TAENG International Journal of Computer Science, 37:1, IJCS 37 1 05

Employing Integrated Logic Analysers and
Virtual I/Os to Verify Soft Core Protocol
Implementations

[.Sheikh, and M. Short *

Abstract—This paper will discuss the use of In-
tegrated Logic analysers (ILAs) and Virtual I/Os
(VIOs) to verify the behavior of soft core protocol
implementations. In particular, a soft core implemen-
tation of the Controller Area Network (CAN) proto-
col will be used as a representative example to dis-
cuss the use of the proposed scheme. The paper will
describe a procedure such that VIO and ILA may
be employed to conduct low-cost conformance testing
against specific test plans, both for the generation of
test patterns and the verification of the resulting im-
plementation behavior. As will be shown, VIOs are
particularly helpful in generating high-frequency bit
patterns, and may be used to great effect as a flexi-
ble bench pattern generator; the generated patterns
make use the same system clock as the unit under
test, and thus allow for tighter control of timing and
more precise pattern generation. When coupled with
suitable ILAs, such as the simple analysis tool Chip-
scope, it will be argued that such a scheme allows
for a highly flexible and low-cost approach to proto-
col verification. Finally, we describe the use of a test
bed in the verification of an open-source CAN soft
core implementation against the relevant ISO testing
standards.

Keywords: CAN, Conformance Testing, Chipscope
VIO, Pattern Generation, Soft Core, Digital Commu-
nications

1 Introduction

Conformance testing is an integral part of any protocol
development. Conformance testing essentially verifies
the behavior and capabilities of a protocol implemen-
tation against the requirements and ideal behaviors as
set out in a specific standard [1]. Traditionally, the
implementation of protocol conformance testers has been
a somewhat proprietary activity, employing dedicated
hardware and analysis software especially written for the

*Manuscript submitted 29" September 2009. This paper is part
of Imran Sheikh PhD work funded by UET Peshawar, Pakistan. I.
Sheikh is currently with Embedded Systems Lab, Engineering De-
partment, University of Leicester UK. Tel: 44-116-252/2578 Email:
sib2@le.ac.uk. Michael Short is a Lecturer in Engineering Depart-
ment, University of Leicester, UK. Tel: 44-116-252/5052 Email:
mjs61@Qle.ac.uk.

protocol and device under test. This is clearly a practical
approach when testing and verifying device conformance
prior to high-volume IC manufacture. However, recent
years have seen resurgence and increased interest in the
use of protocol implementations achieved by the use of
programmable hardware devices such as FPGAs.

By their very nature, such soft core implementations are
often needed in small-volume (or even one-off) batches;
these implementations may even add additional or cus-
tom functionality to existing protocols (e.g. see [2, 3]).
In these circumstances, cost and availability reasons
often dictate that it is not practical for developers to use
traditional conformance testing equipment.

However when a protocol is implemented in such a soft
core form which is an initial re-synthesizable design
independent of any specific technology, it is clearly still
necessary to test its functionality against the relevant
standards. FPGAs and the associated Hardware De-
scription Languages (HDLs) for use with them have
made it comparatively easy to translate any logic into
a design reality, while also keeping the design flexible
and customizable; in many aspects, a HDL resembles
a traditional programming language. For this reason,
many of the features of traditional approaches to con-
formance testing become redundant; alternative, flexible
and cheaper techniques are sought for their replacement,
and this is one of the primary motivations for this paper.
Hence many different complex designs some consisting
of multiprocessor clusters, DSPs and complete commu-
nication protocols - have been implemented as soft cores
on programmable devices. Soft-core implementations for
non-real-time communication protocols such as Ethernet
IP Core [4], SIP processor [5] along with embedded and
real-time protocols such as Controller Area Network
(CAN) [2] and Flex Ray [6] are several examples of
protocols that have been successfully implemented.

As with any complex digital system, the testing of a
soft core design can be a complex and costly process
[7]; if the core also contains a communication protocol

(Advance online publication: 1 February 2010)

TAENG International Journal of Computer Science, 37:1, IJCS 37 1 05

implementation, then conformance testing of said pro-
tocol also becomes a requirement; this may complicate
matters further. According to a recent survey by Lai, a
conformance test method must be evaluated using three
principles [8]. Firstly, the IUT (implementation under
Test) behavior must be comparable to the precise proto-
col definition; secondly a comprehensive test suite must
be present covering all the aspects of protocol function-
ality. Finally, a test system which provides a controlled
and reproducible environment for test implementation
is required. This paper is mostly concerned with the
third aspect, and will propose a simple, reproducible
and cost effective testing environment for use with soft
core implementations. The main features of this test
environment will be illustrated using a representative
example, a soft core implementation of the CAN protocol.

The remainder of the paper is organized as follows. Sec-
tion II will first briefly review the process of protocol
conformance testing, and will outline the proposed test-
ing environment for use with soft core implementations.
Section IIT will then describe the CAN protocol, and ex-
isting approaches to CAN conformance testing both be-
fore and after the relevant ISO test standard evolved.
Section IV describes a test facility that has been devel-
oped to implement the proposed testing environment for
CAN conformance testing. Section V then presents a se-
ries of detailed case studies, involving four separate tests
designed to illustrate some of the features of the pro-
posed environment. Section VI presents an analytical
comparison of the approach with alternate techniques for
conformance testing. Section VII concludes the paper.

