Fm×n be the vector space of m × n matrices. The
collection of elements {em

i |0 ≤ i < m}, where em
i is the

vector with a one in the i-th position and zeros elsewhere,
form the standard basis for Fm.

Definition 2.2 (Tensor Bases) Let Fn be the vector
space of n-tuples over the field F , a collection of elements
{en1

i1
⊗ en2

i2
⊗ · · · ⊗ enk

ik
|0 ≤ i1 < n1, 0 ≤ i2 < n2, · · · , 0 ≤

ik < nk} are called a tensor bases of Fn1⊗Fn2⊗· · ·⊗Fnk .

A tensor basis can be linearized (or factorized) as below:

en1
i1

⊗ en2
i2

⊗ · · · ⊗ enk

ik
= en1n2···nk

i1n2···nk+···+ik−1nk+ik
.

The direct sum is a matrix operation that transforms
several matrices into one block diagonal matrix, that is
to say, the operation could build a “large” matrix from
some “small” matrices .

Definition 2.3 (Direct Sum) Let A and B be two ma-
trices m×n and p× q, respectively. The direct sum of A
and B is an (m + p) × (n + q) matrix defined as

A ⊕ B =
[

A 0
0 B

]
.

If B is a p×q matrix, In⊗B is the direct sum of n copies
of B, where In is the n × n identity matrix.

In ⊗ B =
n−1⊕
k=0

B =

⎡
⎢⎣

B
. . .

B

⎤
⎥⎦

pn×qn

.

Three permutations are used in formulating the closed-
form of Hilbert space-filling curve permutation. They
are stride permutation, reverse permutation, and Gray
permutation.

Definition 2.4 (Stride Permutation) A stride per-
mutation Lmn

n is defined by

Lmn
n (em

i ⊗ en
j) = en

j ⊗ em
i .

IAENG International Journal of Computer Science, 37:1, IJCS_37_1_02
__

(Advance online publication: 1 February 2010)

Lmn
n is referred to as the stride permutation which per-

mutes the tensor product of two vector bases. If an m×n
matrix is stored in the column-major order, its basis is
isomorphic to em

i ⊗ en
j . Stride permutation is exactly the

transposition operation transforming the matrix from the
column-major order allocation to the row-major order.
Stride permutation also corresponds to the exchange of a
coordinate system.

Definition 2.5 (Reverse Permutation) A reverse
permutation Jn is defined by

Jnen
i = en

(n−1)−i.

Jn maps the basis element en
i to the basis element

en
−(i+1) mod n. Reverse permutation corresponds the re-

verse of a coordinate system. It is also used in the def-
inition of Gray permutation. Reverse permutation for a
vector of length 2k can be viewed as a binary complement
operation, since J2k(e2

ik−1
⊗ · · · ⊗ e2

i0
) = e2

ik−1
⊗ · · · ⊗ e2

i0
,

where ij is the binary complement of ij, 0 ≤ j < n.

Definition 2.6 (Gray Permutation) The n-bit Gray
permutation G2n is defined as

G2 = I2, G2n = (I2n−1 ⊕ J2n−1)(I2 ⊗ G2n−1).

Jn maps the basis element en
i to the basis element

en
−(i+1) mod n. Reverse permutation corresponds the re-

verse of a coordinate system. It is also used in the def-
inition of Gray permutation. Reverse permutation for a
vector of length 2k can be viewed as a binary complement
operation, since J2k(e2

ik−1
⊗ · · · ⊗ e2

i0
) = e2

ik−1
⊗ · · · ⊗ e2

i0
,

where ij is the binary complement of ij, 0 ≤ j < n.

Definition 2.7 (Selection Operation) A selection
operation E4n,4n

k,k is a 4n×4n, 0 ≤ k < 2n−1, matrix with
the k-th diagonal elements being 1 and zeros, elsewhere.

E4n,4n

k,k is termed as a selection operator and selected one
of the input elements which on which the computation is
performed.

E4n,4n

k,k = E2n,2n

r,r ⊗ E2n,2n

c,c ,

where k = r × 2n + c.

There are some properties of tensor products, direct
sums, stride permutations Lmn

n , and reverse permutations
used in this paper. The readers are referred to [24] for
these properties.

