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Abstract - This work is devoted to describe a potential use of 

the 1-Dimensional Kohonen Networks in the automatic  
non-supervised segmentation and classification of computed 
tomography brain slices. Possible perspectives of application 
include the automatic delineation of areas on the cerebral map 

and the automatic correlation between new clinical cases with 
previous boarded and closed cases. The classification is 
proposed in two phases. First, the images are segmented via a 
1D Kohonen Network. One of the main aspects considered in 

this phase is related to the fact that tissue classification is 
achieved by taking in account the tissue and its associated 
neighborhood. By this way, it is possible to argue that the 
obtained tissue characterizations are sustained in the topology 

and geometry of the human cranium. The second phase is 
given by the classification of the whole set of segmented images 
via a second Kohonen Network. It is discussed how the final 
classes contain images which share specific properties.  

 

Index Terms - Artificial Neural Networks, Kohonen 

Networks, Automatic Image Classification, Automatic Image 

Segmentation, Pattern Recognition. 
 

 
 

I. INTRODUCTION AND PROBLEM STATEMENT 

 
Automatic classification of normal and pathological 

tissue types, using brain slices images generated by 

computed tomography, has great potential in clinical 

practice. Possible areas of application include the automatic 

delineation of areas to be treated prior to invasive 

procedures [2], and the correlation between new clinical 

cases with previous boarded and closed cases. However, as 

Abche et al [1] point out, the automatic segmentation and 

classification of medical images is a complex task for two 

reasons: 

 

• The variability of the human anatomy varies from a 

subject respect to other. Hence, it is restricted the use of 

general knowledge in order to achieve the segmentation. 

Therefore, the absence of a general model that describes 

this variability introduces impediments to the tissue 

classification process [1]. 
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• The images’ acquisition process could introduce noise and 

artifacts which are difficult to correct. For example, the 

grayscale intensities of a given tissue could be  

non-uniform. 

 

This work is devoted to describe a potential use of  

1-Dimensional Kohonen Networks in 1) the automatic  

non-supervised characterization of tissue in the human 

brain, and 2) the automatic classification of segmented 

images corresponding to computed tomography brain slices. 

It is well known the application of Kohonen Networks for 

classification when a high level of redundancy is present in 

the input space [4]. Via non-supervised classification, 

images presenting similar features are grouped in classes. 

Many processing tasks (as description, object recognition or 

indexing) are based on such preprocessing ([12] & [14]). 

For example, in [8] and [9], Kohonen Networks are used for 

classifying color images corresponding to the Popocatépetl 

Volcano (located in the State of Puebla, México, active and 

monitored since 1997). Currently, the classified volcano 

images are going to be correlated with other experiments in 

the research center where the study was carried out. 

 

The idea to be described in this work considers the use 

of two 1D Kohonen Networks (see Fig. 1). A first network 

will be used to characterize brain tissue in the human head. 

Such characterizations are then used for segmenting brain 

images. The whole set of segmented images is then used as 

a training set for a second 1D Kohonen Network whose 

objective is to group them in classes in such way it is 

expected the members of a class share common and useful 

properties.  

 

This work is organized as follows: Section II describes 

the theoretical frame behind 1-Dimensional Kohonen 

Networks. Section III describes the methods, criteria, and 

results obtained from the characterization of tissue in 

computed tomography brain slices through Kohonen 

Networks. The Section IV describes how a set of segmented 

images was used as training set for a 1D Kohonen Network 

in order to group such images in classes. There are 

summarized the obtained results. Finally, the Section V 

discusses some observations identified when the classes and 

their members were analyzed, and some conclusions and 

future perspectives of research are presented. 
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Fig. 1. Classifying computed tomography brain slices in two phases. First, the images are segmented via a 1D Kohonen Network.  

The second phase is given by the classification of the whole set of segmented images through a second 1D Kohonen Network. 