2 Conformance Testing of Softcore Pro-
tocols

The test and verification of a soft core as either an in-
dividual entity - or as a system level entity - in a SoC
design is clearly of major importance in complex elec-
tronic systems. Design for Test (DFT) techniques such
as Built In Self Test (BIST) and Automatic Test Pattern
Generation (ATPG) /Scan are primarily used for design
testability of soft cores. ATPG techniques are typically
user modifiable; the testing cores are typically inserted at
any time of the design phase. Although much work has
been done on the effective use of BIST cores [9] they are
limited in the sense that only the logic integrity of the
soft core as opposed to the functionality of the soft core
can be tested. However, protocol conformance testing
requires that both the logic and functionality of a can-
didate design are verified. Before describing the scheme
to support this process as presented in this paper, sev-
eral general approaches to conduct test and verification
of protocol implementations on standard (silicon-based)
targets will be described.

Upper

Tester (UT)

Implementation

Under Test
(IUT)

Supervisor

Lower

Tester (LT)

Figure 1: ISO 9646-1 Test Plan Architecture.

2.1 Protocol Conformance Testing

A standard conformance test suite is normally employed
to indicate anomalies in a given protocol implementa-
tion, and the methodologies by which these test suites
are applied to the Implementation Under Test (IUT)
are not unique and vary depending on the suite in
question. For example, IEEE 1802.3 [10], [11] provides
documents outlining the conformance testing standards
of a well know protocol Suite IEEE 802 [12] for LAN
(Local Area Network) communication. However, these
documents do not specify a unique procedure to conduct
these tests; it is up to the tester to adopt any such
method of convenience to run these conformance tests
under a guideline. One such guideline is provided by
ISO 9646-1 [1] which states a layered approach to test
a protocol; hence the Test Plan (TP) is adaptable to
the layer under test, i.e. we can use the same TP to
verify the lower layers such as physical layer testing
(such as transceiver functionality or interface stan-
dards), and also employ a similar TP to verify the data
layer/MAC functionality of a communication protocol.
The adaptability of the TP depends upon the use of both
appropriate hardware and software. The TP outlined in
this standard is shown in Figure 1, and indicates that the
tester is divided into two testing blocks and a Supervisor.

The first component is the Lower Tester (LT) which
provides the test pattern generation and analysis. The
second is termed the Upper Tester (UT), which is
required to contain the software to control the IUT.
The Upper Tester (UT) is normally a host processor or
programmable device of some kind, and also provides
coordination to conduct the tests between the LT and

(Advance online publication: 1 February 2010)

TAENG International Journal of Computer Science, 37:1, IJCS 37 1 05

the IUT [11]. The UT receives stimulus (with details of
the test being performed) from the LT, and generates
messages passed on to the IUT. The IUT then processes
these messages, and both the UT and LT components
monitor its behavior for consistency with the protocol
under test. The results are passed to the tester supervi-
sor for verification, and if the result is satisfactory, the
test is considered passed and testing proceeds to the next
conformance test. It should be noted that the testing
procedures that are required to be implemented include
coverage of common error conditions, randomized tests
and also bit timing tests. Most tests are critical, and the
latter category bit timing contains a number of tests
that can be difficult to localize, and a suitable means
is required to capture and display multiple logic signals
over an appropriate timescale. This typically requires
the use of dedicated hardware and Logic analysers [13].

Another example of conformance testing implementation
which has also tried to follow the ISO 9646-1 TP is
described by Lee et al. [14]. This work describes con-
formance testing of the communication protocol IEEE
1284 [15] - implemented by a soft-core and has been
achieved by firmware running in a PC to monitor the
test results. An ARM processor is used to work as a host
or UT, while the PC acts as the LT, which generates the
test cases and also verifies the outcome from the TUT.
This implementation is able to provide the successful
transmission /reception of the messages, but problem
with this type of testing setup is the unavailability of the
precise timing of the signal states.

Another example of Conformance testing can be taken
form Xilinx itself which have done there FEthernet
protocol implementation on an FPGA and conformance
testing [16] has been done in accordance UNH IOL [17]
standard for IEEE 802.3 MAC Conformance Tests from
1Mbps to 10 Gbps. The Test plans used in this example
also follow the ISO 9646 TP and use of Chipscope ILA is
there but again with the addition of specialized hardware
and proprietary firmware to conduct these tests.

These two examples are of methods to conduct confor-
mance testing of the protocols under consideration but
are rather complex, expensive or proprietary but our aim
is to find a cost effective and a general solution which
can even be carried out for one-off or small volume im-
plementations.

2.2 Proposed Environment

As discussed earlier, the use of HDLs for soft-core im-
plementations requires verification; generally speaking,
pure simulation methods - and also formal verification
techniques applied solely to the HDL code - cannot pro-

| 1
i VIO]
! 1
I 1
| 1
L
SYNC
DESIGN ASYNC 1/0 PORTS
CLOCK 1/O PORTS
R
, DESIGN I
; UNDER :
i TEST !
L
ILA

Figure 2: ISO 9646-1 Test Plan Architecture.

vide a guarantee that the HDL code has been correctly
translated and implemented on the target hardware
(FPGAs), and is working as desired. Since the design
inside an FPGA is tightly integrated (encompassing
several components into a single FPGA) - and unlike
designs with hardwired components - most of the signals
are inter-wired and are unavailable on the external
ports for observation. Hence there is an important
requirement for tools which can analyse these signals,
and most FPGA manufacturers have designed on-chip
debug tools for this purpose. These tools provide
full internal visibility using Integrated Logic analysers
(ILAs) such as Signal Tap [18] and Chipscope pro [19].
These tools provide small and efficient cores to debug
not only I/O but also importantly - internal signals
can be captured. Such tools normally provide real time
system debug support, for example by using a JTAG
port. The Chipscope pro from Xilinx is one such tool
which provides online on-chip debugging facility. Figure
2 shows how a Design under Test can be attached with
Chipscope cores. The cores can either be initiated in the
HDL source code manually, or by using core insertion
tools provided by the package. The designer can place
different cores to the design (described below). These
cores do take system resources, but unlike BIST and
ATPG they can be easily removed once the design is
verified.