3 Closed-Form Algorithm for Hilbert
Space-Filling Curve

In the previous papers [23, 24], we develop recursive and
iteration tensor product formulations for two-dimensional

and three-dimensional Hilbert space-filling curves. Sup-
pose the points of a 2n × 2n two-dimensional gird are
initially stored in the row-major or column-major order.
The recursive tensor product formula of rearranging the
grid points in the Hilbert space-filling curve order is given
as the following:

H1 = G2,
n > 1 : Hn = (I4 ⊗ Hn−1)RnGnBn

= (I4 ⊗ Hn−1)
(T22(n−1) ⊕ I22(n−1) ⊕ I22(n−1) ⊕ T 22(n−1))
(G2 ⊗ I22(n−1))(I2 ⊗ L2n

2 ⊗ I2n−1).

The construction of the 2n×2n Hilbert space-filling curve
is carried out in four steps. In the first step, opera-
tion Bn is to reallocate the initial row-major ordering
data to 2 × 2 blocks. Secondly, Gn is to permute the
blocks using 2× 2 Gray permutation, and the third step,
Rn is to rotate and reflect the block elements according
to a given orientation, for each block. We use T22(n−1)

and T 22(n−1)) to denote transposition and anti-diagonal
transposition operation of 2n−1 × 2n−1 blocks, respec-
tively. Note that T22(n−1) is L22(n−1)

2n−1 and T 22(n−1)) is

(J2n−1⊗J2n−1)L22(n−1)

2n−1 . Finally, the four blocks are recur-
sively applied the 2n−1 × 2n−1 Hilbert space-filling curve
permutation. The recursive tensor product formula of the
Hilbert space-filling curve permutation can be expanded
repeatedly to derive the iterative tensor product formula
as:

Hn =
∏n−1

i=0 I4i⊗
[(T22(n−i−1) ⊕ I22(n−i−1) ⊕ I22(n−i−1) ⊕ T 22(n−i−1))
(G2 ⊗ I22(n−i−1))(I2 ⊗ L2n−i

2 ⊗ I2n−i−1)].

Both recursive and iteration tensor product formulas
for Hilbert space-filling curves converts the entire space
points. Since some applications need not process all
points of a multi-dimensional space, we will modify the
iterative tensor product formula for Hilbert space-filling
curves to derive a closed-form algorithm for converting
Hilbert space-filling curve indices of individual points.

A selection operation is needed for the tensor product for-
mulation because the closed-form algorithm deals with a
single point only. The iterative two-dimensional closed-
form tensor product formula for converting a Hilbert
space-filling curve point can be deduced from the two-

IAENG International Journal of Computer Science, 37:1, IJCS_37_1_02
__

(Advance online publication: 1 February 2010)

dimensional iterative tensor product formula as:

HnE4n,4n

k,k

=

⎧⎪⎪⎨
⎪⎪⎩

n−1∏
i=0

I4i ⊗

⎡
⎢⎢⎣

(T22(n−i−1) ⊕ I22(n−i−1)⊕
I22(n−i−1) ⊕ T 22(n−i−1))
(G2 ⊗ I22(n−i−1))
(I2 ⊗ L2n−i

2 ⊗ I2n−i−1)

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

(
E4n,4n

k,k

)

=

⎧⎪⎪⎨
⎪⎪⎩

n−1∏
i=0

I4i ⊗

⎡
⎢⎢⎣

(T22(n−i−1) ⊕ I22(n−i−1)⊕
I22(n−i−1) ⊕ T 22(n−i−1))
(G2 ⊗ I22(n−i−1))
(I2 ⊗ L2n−i

2 ⊗ I2n−i−1)

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭(

E2n,2n

r,r ⊗ E2n,2n

c,c

)
,

where operation E4n,4n

k,k is to select one of the points of
the 2n × 2n gird and the remainder of the tensor product
formula is the operations of iterative closed-form algo-
rithm applying to the point. Initially, we assume the
points (data) on the two-dimensional 2n × 2n grid are
stored in the row-major order so the point of index (r, c),
0 ≤ r, c < 2n, is represented as the tensor basis e2n

r ⊗e2n

c .