 
II. FUNDAMENTALS OF THE 1-DIMENSIONAL KOHONEN NETWORKS 

 

A Kohonen Network with two layers showing L input 

neurons and M output neurons may be used to classify 

points embedded in an L-Dimensional space into M 

categories ([3], [11]). Input points have the form  

(x1, …, xi, …, xL). The total number of connections from 

input layer to output layer is L×M (See Fig. 2). Each output 

neuron j, 1 ≤ j ≤ M, will have associated an  

L-Dimensional weights vector which describes a 

representation of class Cj. All these vectors have the form: 

 

Output neuron 1: W1 = (w1,1, …, w1,L) 

⋮  

Output neuron M: WM = (wM,1, …, wM,L) 

 
 

1 i L 

 x i  x 1  x L 

M j 1 
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Fig. 2. Topology of a 1-Dimensional Kohonen Network. 

 
A set of training points are presented to the network T 

times. According to [4], all values of weight vectors should 

be initialized with random values. The neuron whose weight 

vector Wj, 1 ≤ j ≤ M, is the most similar to the input point P
k
 

is chosen as winner neuron, for each t, 0 < t < T. In the 

model proposed by Kohonen, such selection is based on the 

squared Euclidean distance. The selected neuron will be that 

with the minimal distance between its weight vector and the 

input point P
k
: 
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L
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i

d P W j M
=

= − ≤ ≤∑  

Once the j-th winner neuron in the t-th presentation has been 

identified, its weights are updated according to: 
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When the T presentations have been achieved, the 

values of the weights vectors correspond to coordinates of 

the ‘gravity centers’ of the points, or clusters of the M 

classes. 
 

III. AUTOMATIC NON-SUPERVISED TISSUE CLASSIFICATION 

 

As commented in the introduction of this work (Section 

I), the first part of the problem to be boarded is the 

automatic non-supervised classification of cerebral tissue. It 

is expected that the proposed Kohonen Networks identify, 

during its training processes, the proper representations for a 

previously established number of classes of tissue.  
 

There are some situations to be considered respect to 

the training sets to be used. One first approach could suggest 

that the grayscale intensity of each pixel, in each brain slice, 

can be seen as an input vector (formerly an input scalar). 

However, as discussed in [8], the networks will be biased 

towards a classification based only in grayscale intensities. 

It is clear that each pixel has an intensity which captures, or 

is associated, to a particular tissue; however, it is important 

to consider the pixels that surround it together with their 

intensities. The topology around a given pixel is to be taken 

in account because it complements the information about the 

tissue to be identified. Two pixels A and B with the same 

grayscale intensity but with distinct neighborhood should 

belong to distinct classes. For example, if pixel A has a 
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neighborhood composed by bone tissue while the 

corresponding neighborhood of pixel B is composed by gray 

matter, then the characterization should be performed by 

considering that the type of tissue they belong also depends 

on the head’s location and their surrounding tissue (A 

network classifying by taking in account only intensities, 

and ignoring neighborhoods, could determine that pixels A 

and B belong to the same class and hence they are the same 

type of tissue).  
 

Let p be a pixel in a given image. Through p, it is 

possible to build a sub-image by taking those pixels inside a 

square neighborhood of radius r and center at p. Pixel p and 

its neighborhood will be called a mask. The size of the mask 

is given by the length (number of pixels) of its sides. For 

example, it is possible to build, in a 100 × 100 pixels image,  

96 × 96 = 9,216 masks of size 9 (See Fig. 3). It is assumed 

that those pixels at the borders of the image can not form a 

mask. In the above example, it is the case of pixels in the 

first four rows and columns, and the pixels in the last four 

rows and columns.  
 

 
Fig. 3. Two masks of size 9 pixels in a brain slice image. They 

describe a neighborhood around the corresponding pixels in red. 
 