In this paper we will be dealing with 3 Chipscope cores:

1. ICON which is the controller core, and provides an
interface between the external ports (i.e. JTAG) and
the internal cores.

(Advance online publication: 1 February 2010)

TAENG International Journal of Computer Science, 37:1, IJCS 37 1 05

2. ILA is the integrated logic analyser core; all input
and output signals requiring observation are con-
nected to it.

3. VIO is the Virtual Input Output, which provides
Virtual I/Os to the HDL design and can be user ini-
tiated at run time. These I/Os can be synchronous
or asynchronous to the system clock.

The remainder of this paper will illustrate the use of such
an environment to test a soft core implementation of a
CAN controller. The following Section describes this pro-
tocol in detail, the motivation for developing the soft core,
and the need for its verification.

3 CONTROLLER AREA NETWORK

3.1 Protocol description

The Controller Area Network (or simply CAN) is one
of the most widely employed protocols for creating
distributed embedded systems, with applications as far
ranging as vehicle electronics, process control and many
other important industrial applications [21]. Some of the
key features of CAN that have led to its widespread use
include low overheads, non-destructive bitwise message
arbitration, low message latency and good error detecting
abilities; all features which are required for control ap-
plications running on embedded processors [22][23]. The
structure of a CAN frame is shown in Figure 3. As men-
tioned, the protocol employs a unique non-destructive
priority-based arbitration scheme; when multiple nodes
attempt to transmit messages simultaneously this mech-
anism ensures that the highest priority message gains
first access to the bus. If priorities are carefully as-
signed to the messages, and appropriate timing analysis
is performed, CAN may be used to implement several
different types of time-critical systems (e.g. see [22]-[24]).

CAN controllers and transceivers have been implemented
at the silicon level, either by dedicated ICs or as on-chip
peripherals of embedded devices; many such CAN con-
trollers are widely available, e.g. [25, 26]. In practice,
as with most other silicon-based protocol implementa-
tions, the implementation of CAN conformance testers
has been done using dedicated hardware and specially
written analysis software, which is a practical approach
when testing and verifying conformance prior to high-
volume IC manufacture. ISO has developed a standard
CAN conformance testing document [27], and any device
that wishes to claim to be CAN conformant is required to
demonstrate evidence that shows the testing procedures
outlined in the standard have been performed and passed
without problem. The ISO document not only specifies
different types of tests that must be performed for confor-
mance testing, but also specifies a TP architecture based
on the ISO 9646-1 described in the previous Section.

recessive ..""_ RTR-Bit (Remate-Transmission-Request) /.. !.:-,- ~ Delimiter Bits
v
dominant
Numberof (1| 11 1] & 0..88 15 () 7 3
Bits - - .- - | .- e ——
Message | Data Field / Y | End-of |
Identifier 1 % | Frama |I
| / ' Fiald 1
| ! 1 |
\ o | \
g gl Control Field CRC - le ! | ACK Slot — Inter-
1 Sequence Y mission
" Arbitration Field / Field

'~ Start-of-Frame-git CRC Figld — — Acknowledgement Fisld
bl — Bit Stuffing ————————— =

- — CAN Data Frame - -

RTR-Bit=0 Data Frame
RTR-Bit=1 Remoate Frame

Figure 3: CAN Frame Format.

The wired-AND nature of the physical layer, which is
used to achieve the afore-mentioned priority-driven arbi-
tration, requires that all nodes in the network achieve a
logical consensus on the instantaneous bit-patterns ap-
pearing on the bus lines. This particular requirement
of the protocol acts to severely limit both the maximum
transmission speed and bus length of a given CAN net-
work; the maximum transmission rate is inversely propor-
tional to the length of the bus, and has an upper limit of
1 MBit/s; due to its design a CAN frame may carry up
to a maximum of 8 data bytes. In addition, this mecha-
nism places extremely specific requirements on the nature
of the conformance testing that must place for a CAN-
enabled device; a significant proportion of the ISO test
standard is devoted to this single, critical aspect of the
protocol.

3.2 CAN Conformance Testing

One of the earliest CAN prototype controllers was named
DBCAN [28]. This implementation was tested using a
logic analyser and a pattern generator circuit. As there
was no standard for conformance testing at the time
the prototype was developed, a commercial basic (as
opposed to full) CAN controller was used as benchmark
for verification. A major disadvantage of this scheme
was the use of external interface modules to visualize
the state of different DBCAN registers, and the testing
procedure was somewhat limited in the number of signal
channels that could be simultaneously analysed. Since
this is a needed requirement in the case of ISO standard
conformance testing the ability to visualize the state
of large numbers of CAN registers simultaneously is a
prerequisite such a setup is limited in this respect.

A slightly different verification technique was reported
by [29]. Their technique employed custom design
boards with 8051 micro controllers and SJA1000 CAN
controllers, but this method involved the design of
specialized interface hardware and boards to assist with

(Advance online publication: 1 February 2010)

TAENG International Journal of Computer Science, 37:1, IJCS 37 1 05

the testing plan. Specialized verification architecture for
testing automotive protocols (including CAN) at both
the module and chip level was proposed by [30]. Again,
this work requires a specially designed CAN verification
component as part of the silicon, while the selection and
implementation of actual test sequences, along with the
selection of a suitable means to monitoring bus signals,
is left open for the tester.