The iterative closed-form algorithm can be explained as
the following construction steps:

1. Selection operation: E4n,4n

k,k

The selection operation E4n,4n

k,k can be factorized to
E2n,2n

r,r ⊗ E2n,2n

c,c , where k = r × 2n + c. Let indices
r and c be expressed in their binary representations
r0r1 · · · rn−2rn−1 and c0c1 · · · cn−2cn−1, respectively.
Applying E4n,4n

k,k to the initial row-major order ten-
sor basis, we obtain the following basis:

(E4n,4n

k,k) [1 · · · 1]T4n×1

= (E2n,2n

r,r ⊗ E2n,2n

c,c)([1 · · · 1]T2n×1 ⊗ [1 · · · 1]T2n×1)
= e2n

r ⊗ e2n

c

= e2
r0

⊗ e2
r1

⊗ · · · ⊗ r2
rn−2

⊗ r2
rn−1

⊗
e2

c0
⊗ e2

c1
⊗ · · · ⊗ r2

cn−2
⊗ r2

cn−1
.

2. Iterative operation:
n−1∏
i=0

I4i⊗
⎡
⎣ (T22(n−i−1) ⊕ I22(n−i−1)⊕

I22(n−i−1) ⊕ T 22(n−i−1))
(G2 ⊗ I22(n−i−1))(I2 ⊗ L2n−i

2 ⊗ I2n−i−1)

⎤
⎦

The iterative operation
n−1∏
i=0

has the loop in-

dex i step from 0 to n − 1. The tensor ba-
sis at the beginning of the i-th iteration is
e4i

hi
⊗e2

ri
⊗· · ·⊗r2

rn−2
⊗r2

rn−1
⊗e2

ci
⊗· · ·⊗r2

cn−2
⊗r2

cn−1
,

where h0 = 0 and hi =
i−1∑
t=0

(2r′t + c′t) × 4i−t−1, for

i > 0. Also, r′t and c′t, for 0 ≤ t < i, are the results
obtained from the previous iterations. If we do
not consider the selection operation, the iterative
operation is applied to the entire 2n × 2n grid. At
the beginning of the i-th iterations, the points of
the grid are rearranged into 4i blocks such that the

blocks are stored in the order of 2i × 2i Hilbert
space-filling curve and points in each block are
stored in the row-major order with a sequences of
Gray permutation and coordinate transformation
determined by the block index. Note that I4i in the
iteration body can be distributed to the terms on
the left hand side of the tensor product operator,
i.e.,

I4i⊗
[(T22(n−i−1) ⊕ I22(n−i−1) ⊕ I22(n−i−1) ⊕ T 22(n−i−1))
(G2 ⊗ I22(n−i−1))(I2 ⊗ L2n−i

2 ⊗ I2n−i−1)]
= [I4i ⊗ (T22(n−i−1) ⊕ I22(n−i−1) ⊕ I22(n−i−1)⊕

T 22(n−i−1))][I4i ⊗ (G2 ⊗ I22(n−i−1))]
[I4i ⊗ (I2 ⊗ L2n−i

2 ⊗ I2n−i−1)]

We will explain block allocation, Gray permutation,
and coordinate transformation below.

(a) Block allocation: I4i ⊗ (I2⊗L2n−i

2 ⊗ I2n−i−1).
Block allocation rearranges a block of size
2n−i×2n−i to four blocks of size 2n−i−1×2n−i−1

each. Applying the block allocation to the ten-
sor basis, we obtain the following basis:

[I4i ⊗ (I2 ⊗ L2n−i

2 ⊗ I2n−i−1)]
(e4i

hi
⊗ e2

ri
⊗ e2

ri+1
⊗ · · · ⊗ e2

rn−1
⊗

e2
ci
⊗ e2

ci+1
⊗ · · · ⊗ e2

cn−1
)

= [I4ie4i

hi
] ⊗ [(I2 ⊗ L2n−i

2 ⊗ I2n−i−1)
(e2

ri
⊗ e2

ri+1
⊗ · · · ⊗ e2

rn−1
⊗

e2
ci
⊗ e2

ci+1
⊗ · · · ⊗ e2

cn−1
)]

= e4i

hi
⊗ e2

ri
⊗ e2

ci
⊗ e2

ri+1
⊗ · · · ⊗ e2

rn−1
⊗

e2
ci+1

⊗ · · · ⊗ e2
cn−1

.