The experiments were performed using a set of 340 

grayscale images corresponding to computed tomography 

brain slices (see Table 1). They are series of axial images of 

the whole head of 5 patients (each one labeled as patient a, 

b, c, d, and e). All the 512 × 512 pixels images were 

captured by the same tomography scanner and they have the 

same contrast and configuration conditions. 
 

Table 1. Some samples from the image set used  

for characterization of cerebral tissue. 
 

 
 

  

 

 
 
 

  

 

The networks’ training sets are composed by all the 

masks that can be generated in each one of the 340 selected 

brain slices. As commented in Section II, a Kohonen 

Network expects as input a vector, or point, embedded in the 

L-Dimensional Space. A mask can be seen as a matrix, but 

by stacking its columns on top of one another a vector is 

obtained. In fact, this straightforward procedure linearizes a 

mask making it a suitable input for the network. 
 

There were implemented three 1D Kohonen Networks 

with different topologies and training conditions. In fact, the 

topology of each network depends of the selected mask size: 

• Network Topology τ1: 

o Training set’s cardinality: 260,100 masks 

o Mask size: 5 pixels 

o Input Neurons: L = 5×5 = 25 

o Output Neurons (classes): M = 10 

o Presentations: T = 6 

• Network Topology τ2: 

o Training set’s cardinality: 260,610 masks 

o Mask size: 4 pixels 

o Input Neurons: L = 4×4 = 16 

o Output Neurons (classes): M = 20 

o Presentations: T = 40 

• Network Topology τ3: 

o Training set’s cardinality: 255,025 masks 

o Mask size: 15 pixels 

o Input Neurons: L = 15×15 = 225 

o Output Neurons (classes): M = 20 

o Presentations: T = 80 
 

The Table 2 presents the segmentation obtained for 

three brain slices at distinct positions of the head. According 

to the network topology, a different color was assigned to 

each class. The segmentations are then presented as false 

color images. In fact, the whole set of 340 images was 

segmented using the networks described above in order to 

obtain three training sets for the Kohonen Network to be 

used in the experiment to be described in the following 

section.  
 

IV. AUTOMATIC NON-SUPERVISED COMPUTED  

TOMOGRAPHY IMAGES CLASSIFICATION 
 

Let TS(τ1), TS(τ2), and TS(τ3) be defined as the sets of 

segmented images generated by Kohonen Networks τ1, τ2, 

and τ3, respectively. Now, each one of these sets will be 

used for training a Kohonen Network. The idea is that such 

network classifies the images in a given number of classes. 

Each training set is then composed by 340 images whose 

size is 512 × 512. The segmented images (presented in false 

color) are codified under the color model 24-bits RGB. 
 

A. Representing Images through Vectors in L
ℝ  

 

Let l1 (rows) and l2 (columns) be the dimensions of a 

two-dimensional segmented image. Let L = l1 ⋅ l2. Each pixel 

in the image will have associated a 3-Dimensional point  

(xi, yi, RGBi) such that RGBi ∈ [0, 16777216), 1 ≤ i ≤ L, 

where RGBi is the color value associated to the i-th pixel. 

The color values of the pixels will be normalized such that 

they will be in [0.0, 1.0) through the transformation: 
 

16777216
_ i

i

RGB
RGBnormalized =

 

 

Basically, it is defined a vector in the L-Dimensional space 

by concatenating the l2 columns in the image considering for 

each pixel its normalized color RGB value.  By this way, 

each image is now associated to a vector in the  

L-dimensional Euclidean space. Therefore, the training 

images to be applied in a Kohonen Network are mapped in 

order to be embedded in a unit L-Dimensional hypercube. 
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Table 2. Tissue Characterization of Three selected Brain Slices 

 Brain Slice 1 Brain Slice 2 Brain Slice 3 

Original  
Brain Slice 

 

 
 

  

Segmentation  
by Network  

Topology ττττ1 

 

 
 

  

Segmentation  
by Network  

Topology ττττ2 

 

 
 

  

Segmentation  

by Network  

Topology ττττ3 

 

 
 

  

 
Table 3. Classification of 340 training segmented images according  

to a Kohonen Network with 262,114 input neurons, 30 output neurons, and 45 presentations. 