A Hardware emulation technique was used to verify a
CAN soft core in [31]; firstly, the synthesized net list is
downloaded into a hardware emulator. This emulator
is configured by a PC and the communication between
the two is carried via a specially designed interface
card connected to the EISA bus; this emulator is also
connected to 2 commercially available CAN chips. The
drawback with this technique is that again, customized
hardware along with software especially written to carry
out the conformance testing is required. Additionally, to
emulate the bus failures and potential error conditions
on the bus a manual technique of connecting CAN bus
to the output of individual nodes is employed, which
lacks efficiency and is not robust enough to cover all the
scenarios given within ISO DIS 16845.

With respect to soft core CAN implementations, the
CAN e-Verification (CANeVC) test bench has previously
been described [32]. This commercial test facility requires
a CAN specification core to be embedded in the netlist;
this core then runs specific tests to verify the behavior
of the CAN soft core. Again, this technique involves a
time consuming development of a test bench using an
expensive commercially available verification IP ; addi-
tionally, compatibility issues often arise when using CAN
implementations other than the proprietary implemen-
tation [33], and only a limited number of programmable
logic devices are supported. Finally, several experimental
implementations (such as that reported by [34]) to mea-
sure single parameters - such as CAN bit errors - rather
than perform complete conformance testing have been
described in the literature. Such implementations have
typically used complex and non-trivial means, requiring
customized hardware and software. In summary then,
it can be observed that - to date specialized hardware
and / or software has been required to assist with CAN
testing plans.

3.3 Protocol Limitations

However, the CAN protocol itself is not without its
drawbacks; although the basic raw protocol is suitable
for use in many soft real-time systems, it suffers from sev-
eral significant problems with respect to hard real-time
systems, for example in safety-critical distributed brake-
by-wire systems. These drawbacks include redundancy
issues, atomic broadcast problems, lack of protection

from babbling idiot failures and information throughput
restrictions. Although research has shown that many
of these issues can be dealt with by the creation of
higher-level, software-based protocol extensions (e.g.
see [22, 23, 35]), some proposed solutions are either
complex to implement placing a significant computa-
tional overhead on the host CPU or simply cannot
be implemented in software and a hardware solution
must be adopted [3]. Although the proposed changes
are conceptually quite straightforward, implementing
them directly in silicon is costly and has proved to be
problematic for small-volume requirements. A workable
solution to this problem is to implement the protocol on
a PLD; the required modifications may then be achieved
with relative ease. This solution brings with it another,
related problem; before verification of any modifications
can take place, it must be shown that the basic soft core
CAN implementation is fully conformant to the protocol,
a potentially costly and time-consuming procedure in its
own right.

To help alleviate this problem, the current authors have
previously proposed a low-cost and easily implemented
method in two previous works [36, 37]. These papers
essentially describe the application of the techniques de-
scribed in the previous Section to the conformance of a
CAN soft core. This basic approach was subsequently ex-
tended in [20], in order to include the test cases related to
CAN bit-timing for which the use of VIO was required to
complement the existing methods based around the use
of ILAs and embedded test pattern generation. The fol-
lowing Section contains a description of the test facility
that was employed in these studies.

4 TEST BED
4.1 Architecture

As part of ongoing project within the authors research
group, the development of a fully-conformant soft core
controller for the CAN protocol was required [2]. After
the implementation of the CAN specifications for such
a controller, it was required to be tested and verified
in accordance with the relevant ISO standard [27].
Real-time testing of a CAN implementation is quite a
complicated procedure, and in this case for practical
reasons, no specialized hardware and software was
available to generate the required testing patterns and
monitor the behavior of the CAN soft core. For this
reason, it was decided to use only low-cost off the shelf
components, and a testing environment based on that
proposed in Section II was created especially for this
purpose. The main components of this test environment
are described in the following Sections.

Firstly, a brief account of the main hardware and software

(Advance online publication: 1 February 2010)

TAENG International Journal of Computer Science, 37:1, IJCS 37 1 05

_| ﬁ' | | ¥

ITAL l
5 o

-..e'.|-|||--5| I C AN Soft Care

Figure 4: Test Bed.

components used in the test bench will be given; further
details are given in [2, 20]. The main components are
illustrated graphically in Figure 3.

4.1.1 Hardware

e Two FPGA (XC3S500E programmed with CAN soft
core) + ARM7 (LPC2138 as Host controller) boards
these boards are named as SC1 and SC2. The pur-
pose of using two soft cores is to verify simultaneous
behavior as a CAN Transmitter/Receiver as well as
to generate special patterns on the CAN bus using
VIO and additional soft modules embedded with the
soft core.

e Two ARMT7 Microcontroller boards with Integrated
CAN controller and transceivers. These boards are
used as Receivers of CAN messages for further veri-
fication of the messages sent by the CAN soft core.
In few test cases mentioned in [27] the boards are
used to induce errors on the CAN bus.

The Figure 4 demonstrate a 2 node Soft Core, it can
easily be extended to n number of nodes.

4.1.2 Software

e Xilinx ISE [38] for soft-core programming, synthe-
sis, routing and programming the FPGA. The ISE
is a complete IDE for FPGA development and con-
tains some extra features like power analysis, optimal
routing and timing analysis to name a few.

e Chipscope Pro is used as analysis tool. The VIO
core is used to generate and control different bit
patterns. These bit patterns can be synchronous or
asynchronous.

e The Keil uVision 3 IDE [39] with free ARM tools C
compiler was chosen for programming and debugging
the Microcontroller boards.