(b) Gray permutation: I4i ⊗ (G2 ⊗ I22(n−i−1)).
The result of block allocation is 4i+1 blocks
of size 2n−i−1 × 2n−i−1 each. Given (r′, c′),
the four blocks indexed by (ri, ci), where 0 ≤
ri, ci ≤ 1, are permuted with 2-bit Gray permu-
tation G(2). Applying the gray permutation to
the resulting tensor basis of block allocation, we
obtain:

[I4i ⊗ (G2 ⊗ I22(n−i−1))]
(e4i

hi
⊗ e2

ri
⊗ e2

ci
⊗ e2

ri+1
⊗ · · · ⊗ e2

rn−1
⊗

e2
ci+1

⊗ · · · ⊗ e2
cn−1

)
= e4i

hi
⊗ e2

r
′
i

⊗ e2
c
′
i

⊗ e2
ri+1

⊗ · · · ⊗ e2
rn−1

⊗
e2

ci+1
⊗ · · · ⊗ e2

cn−1
.

The mapping of Gray permutation G2 is de-
picted as: (0, 0) → (0, 0), (0, 1) → (0, 1),
(1, 0) → (1, 1), and (1, 1) → (1, 0).

(c) Coordinate transformation:
I4i ⊗ (T22(n−i−1) ⊕ I22(n−i−1) ⊕ I22(n−i−1) ⊕
T 22(n−i−1)).
The four blocks obtained from Gray permuta-
tion are not aligned well because the Hilbert

IAENG International Journal of Computer Science, 37:1, IJCS_37_1_02
__

(Advance online publication: 1 February 2010)

space-filling curve in each of the blocks are not
connected “adjacently”. Hence, we need to
adjust the orientation of blocks so the ending
point of a block and the starting point of its
following block are neighboring to each other.

Let Ri =
n−1∏

k=i+1

rk and Ci =
n−1∏

k=i+1

ck. The ori-

entation adjustment for the block with index
(r′i, c

′
i) is expressed as the following coordinate

transformations:

i. for (r′i, c
′
i) = (0, 0), (Ri, Ci) → (Ci, Ri),

i.e., 2n−i−1 × 2n−i−1 transposition opera-
tion denoted as T22(n−i−1) ,

ii. for (r′i, c
′
i) = (0, 1) and (r′i, c

′
i) = (1, 0),

(Ri, Ci) → (Ri, Ci), i.e., 2n−i−1 × 2n−i−1

identity operation denoted as I22(n−i−1) ,
and

iii. for (r′i, c
′
i) = (1, 1), (Ri, Ci) → (−Ci,−Ri),

i.e., 2n−i−1 × 2n−i−1 anti-diagonal trans-
position operation denoted as T 22(n−i−1) ,

The coordinate transformation is expressed as
T22(n−i−1) ⊕ I22(n−i−1) ⊕ I22(n−i−1) ⊕ T 22(n−i−1) .
Recall that T22(n−i−1) is L22(n−i−1)

2n−i−1 and
T 22(n−i−1) is (J2n−i−1 ⊗ J2n−i−1)L22(n−i−1)

2n−i−1 . The
effect of T22(n−i−1) and T 22(n−i−1) on tensor
basis e2

ri+1
⊗ · · · ⊗ e2

rn−1
⊗ e2

ci+1
⊗ · · · ⊗ e2

cn−1
is

as below:

T22(n−i−1)(e2
ri+1

⊗ · · · ⊗ e2
rn−1

⊗
e2

ci+1
⊗ · · · ⊗ e2

cn−1
)

= L22(n−i−1)

2n−i−1 (e2
ri+1

⊗ · · · ⊗ e2
rn−1

⊗
e2

ci+1
⊗ · · · ⊗ e2

cn−1
)

= e2
ci+1

⊗ · · · ⊗ e2
cn−1

⊗ e2
ri+1

⊗ · · · ⊗ e2
rn−1

= e2n−i−1

Ci
⊗ e2n−i−1

Ri
,

T 22(n−i−1)(e2
ri+1

⊗ · · · ⊗ e2
rn−1

⊗
e2

ci+1
⊗ · · · ⊗ e2

cn−1
)

= (J2n−i−1 ⊗ J2n−i−1)
L22(n−i−1)

2n−i−1 (e2
ri+1

⊗ · · · ⊗ e2
rn−1

⊗
e2

ci+1
⊗ · · · ⊗ e2

cn−1
)

= (J2n−i−1 ⊗ J2n−i−1)(e2
ci+1

⊗ · · · ⊗ e2
cn−1

⊗
e2

ri+1
⊗ · · · ⊗ e2

rn−1
)

= e2
ci+1

⊗ · · · ⊗ e2
cn−1

⊗ e2
ri+1

⊗ · · · ⊗ e2
rn−1

= e2n−i−1

2n−i−1−Ci−1 ⊗ e2n−i−1

2n−i−1−Ri−1.