 Using TS(ττττ1) Using TS(ττττ2) Using TS(ττττ3) 

Class Images Patients Images Patients Images Patients 

1 43 c 15 a, d 6 d 

2 2 a 19 a 18 b, c 

3 8 e 8 c 27 a, b, c, d 

4 8 b 14 c 4 c 

5 33 d 9 b, e 23 a 

6 9 c 12 a 11 a, d 

7 8 a 4 c 7 a 

8 3 e 9 d 10 d 

9 17 b 12 b, e 20 b, e 

10 31 a 4 c 12 c 

11 22 b 5 d 3 c 

12 18 d 12 e 18 b, c, e 

13 7 b 14 b 14 a 

14 29 d 13 c 12 d 

15 15 a 11 c, e 8 a 

16 11 e 13 b, c, e 4 a 

17 2 c 9 a, d 7 c 

18 21 c 16 b 12 e 

19 27 a 4 c 12 c 

20 25 b 7 d 22 b, e 

21 1 e 4 b 12 a 

22 0 - 20 d 16 c 

23 0 - 7 b 21 b 

24 0 - 10 d 29 d 

25 0 - 14 b, c 12 d 

26 0 - 3 c 0 - 

27 0 - 28 a 0 - 

28 0 - 9 d 0 - 

29 0 - 15 b, c 0 - 

30 0 - 20 a, d 0 - 
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B. Classifications Results 
 

The 1D Kohonen Network used for classifying  

the segmented images was composed by  

L = 512×512 = 262,114 input neurons and m = 30 output 

neurons (classes). Each set of 340 training points 

(segmented images) was presented T = 45 times. The 

training procedures were applied according to Section II. 

All the weights vectors’ were always initialized to 0.5. 
 

Table 3 shows the obtained classification of the 

segmented images using the three proposed training sets. In 

the Table 3 is also presented the distribution of the 340 

training segmented images in each one of the classes. 

 
Table 4 presents some images that are representative of 

each class when using training set TS(τ2) (these images were 

selected from each class in an arbitrary way).  
 

According to Table 3, the network trained with TS(τ2) 

distributed the 340 images in its 30 classes. When the 

network is trained with the segmented images in TS(τ1) and 

TS(τ3) only 21 and 25 classes are respectively used. 

 

Table 4. Classes’ representative images when using the training set TS(τ2) (See Section III). 
 

 
Class 1 

 
Class 2 

 
Class 3 

 
Class 4 

 
Class 5 

 

 
Class 6 

 
Class 7 

 
Class 8 

 
Class 9 

 
Class 10 

 

 
Class 11 

 
Class 12 

 
Class 13 

 
Class 14 

 
Class 15 

 

 
Class 16 

 
Class 17 

 
Class 18 

 
Class 19 

 
Class 20 

 

 
Class 21 

 
Class 22 

 
Class 23 

 
Class 24 

 
Class 25 

 

 
Class 26 

 
Class 27 

 
Class 28 

 
Class 29 

 
Class 30 

 

IAENG International Journal of Computer Science, 37:1, IJCS_37_1_04
______________________________________________________________________________________

(Advance online publication: 1 February 2010)



C. Classification Based On Other Distance Functions 
 

In Section II was commented during the training of the 

network the neuron whose weight vector Wj, 1 ≤ j ≤ M, is 

the most similar to an input point P
k
 is chosen as winner 

neuron. Kohonen established that such selection is based on 

the Squared Euclidean Distance [11]. In the experiments 

summarized in Table 3, the selected winner neuron was 

always that with the minimal squared Euclidean distance 

between its weight vector and the input point P
k
: 

 

( )
2

,

1

1
L

k

j i j i

i

d P W j M
=

= − ≤ ≤∑  

 

In fact, other distance functions can be considered for 

the purpose of identifying a winner neuron. The use of a 

function different than the Squared Euclidean Distance 

usually obeys to the needs of the application ([6] & [13]). 