4.2 Use of Virtual I/O

The Virtual Input/output (VIO) core can be used to
analyse and drive internal FPGA signals in real-time [19].
There VIO cores have both asynchronous/synchronous
signals used as both input and output to the system. In
our proposed testing method we have used synchronous
outputs as either a sole source of test pattern generator
or used in conjunction with soft modules added with the
CAN functionality in the soft core. VIO synchronous
output has the ability to output a static 1, a static 0,
or a pulse train of successive values [40]. A pulse train
is a 16-clockcycle sequence of 1’s and 0’s that is driven
out of the core on successive clock cycles. The outputs
can either be seen as the synchronous inputs or a better
method which is more comprehensive is to use Chipscope
ILA which can analyse up to 16 internal signal ports in a
single core and each port can have up to 256 signals with
a capture depth of 16K samples. Also different logical
Trigger conditions can be setup as to analyse signals for
a certain values as for example we can set up a trigger
to analyse when a Error Frame is generated on the CAN
bus or using ILA counter setting to capture multiple
instances of Stuff bits inside a capture window [19].

When using pattern generators test vectors are required
to be first stored, and are sent on the CAN bus only
when required thus putting the IUT in different states
and allowing its behavior and responses to be analysed.
In our proposed test bed we have used FPGA based
pattern generation, which is not only economical as no
extra price was added to the test setup hence it is added
as a separate Core and a VIO Core in conjunction with
the main CAN Core helped us to accurately produce
these special conditions; for example in test case 1 (to
be reported in the next Section) it was needed to delay
a sample point by two time quanta on a recessive to
dominant edge on an IUT working as a transmitter [27].
This test pattern was easily achieved by modifying the
Verilog module but requires that the actual functionality

(Advance online publication: 1 February 2010)

TAENG International Journal of Computer Science, 37:1, IJCS 37 1 05

of the CAN Soft Core should not be different from the
CAN standard. The Chipscope VIO come in handy as
an external synchronous 5 bit pulse input delay_add
generates a n time quanta delay to the sample point. An
example Verilog code is given to illustrate:

alwaysQ(posedgeClockorposedge Reset)

begin

if(Reset)

Delay <= 4'h0;

elsei f(Resynchronization& Phase_Segment1&

(Transmitting|Transmitting&
(Next_Bit_toTx|(CAN_Txz&(CAN_Rx)))))

Delay <= #Tp(Time_Quanta_Count > 3'h0, SJW)?
(2'h0, STW + 1'b1) :

(Time_Quant_Count + 1'b1);

/* Extra Code Added to set a delay using VIO*/
elsei f(delay_add[0)&Transmitting

&Next_Bit to Tx&(CAN Tx))

Delay <= #Tpdelay_add,

elseif(go_sync|go_segl)

delay <= #Tp4'h0;

end

5 TEST CASES

The proposed test facility was employed to test the CAN
conformance of the custom created CAN soft core. As
the number of total number of test cases to consider
in any single CAN conformance test plan is numerous,
it is beyond the scope of the current paper to present
comprehensive test results; such test results are available
in the form of technical report [20]. However, in this
Section we will present four test cases that help highlight
the main features of the proposed facility.

A test case starts - and ends - in a stable testing state
of the IUT [41]. It first consists of preamble to bring the
IUT in to testing mode, i.e. any specific state such as a
transmission or reception of a CAN message or other sig-
nal that may be required as a precondition for the main
test body. Following this, the main test body is per-
formed which should perform the principle test purpose.
This is followed by a checking or verification step, and
finally a post amble (if one is required) culminates the
test, leaving the IUT into a stable state. This process
is employed in the example test cases to be described in
the next Sections. The first two test cases describe the
use of the facility in the verification of CAN bit-timing
properties, and are detailed in Section 5.1 and 5.2.

5.1 Non synchronization on Dominant bit
transmission

This test is a part of Bit timing class [27]. The purpose
of this test is to verify that an IUT transmitting a
Dominant bit doesnt perform any resynchronization as
a result of Recessive to Dominant edge with a positive
phase error. The requirement of the test is that the TUT
working as a transmitter should be in default state and
the LT should delay each Recessive to Dominant edge
by 2 time quanta [27].

This test requires two instances of the CAN Soft Core,
each behaving as a transmitter and receiver. Also the
ARMT Node OL is also involved to verify the correctness
of the transmission. We need to setup the VIO core
so that when user provide a stimulus a 2 time quanta
extension is added to the phase segmentl so that the
sample point is delayed to the same amount. In normal
circumstances the VIO core is sourced using the System
clock which in our case is 48 MHz and if we use the
this clock it is quite faster than the CAN Bus speed
of 250 Kbps, and it will not have the impact as the
delay_add signal will expire well before the CAN bit
time. Therefore we used DCM module [42] to generate
a clock which is 16 times slower than the System clock
as this is the maximum provided by the DCM. To meet
the requirements we have to use the output of the DCM
clock to generate a gated clock equal to the amount
of a CAN bit time by applying Verilog code, so any
synchronous signal generated by VIO will last for 1 CAN
bit time.

This test was successful with desired results as stated in
the purpose of the test; the observation on the transmit-
ter node from the Chipscope - shown in Figure 5 is as
follows:

1. The default values of Phase Segmentl are 10 time
quanta and Phase Segment2 is 5 time quanta, when
the Delay Bus value is Zero.

2. The delay_add signal on the VIO console is the syn-
chronous input and when a user applies the input
pulse it generates a delay as shown by the value of
Delay bus signal at Marker T (As we set Delay=2
as a Trigger condition).

3. If we observe the value of Marker O for
Time_Quanta_Count it is 11(Count starts from 0)
which is 2 more than the Normal Phase segmentl
value.

4. By adding this 2 time quanta delay before the dom-
inant to recessive edge means this edge will have a
positive phase error of 2 time quanta.