At the end of coordinate transformation, tensor basis
e4i

hi
⊗e2i

r′
i
⊗e2i

c′
i
is exactly e4i+1

hi+1
, i.e., hi+1 = 4hi+2r′i+

c′i, for the next iteration.

The closed-form algorithm maps the row-major index of
a point to its corresponding Hilbert space-filling curve
index. We will explain program generation of the closed-
form algorithm in the following section.

4 Closed-Form Program Generation

We use C programming language to illustrate the gen-
erated program. Function closedFormHilbert2D() has
three unsigned integer parameters n, r, and c, where n
is the length of the binary representation of row index r
and column index c. We assume the maximum length of
the row/column index is less than or equal to half of the
length of an unsigned integer which is 16 in most com-
puters. Function closedFormHilbert2D() will return
an unsigned integer which is the corresponding Hilbert
space-filling curve index of (r, c).

We will use bit-wise operations to convert the row-major
index (r, c) to the Hilbert space-filling curve index h.
Program generation of closedFormHilbert2D() follows
the steps of tensor product formulation explained in the
previous section.

1. Selection operation:
The tensor basis e2

r0
⊗ e2

r1
⊗ · · · ⊗ r2

rn−2
⊗ r2

rn−1
⊗

e2
c0

⊗ e2
c1

⊗ · · · ⊗ r2
cn−2

⊗ r2
cn−1

is encoded in param-
eters r and c of n bits long. The least significant n
bits of r and c correspond to the binary representa-
tion r0r1 · · · rn−2rn−1 and c0c1 · · · cn−2cn−1, respec-
tively. The resulting Hilbert space-filling curve index
is stored in a local variable h which is initialized to
0 and its result is of length 2n bits. At beginning
of an iteration the partial result of Hilbert space-
filling curve index hi is recorded in h. We use pos
to record the position of bits ri and ci in an itera-
tion. Variable mask is used later in the anti-diagonal
transposition operation and it is initialized to all 1’s
at the n − 1 least significant bits and 0’s elsewhere.
Variable declaration and initialization of h, pos, and
mask are shown below:

unsigned h = 0;

unsigned pos = 1 << (n-1);

unsigned mask = pow(2, n-1)-1;

2. Iterative operation:

The iterative operation
n−1∏
i=0

is a matrix product

which is simply translated to the following a for
loop:

for (i=0; i<n; i++) { };

with the loop body performing block allocation,
Gray permutation, and coordinate transformation.
These three operations manipulate tensor basis e2

ri
⊗

e2
ri+1

⊗ · · · ⊗ e2
rn−1

⊗ e2
ci
⊗ e2

ci+1
⊗ · · · ⊗ e2

cn−1
and the

partial result of Hilbert space-filling curve index hi

is stored in h.

(a) Block allocation:
Block allocation maps e2

ri
⊗e2

ri+1
⊗· · ·⊗e2

rn−1
⊗

IAENG International Journal of Computer Science, 37:1, IJCS_37_1_02
__

(Advance online publication: 1 February 2010)

e2
ci
⊗ e2

ci+1
⊗ · · · ⊗ e2

cn−1
to e2

ri
⊗ e2

ci
⊗ e2

ri+1
⊗

· · · ⊗ e2
rn−1

⊗ e2
ci+1

⊗ · · · ⊗ e2
cn−1

. We extract ri

and ci and store them in variables ri and ci,
respectively:

ri = (r & pos) >> (n-i-1);

ci = (c & pos) >> (n-i-1);

Also, the rest of tensor basis e2
ri+1

⊗· · ·⊗e2
rn−1

⊗
e2

ci+1
⊗ · · · ⊗ e2

cn−1
is kept in r and c with the

following two assignments:

r = r & mask; c = c & mask;

(b) Gray permutation:
The Gray permutation is simply transformed to
a conditional statement of four cases:

if (ri==0 && ci==0)

{ri = 0; ci = 0;} // Case 1

else if (ri==0 && ci==1)

{ri = 0; ci = 1;} // Case 2

else if (ri==1 && ci==0)

{ri = 1; ci = 1;} // Case 3

else {ri = 1; ci = 0;} // Case 4

Note that the assignments in the first two cases
are not necessary, we leave them there to show
the mapping of the Gray permutation.