Clearly, when using a distinct metric, it must express the 

amount of similarity between an input point and a weight 

vector and, hence, it is reasonable to expect some impact in 

the way the network classifies and distributes the elements 

in the training set.  
 

Distances that can be used for the purpose of 

determining winning neurons are: 
 

• The Manhattan Distance [10]: 
 

,

1

1
L

k

j i j i

i

d P W j M
=

= − ≤ ≤∑  

 

• The Sup Distance (a special case of the Minkowski 

Distance also known as Chebyshev Distance) [5]:  
 

,
1
max 1

k

j i j i
i L

d P W j M
≤ ≤

= − ≤ ≤  

 

• The Canberra Distance [13]: 
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Now consider the following function: 
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Such function is in fact a distance over +
ℝ  and it is called 

the Pérez-Aguila Metric ([8] & [9]).  
 

 

 

 
 

The three training sets generated by networks τ1, τ2, and 

τ3, namely TS(τ1), TS(τ2), and TS(τ3), are used again for 

training Kohonen Networks in the same fashion as described 

in the above subsections: there are defined 1D Networks 

with L = 512×512 = 262,114 input neurons and m = 30 

output neurons. Each set of 340 training points (segmented 

images) is presented T = 45 times. However, in these new 

experiments the Squared Euclidean Distance is substituted 

by the Manhattan, Pérez-Aguila, Canberra, and Sup 

distances. The idea is to determine the classifications 

obtained when these functions are used during the training 

process. The results are then compared with those generated 

when the traditional squared Euclidean distance was used.  

  
Charts in Figs. 4.a, 4.b and 4.c show the distribution of 

the input segmented images, according to the distance under 

consideration, when the training sets TS(τ1), TS(τ2), and 

TS(τ3) are respectively applied.  

 
The Table 5 shows when using the Pérez-Aguila Metric 

and the Manhattan Distance both functions produce 

distributions that lead to identify than less than 11 of the 30 

available classes are used. The Pérez-Aguila Metric groups 

all the training images in only 2 classes while the Manhattan 

Distance groups them in 11 classes, when using TS(τ1), and 

5 classes when using training sets TS(τ2) and TS(τ3). 

Although the Sup distance distributes respectively to all the 

elements in TS(τ1), TS(τ2) and TS(τ3) in the networks’ 30 

defined classes, it is observed that just one class has more 

than 300 elements, approximately the 85% of the training 

sets’ cardinality, while the remaining classes have 

associated at least one input segmented image.  

 
By applying the Canberra Distance under TS(τ1) it is 

observed a distribution of the 340 training images between 

15 classes, with an average of 22.6 members per class. 

However, by considering training sets TS(τ2) and TS(τ3), 

there were used 7 and 6 classes respectively. In the first case 

there is a class with 201 associated images, 59% of 

Card(TS(τ2)), while in the second case just one class groups 

125 elements, that is, 36% of Card(TS(τ3)).  

 
By experimental way, it can be concluded that the 

squared Euclidean distance produces much better and 

consistent classifications of the elements in TS(τ1), TS(τ2), 

and TS(τ3) than those shared by the other considered 

functions. The Tables 3 and 5 shows a good distribution of 

the 340 training images between the available classes when 

Euclidean distance is used. The number of used classes in 

this case is located between 21 and 30. The median/mean of 

the number of images associated to a class is 15/16.2, 

11.5/11.3, and 12/13.6 when training with TS(τ1), TS(τ2), 

and TS(τ3), respectively. Hence, the results presented in Fig. 

4 and Tables 3 and 5 lead to establish the squared Euclidean 

distance seems to be an adequate choice for the particular 

classification problem being under attack. 
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Fig. 4. Distributions of segmented images by using a Kohonen Network based on different distance functions. 