(Advance online publication: 1 February 2010)

TAENG International Journal of Computer Science, 37:1, IJCS 37 1 05

-269 -189 -109 -29

51 131 211 291 371 451 531 |

R x o ¥ : 1 1 1 : 1 1 1 : :
= Delay 0 2 0 2 0
e s 1 E00980N080800REBNESNDSEE EECOEDESE T REDENOSENENE T N0SDEBDESE
CAN_Tx 0 1 I I ‘ ‘ ‘ ‘ | ‘ ‘ ‘ ‘ ‘
CAN_Rx 0 1 \ ‘
Phase_Segment2 0 0 I I ‘ ‘ ‘ | ‘ ‘ "7
Phase_Segment1 1 1 I ; ‘ g % ‘ ‘
‘ : ‘ L
Sample_Point 0 0 ‘
Sampled_Bit 0 0 ‘
Hard_Synchronization 0 0
Re-Synchronization 0 0

{8} V10 Console - DEV:D MyDevice (XCISS00E) UNIT:0 MyWIOD (VIO) 1111 i

BusfSignal Value |”

- time_Quanta Count 1001 T

Delay_add

Figure 5: Chipscope Snapshot for Test Case A.

5. The Sampled_bit signal represents the CAN_Rx sig-
nal at the sample point. This value for Recessive to

Dominant edge happened on the Sample_Point after
Marker O.

6. Resynchronization signal represents if any resynchro-
nization happens in case of a +ive or -ive phase error
on an edge. As this signal remained low hence prov-
ing that no resynchronization happened.

All these steps verify the success of the test, this test case
emphasis the usefulness of VIO core as a complex con-
dition of introducing phase error to verify the behaviour
of CAN Bit timing has been easily achieved without the
use of any external input.

5.2 TEC non-increment on 13 bit long Over-
load Flag

This test case is a part of error counter management
class. The purpose of this test is to verify that an TUT
acting as a transmitter when receives a 13 bit long
overload flag shouldnt change the value of its transmit
error counter (TEC). The test is setup using two in-
stances of CAN Soft Core, one Soft core is acting as a
IUT while the other soft core is used as LT to request
an Overload frame and generate 13 dominant bits of
overload flag. The Overload request is generated using
a VIO synchronous input and then a 13 bit dominant
value on the CAN_Tx signal.

For this test case we will show snapshots at both LT Fig-
ure 6 and the IUT node Figure 7. The system clock for
this test case is 12 MHz. In Figure 6, we can see a VIO
console with a synchronous input overload_request, this
signal request an overload frame (can only be requested
by a receiver) between two data frames sent by a trans-
mitter.

1. The signal Overload_Request is also shown on the
ILA screenshot, after which an Overload frame is
sent after the Data frame is received successfully as
can be seen as the Overload _Frame signal is set high.

2. The Overload Frame lasts for 13 bit times as can
be counted by the number of Sample points between
Marker X (start of Overload Flag) and Marker O
(End of Overload Frame).

Now we will have a look on the IUT snapshot which is
shown in Figure 7.

1. Before Marker O we can observe that a normal
data frame is being transmitted as can be illustrated
by different transmission states denoted by Trans-
mit_State_xxxx.

2. At Marker O which is the end of Trans-
mit_State_End_of_Frame we can observe a Over-
load_Frame signal demonstrating an Overload Frame
as we can see that the CAN_Rx remains low between
Marker T'(Start of Overload Frame) to the Marker
O (End of Dominant Overload Flag).

3. The difference between Marker O and X is 672, Each
CAN bit time is given as 12Mhz/250Kbps= 48 clock
cycles, while the difference of 672 illustrate 14 CAN
bit time. T

4. he value of Transmit Error Counter was 6 before
the completion of Data frame and changes to 5 af-
ter a successful completion Data frame illustrated by
Transmit_State_End_Of_Frame signal.

5. Even after receiving 13 dominant bits of Over-
load Frame the Error_Frame signal remains low and
Transmit Error Counter doesn’t change.

(Advance online publication: 1 February 2010)

TAENG International Journal of Computer Science, 37:1, IJCS 37 1 05

-512 128 768 1408 2048 2688 3328 3968 4608 5248 5888 6528
Bus/Signal X o] | | | g | | | | I |
T T
CAN_Tx 1 i |
CAN_Rx 1 1 il LT
Sample_Foint o o | 5 O G A
— T i T :
Sampled_Bit 1 0 1 L
Overload_Frame 1 0 = =
Overload_Request 0 0 -
&l vio Console - DEV:D MyDeviced (XC3S500E) UNIT:0 MyVIOD (VIO) o' o’ X
Bus/Signal ‘ Value I
Overload frame o 1‘,‘

Dverload Request

[_Edit.,. | [CRud]

2009-03-23 18:55:29 ChipScope Pro Project: <unnamed> DEV:0 MyDevice0 (XC3S500E) UNIT:1 MylLA1 (ILA) Page Index: (row=0, col=0}) (window=0 sample=0, window=0 sample=7045)

Figure 6: Chipscope Snapshot at LT for Test Case B.

-2048 -1408 768 -128

512 1192 1792 2432 3072 3712 4352 4992

] X : : : = : : : : : : : :
9= Transmit_Error_count 5 5 6 5
cAN + o | LML MAnruLn AT i NN W oy W Wy R TN
CAN_Tx 1 1 g g T O Y . O O M T T
Transmit_Status 1 1 : ‘ ‘ I I I I ‘ ‘ ‘ L
Overload_Frame 1 0 I L I I ‘
Error_Frame 0 0
Tx_State_intermission 0 1 _I 4\
Tx_State_End_of Frame 0 0 ‘ ‘ | I I I I ’— ‘
Tx_State ACK_Delim 0 0 ‘ ‘ ‘ Il ‘ ‘ 1
Tx_State_Data 0 0 I I I I I ‘ ‘
Tx_State_Data_Length_code 0 0 I [
Tx_State_ID[10:] 0 0 Ili‘ I
Tx_State_IDLE 0 0 l I u
%: [ea0 =Lz =z <ol [acx-0): 672
2009-03-23 18:47.05 ChipScope Pro Project: Ix error cnt DEV:0 MyDevice0 (XC3S500E) UNIT:0 MvILAC (ILA) Paae Index: (row=0. col=0) (window=0 sample=0. window=0 sample=7045)

Figure 7: Chipscope Snapshot at IUT for Test Case B.