(c) Coordinate transformation:
Coordinate transformation is coded within the
four cases of the Gray permutation. For Case 2
and Case 4, i.e., (r′i, c

′
i) = (0, 1) and (1, 0), coor-

dinate transformation is the identity mapping,
I22(n−i−1) , so we will do nothing at all. For Case
1, i.e., (r′i, c

′
i) = (0, 0), the transposition opera-

tion, T22(n−i−1) , is implemented by swapping r
and c:

tmp = r; r = c; c = tmp;

For Case 3, the anit-diagonal transposition
operation, T 22(n−i−1) , can be implemented by
swapping r and c followed by complement op-
erations: is implemented by swapping r and c:

tmp = r; r = c; c = tmp;

r = ~r & mask; c = ~c & mask;

At the end of iteration i, pos and mask are manip-
ulated. Also, ri and ci are appended to the partial
result h as below:

pos = pos >> 1; mask = mask >> 1;

h = (((h << 1) | ri) << 1) | ci;

When the loop terminates, h is the Hilbert space-fill curve
index mapped by the input row-major index (r, c). Fi-
nally, h is returned by function closedFormHilbert2D().

We summarized the generated program as the followings:

unsigned closedFormHilbert2D(unsigned n,

unsigned r, unsigned c) {

unsigned h = 0;

unsigned pos = 1 << (n-1);

unsigned mask = pow(2, n-1)-1;

unsigned i, tmp;

for (i=0; i<n; i++) {

ri = (r & pos) >> (n-i-1);

ci = (c & pos) >> (n-i-1);

r = r & mask; c = c & mask;

if (ri==0 && ci==0) { // Case 1

ri = 0; ci = 0;

tmp = r; r = c; c = tmp; }

else if (ri==0 && ci==1) { // Case 2

ri = 0; ci = 1; }

else if (ri==1 && ci==0) { // Case 3

ri = 1; ci = 1;

tmp = r; r = c; c = tmp;

r = ~r & mask; c = ~c & mask; }

else { // Case 4

ri = 1; ci = 0; }

pos = pos >> 1; mask = mask >> 1;

h = (((h << 1) | ri) << 1) | ci;

}

return h;

}

In some application problems, the mapping of a Hilbert
space-filling curve index to its corresponding row-major
or column-major index is needed. We simply show the
tensor product of formula of the inverse closed-form al-
gorithm:

H−1
n =

∏0
i=n−1 I4i⊗

[(I2 ⊗ L2n−i

2n−i−1 ⊗ I2n−i−1)
(T22(n−i−1) ⊕ I22(n−i−1) ⊕ I22(n−i−1) ⊕ T 22(n−i−1))
(G2 ⊗ I22(n−i−1))].

The inverse closed-form algorithm is applied to tensor
basis E4n,4n

h,h corresponding to a Hilbert space-filling curve
index h. Program generation of the inverse closed-form
algorithm is omitted in this paper.

5 Performance Analysis

The time and space complexities of the two-dimensional
Hilbert space-filling curve algorithm are O(n4n) and
O(4n), respectively, because it scans the entire 2n × 2n

data space and performs data movement [24]. However,
the closed-form algorithm only converts the index of a
selected point. It is improper to compare time and space
complexities of these two algorithms.

The time complexity of the closed-form algorithm is
O(n), i.e. the bit length of r and c, if we count all
the three operations: block allocation, Gray permuta-
tion, and coordinate transformation, in each iteration.