Results obtained by application of training sets a) TS(τ1), b) TS(τ2), and c) TS(τ3). 
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Table 5. Statistics associated to classifications provided by a Kohonen Network  

when different distance functions are used.  

Training 
Set 

 
Squared Euclidean 

Distance 
Pérez-Aguila 

Metric 
Manhattan 

Distance 
Canberra 
Distance 

Sup 
Distance 

Used Classes 21 2 11 15 30 

Maximum number of 

members in a used class 
43 188 50 41 311 

Minimum number of 

members in a used class 
1 152 10 8 1 

Median 15 170 30 20 1 

TS(ττττ1) 

Mean 16.2 170 30.9 22.6 11.3 

Used Classes 30 2 5 7 30 

Maximum number of 

members in a used class 
28 176 145 201 305 

Minimum number of 

members in a used class 
3 164 36 8 1 

Median 11.5 170 45 28 1 

TS(ττττ2) 

Mean 11.3 170 68 48.5 11.3 

Used Classes 25 2 5 6 30 

Maximum number of 

members in a used class 
29 224 120 125 304 

Minimum number of 

members in a used class 
3 116 13 13 1 

Median 12 170 63 53.5 1 

TS(ττττ3) 

Mean 13.6 170 68 56.6 11.3 

 
V. DISCUSSION, CONCLUSIONS, AND FUTURE WORK 

 

In previous sections was commented the original set of 

brain slices were obtained from 5 patients (a, b, c, d, and e). 

When training the networks no information was passed 

about the ownership of each image because only vectors 

containing intensities were used as input. In this way, the 

networks had no information about which image belongs to 

which patient. Once the members of each class were 

obtained, it was determined the ownership of each image. 

The network trained with the segmented images in TS(τ1) is 

an interesting case. It grouped the images in only 21 of the 

30 classes, but each class contains images that belong to just 

one patient (See Table 3). The other two cases also exhibit 

these characteristic in the majority of their classes, but some 

of them have images that belong to two or more patients. 

 

One path of future research considers determining the 

criteria followed for each network in order to form the 

representation of each class. On one hand, the idea is to 

identify the number of classes required for classifying all 

types of tissue in the human brain. The size of the masks to 

use is important because they determine the quantity of 

information that is related to a given pixel. There must be 

identified an optimal mask size such that no redundant or 

lacking information is given to the network.  

 

On the other hand, there have been identified some 

interesting results when a set of segmented images is used 

for training. Moreover, there are clear, at least from an 

experimental point of view (Section IV.C), the advantages 

of using the squared Euclidean distance for measuring the 

correspondence between an input point and a weight vector 

during the training phase. It is possible to argue that the 

network is capable of identifying specific similarities 

between segmented images in such way it grouped in a same 

class only brain slices corresponding to the same patient. 

Moreover, the network was also capable of differentiating 

the variations between the head anatomy associated to each 

patient. This leads to study the different “similarity metrics” 

generated by each network. In the future phases of research, 

physician advisory is going to be taken in account. The 

optimality in terms of the best parameters to use in a 

Kohonen Network will be considered in function of the 

medical usefulness of the segmentations and classifications 

obtained. 

 

Another objective, respect to future work, refers to 

indexation of previously boarded clinical situations. It is 

well known that medical reasoning is mainly based in the 

information and knowledge acquired from previous cases 

[7]. By forming a training set of images that correspond to 

patients with well specified diagnosis and the procedures 

followed, it could be possible 1) to index, via a Kohonen 

Network, an image corresponding to a new case in an 

appropriate class, and 2) to use the associated closed case of 

each member in such class in order to build a suggestion of 

the diagnosis and procedures to apply. Moreover, it is clear 

that by analyzing the cases associated to each member of 

each class it could be possible to count with more elements 

to determine in a more precise way the patterns followed 

during the training procedures and therefore, to understand 

the criteria followed for the network that lead to the training 

images’ final groupings. 
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