6. This concludes that the test is successful as the IUT
has not considered a 13 bit dominant Overload Flag
as an error. After Marker X we can see success-
ful transmission of another frame i.e. at the end of
Overload Frame. This is illustrated by several Trans-
mit_State signals.

The test cases to be described in Sections 5.3,5.4 illus-
trate the use of the facility in showing conformance to
another important aspect of CAN conformance testing;
the behaviour of the protocol in abnormal (error) and
overload conditions.

5.3 Elongated Error Flag

This test is a part of the Error Frame Management class
in ISO 16845. The purpose of this test is to verify that
a CAN transmitter will only tolerate 7 dominant bits
after sending its own Error flag. The case described
below is for when the Error Flag is elongated by 4
Dominant bits. This test involves two instances of the

(Advance online public

IUT and the ARM7 Micro controller boards. The test
should be setup as both the IUTs must be in default
state ready for transmission or reception, an error bit
is to be introduced on the CAN bus during an ongoing
transmission. The transmitter - after sensing the error -
must send an error frame of 6 dominant bits due to its
Active Error state. One of the receivers must send more
than 7 dominant bits after receiving the Error flag. The
transmitter must not take these extra dominant bits as
an Error and shouldnt send any extra Error Frame, and
should start to resent the corrupted message.

The methodology employed was to modify one of the soft
core IUTSs to carry out this requirement. Any of the two
IUTSs can take the role of transmitter or receiver for any
given test. In this case, the IUT instance which will be
acting as a receiver is modified to generate an 11 bit Er-
ror Flag. The snapshot of the events on the CAN bus
was captured with the help of Chipscope trigger mecha-
nism. The observations on the transmitter node from the

ation: 1 February 2010)

TAENG International Journal of Computer Science, 37:1, IJCS 37 1 05

. 512 1792 3072
Bus/Signal | | D | @

5632
|

8192 9472

4352 6912 10752 12032 1
| |

CAN_Rx —‘

|

Can.Tx T L |
| JIIIHIIIII:IIIIHJ:

Sample_Point

B R L g
L e A e L]

nr-1 riri
M1 r1r

T Mo LT

Tx_state

Transmit_State_CRC

Transmit_State_DATA

Transmit_State_|D[10:0]

Bit_Error

Error_Frame ‘

Error_Flag_Tx_Over

Error_Frame_End

} B

Error_Frame_Counter<0= H —| T |

Error_Frame_Counter<1>

|
T
Error_Frame_Counter<2> | ‘
‘\
‘\

2009-02-04 16:45:40 ChipScope Pro Project: error_frame_elong DEV:0 MyDevice0 (XC3S500E) UNIT:0 MyILAO (ILA) Page Index: (row=0, col=0) (window=0 sample=0, window=0 sample=14991)

Figure 8: Chipscope Snapshot at Transmitter for Test Case C.

Chipscope snapshot shown in Figure 8 - are as follows:

1. On the Left of Marker T, the TX_State_Xxxx high in-
dicates an ongoing transmission. During data trans-
mission a Bit_Error is injected, indicated by the bit
inversion as CAN_Tx is recessive while CAN_Rx is
dominant (Bit inversion is done by the KE node).

2. The Error Frame exists between markers 7" and O
indicated by signal Error_Frame, the Error_Flag is
between Marker T and X. The end of Error Flag is
indicated by a high Error_Flag Tx_Over signal. The
Error_Flag_Counter bus is indicating the count of Er-
ror Flag bits sent.

3. If we note at Marker X the CAN_Tx signal has
changed to Recessive but the CAN_Rx signal remains
Dominant for next 4 bits which is because of the su-
perimposition of the Error Flag sent by the nodes on
the CAN network.

4. The Error Frame is continued till Marker O and the
end is shown by a low Error_Frame Signal and a high
Error_Frame_FEnd Signal.

5. On the right of Marker O we can clearly
see that after three sample points (intermission
Field) a new frame transmission has started in-
dicated by Tx_State, while Tx_State_ID[10:0] and
Tx_State_Data indicating different states of trans-
mission cycle.

The observation at the receiver node (shown in Figure 9)
is as follows:

1. Marker O indicates start of an Error_Frame, the
Tx_State low indicating the node is a receiver.

2. The Error_Flag Counter is a 4 bit wide bus which
counts up to 11 bits i.e. it is sending 4 extra Domi-

nant transmitter node. The Dominant bits can also
be verified by the CAN_Tx and CAN_Rx bits.

3. After the Error_Flag_Over Signal is set high the
CAN_Rx and CAN_Tx signals turns to dominant for
next seven bits indicating an Error frame Delimiter.

4. Right of Marker X the Error_Frame signal is low
and after three Recessive bits (Intermission Field)
a new frame is started to be received (Tx_State is
low, CAN_TXx is recessive), indicated by different Re-
cieve_State_xxxx signals).