IAENG International Journal of Computer Science, 37:1, IJCS_37_1_02
__

(Advance online publication: 1 February 2010)

However, block allocation can be interpreted as bit ex-
traction of Hilbert space-filling curve index. The closed-
form algorithm may be modified to delayed the block
allocation so the tensor basis at the beginning of the i-th
iteration is e2

r′
0
⊗ · · · ⊗ e2

r′
i−1

⊗ e2
ri

⊗ · · · ⊗ e2
rn−1

⊗ e2
c′0

⊗
· · · ⊗ e2

c′
i−1

⊗ e2
ci
⊗ · · · ⊗ e2

cn−1
. The Hilbert space-filling

curve index is synthesized upon termination of the loop
by interleaving e2

r′
0
⊗ · · · ⊗ e2

r′
i−1

⊗ e2
r′

i
⊗ · · · ⊗ e2

r′
n−1

and

e2
c′0
⊗· · ·⊗e2

c′
i−1

⊗e2
c′

i
⊗· · ·⊗e2

c′
n−1

. For the modified closed-
form algorithm, the time complexity counts only the
number of transposition operation, for (r′i, c

′
i) = (0, 0),

and anti-diagonal transposition operation, for (r′i, c
′
i) =

(0, 1), i.e., O(parity(c)). The space complexity of the
closed-form algorithm is O(1), bounded by a constant,
since only a number of local variables are declared in
function closedFormHilbert2D(). However, if we con-
sider the bit length of n, the actual space complexity
should be O(n).

Chen et al. present an algorithm for encoding and decod-
ing a Hilbert space-filling curve index of time complexity
�log2 max(r, c)� [27]. In fact, the computational sequence
of this algorithm is the same as the algorithm in this pa-
per. The complexity discrepancy between these two algo-
rithms is caused by how the operations are counted. We
do not only present an algorithm of converting Hilbert
space filling-curve indices, but we also show how the algo-
rithm is derived from a tensor product formula. This ap-
proach gives a theoretical background for designing vari-
ants of space-filling curves.

6 Conclusions

We use a tensor product based algebraic theory to model
two-dimensional iterative closed-form tensor product for-
mulation for converting Hilbert space-filling curve in-
dices. The inverse two-dimensional iterative closed-form
Hilbert space-filling curve permutation algorithm is de-
rived from the iterative tensor product formula. These
formulas can be used to generate iterative and inverse
iterative closed-form programs with bit-wise opertions.

Space-filling curves are used in various applications such
as image compression, VLSI component layout, and R-
tree indexing. For the example of image compression,
data collection can be rearranged according to two-
dimensional space-filling curve order to enhance local-
ity relationship and improve compression ratio. Further-
more, the inverse space-filling curve permutations can be
used in image decompression. The tensor product the-
ory is also suitable for expressing other space-filling curve
such as two-dimensional Peano, Moore, and Wunderlich
space-filling curves and three-dimensional Hilbert space-
filling curve. In the future work, we will develop general-
form tensor product formulas of these space-filling curves.

References

[1] G. Peano, “Sur une courbe qui remplit touteune aire
plane,” Mathematische Annalen, vol. 36, pp. 157–
160, 1890.

[2] D. Hilbert, “Über die stetige abbildung einer linie
auf Flächenstück,” Mathematische Annalen, vol. 38,
pp. 459–460, 1891.

[3] S. Biswas, “Hilbert scan and image compression,” in
Proceedings of the 15th International Conference on
Pattern Recognition, vol. 3, 2000, pp. 207–210.

[4] G. Melnikov and A. K. Katsaggelos, “A non-uniform
segmentation optimal hybrid fractal/DCT image
compression algorithm,” in Proceedings of the 1998
IEEE International Conference on Acoustics, Speech
and Signal Processing, vol. 5, 1998, pp. 2573–2576.

[5] N. Memon, D. L. Neuhoff, and S. Shende, “An analy-
sis of some common scanning techniques for lossless
image coding,” IEEE Transactions on Image Pro-
cessing, vol. 9, pp. 1837–1848, 2000.

[6] B. O’Sullivan, “Applying partial evaluation to
VLSI design rule checking,” 1995, uRL: cite-
seer.ist.psu.edu/371669.html.

[7] S. Rovetta and R. Zunino, “VLSI circuits with frac-
tal layout for spatial image decorrelation,” in Pro-
ceedings of the 1999 IEEE International Symposium
on Circuits and Systems, vol. 4, 1999, pp. 110–113.

[8] D. M. Gavrila, “R-tree index optimization,” in Pro-
ceedings of the Sixth International Symposium on
Spatial Data Handling, vol. 2, 1994, pp. 771–791.

[9] I. Kamel and C. Faloutsos, “On packing R-trees,” in
Proceedings of the Second International Conference
on Information and Knowledge Management, 1993,
pp. 490–499.

[10] I. Kamel and C. Faloutsos, “Hilbert R-tree: An im-
proved R-tree using fractals,” in Proceedings of the
Twentieth International Conference on Very Large
Databases, 1994, pp. 500–509.

[11] S. T. Leutenegger, J. M. Edgington, and M. A.
Lopez, “STR: A simple and efficient algorithm for
R-tree packing,” in Proceedings of the Thirteenth In-
ternational Conference on Data Engineering, 1997,
pp. 497–506.

[12] S. T. Leutenegger and M. A. Lopez, “The effect of
buffering on the performance of R-trees,” Knowl-
edge and Data Engineering, vol. 12, no. 1, pp. 33–44,
2000.

[13] J. Gonzalez-Arbesu, S. Blanch, and J. Romeu, “Are
space-filling curves efficient small antennas?” IEEE
Antennas and Wireless Propagation Letters, vol. 2,
pp. 147 –150, 2003.

IAENG International Journal of Computer Science, 37:1, IJCS_37_1_02
__

(Advance online publication: 1 February 2010)

[14] D. Kontos, V. Megalooikonomou, N. Ghubade, and
C. Faloutsos, “Detecting discriminative functional
MRI activation patterns using space filling curves,”
in Proceedings of the 25th Annual International Con-
ference of the IEEE Engineering in Medicine and
Biology Society, 2003, pp. 963–967.

[15] H. V. Jagadish, “Linear clustering of objects with
multiple attributes,” in Proceedings of the 1990
ACM SIGMOD International Conference on Man-
agement of Data, 1990, pp. 332–342.

[16] A. R. Butz, “Space filling curves and mathemati-
cal programming,” Information and Control, vol. 12,
no. 4, pp. 314–330, 1968.

[17] A. R. Butz, “Convergence with Hilbert’s Space Fill-
ing Curve,” Journal of Computer and System Sci-
ences, vol. 3, no. 2, pp. 128–146, 1969.

[18] H. Sagan, “On the geometrization of the Peano curve
and the arithmetization of the Hilbert curve,” Inter-
national Journal of Mathematical Education in Sci-
ence and Technology, vol. 23, no. 3, pp. 403–411,
1992.

[19] Y. Ohno and K. Ohyama, “A catalog of symmetric
self-similar space-filling curves,” Journal of Recre-
ational Mathematics, vol. 23, pp. 161–173, 1991.

[20] J. Quinqueton and M. Berthod, “A locally adaptive
Peano scanning algorithm,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 3,
no. 4, pp. 403–412, 1981.

[21] S. Kamata, R. O. Eason, and Y. Bandou, “A new al-
gorithm for N-dimensional Hilbert scanning,” IEEE
Transactions on Image Processing, vol. 8, no. 7, pp.
964–973, 1999.

[22] S. Kamata, M. Niimi, R. O. Eason, and
E. Kawaguchi, “An implementation of an N-
dimensional Hilbert scanning algorithm,” in Pro-
ceedings of the 9th Scandlnavian Conference on Im-
age Analysis, 1995, pp. 431–440.

[23] C.-S. Chen, S.-Y. Lin, and C.-H. Huang, “Alge-
braic formulation and program generation of three-
dimensional Hilbert space-filling curves,” in Proceed-
ings of the 2004 International Conference on Imag-
ing Science, Systems, and Technology, 2004, pp.
254–260.

[24] S.-Y. Lin, C.-S. Chen, L. Liu, and C.-H. Huang,
“Tensor product formulation for Hilbert space-filling
curves,” Journal of Information Science and Engi-
neering, vol. 24, no. 1, pp. 261–275, 2008.

[25] X. Liu and G. F. Schrack, “An algorithm for en-
coding and decoding the 3-D Hilbert order,” IEEE
Transactions on Image Processing, vol. 6, no. 9, pp.
1333–1337, 1997.

[26] A. J. Fisher, “A new algorithm for generating
Hilbert curves,” Software: Practice and Experience,
vol. 16, no. 1, pp. 5–12, 1986.

[27] N. Chen, N. Wang, and B. Shi, “A new algorithm for
encoding and decoding the Hilbert order,” Software:
Practice and Experience, vol. 37, no. 8, pp. 897–908,
2007.

IAENG International Journal of Computer Science, 37:1, IJCS_37_1_02
__

(Advance online publication: 1 February 2010)