5.4 Overload Frame Management

This test is a part of the Overload Frame Management
class [27]. This test verifies that an IUT will be able to
transmit a data frame starting with the identifier and
without transmitting SOF, when detecting a dominant
bit on the third bit of the intermission field. This
test involves two instances of the IUT and the ARM7
Micro controller boards. The test will be setup using
the following organization that both of the IUTs must
be in default state ready for transmission or reception
according to the setup sent by the Host Controller. The
IUT acting as the Transmitter is set to transmit two
data frames as programmed in the Host processor.The
Receiver TUT will be set to request an Overload frame
after reception of the first frame. After the completion of
the Overload Frame on the third bit of the Intermission
field (Normally the Intermission field is a sequence of
three Recessive bits) is set to dominant by the Fault
injector node i.e. K.E. The transmitter must not consider
it as a bit error and shouldn’t send a Dominant level

(Advance online publication: 1 February 2010)

TAENG International Journal of Computer Science, 37:1, IJCS 37 1 05

-3000 -1720 -440 840 2120

4680 5860 7240 8520 9800 11080 12360

Bus/Signal | 9 _ | | | | | | ! | ! | I
S | | i — T s B e W e D i s H o i DO I
CAN_Tx 1 I | ‘ ‘ I I ‘ ‘ ‘ I ‘
Tx_State ‘ ‘ I

sample_pom [ENTN ARNTARITIN

Receive State CRC

T T T I N T I T R T

Receive_State_DATA

Receive_State ID[10:0]

Bit_Error

=

SR

Error_Frame

Error_Flag_Over

Error_Frame_End ‘

Error_Flag_Counter<3> ‘_‘—‘ I I ‘
Error_Flag_Counter<2> ‘ ‘ I :
Error_Flag_Counter<1> ‘ m I ‘
; T ' i
Error_Flag_Counter<0> J_L—LWJ ‘

2009-02-04 17:54:39 ChipScope Pro Project: ermor_frame_elong_receiver DEV:0 My DeviceD (XC3S500E) UNIT:0 MyILAO (ILA) Page Index: (row=0, col=0) (window=0 sample=0, window=0 sample=16000}

Figure 9: Chipscope Snapshot at Receiver for Test Case C.

SOF and consider the dominant bit of the Intermission
field as the SOF. Normal reception of the message should
take place.

This test was successful with desired results as stated in
the purpose of the test; the observation on the transmit-
ter node from the Chipscope - shown in Figure 10 is as
follows:

6

2. At Marker

. Left of Marker T The Tx_state flag is high indicat-
ing ongoing transmission, Receive_State_Data and
ACK_DELIM indicating a successful transmission
while the node is error active.

T there is an error on the Re-
ceive_State_Intermission field generating an overload
frame with Overload Flag of six dominant and Over-
load delimiter of 8 bits as can be seen by the count
of sample point.

3. After the Overload frame an Intermission field signal

can be seen at the Marker X.

4. The third bit of intermission field is is a dominant

bit as can be counted between Markers X and O the
number of sample points is 2 and the third sample
point is a dominant bit.

5. Just after the Marker O we can see the Re-

ceive_State_ID [10:0] going high without any SOF.
The Identifier first 4 bits are dominant as required
by the Test case.

COMPARATIVE STUDY

This Section presents a cost and flexibility comparison
between conventional conformance test methods and our

proposed technique i.e. the use of hardware and software
in an efficient manner to achieve the goal of testing a pro-
tocol. The first observation is that the next facility does
not require expensive and specialized PC interface cards
such as [43, 44] which are normally required for CAN
conformance testing [45]. These cards are used to cap-
ture the Real-time bus data to analyse the internal status
of different registers and to log the events; these cards not
only required the hardware but also special software [46]
along with interface cables which can also add to the cost
and complexity of the setup. In our proposed implemen-
tation we can analyse the internal state of CAN IUT or
many of the other communication protocol directly using
Chipscope. In addition, there are several key advantages
of our proposed test bed using Chipscope over hardware
logic analyser systems and pattern generators:

1. The standard bench analysers doesnt show enough

signals as required in case of CAN or any other rele-
vant protocols conformance as illustrated in section
IV. There are Logic analyser systems which can show
large number of signals simultaneously with large
data widths [47, 48] but there prices are 10 times
more than Integrated Logic analyser. The standard
bench analysers can show Mega samples, while Chip-
scope is limited to a Sample width of 16K, we can
overcome this problem by using Digital clock Man-
ager [42] which can divide or multiply the system
clock by n times, the board we used in our system
can divide the system clock by 16 times hence we
were able to capture 16 times more sample than on
system clock which can capture 3 to 4 complete CAN
messages in a single trigger.

. Additional probes with wide numbers of I/O pins are

required to interface with the Logic analysers while

(Advance online publication: 1 February 2010)

TAENG International Journal of Computer Science, 37:1, IJCS 37 1 05

2009-0121 12:48:39 ChipScope Pro Project; <unnamed> DEV:0 MyDevice0 (XC3S500E) UNIT:0 MyILAG (ILA)

B " & 720‘45 71-708 —?‘65 1‘28 57‘2 11‘52 17‘52 zq‘:!z o 30‘72 37‘12 43‘52 49‘92
CAN_Receive 1 0 ‘ \ I ‘ | ‘ !—\
CAN_Transmit 1 0 ‘ I ‘ ‘ \ V—\
Sample Poit S T A Y A S
Sampled_Bit 1 1 i ‘ ‘ | I %
Tx_State 0 0 : [‘ ‘ ‘ I ‘ ‘ ‘
transmit Buffer_status 0 0 |

Passive_Error_state 0 0

Receive_State_IDLE 0 0

Tx_Suspend_state 0 0

Receive_State_Intermission 1 1 ,7‘

Receive_State EOF 0 0 =T - L

Receive_State ACK DELIM | © 0 g |

Receive_State DATA 0 0 ‘

Receive_State_ID[10:0] 0 0

Overload Frame Flag 0 0

Figure 10: Chipscope Snapshot for Test Case D.

Chipscope can carry magnitude of these signals using
a simple JTAG cable, although there are few solution
like Agilents FPGA trace port citeTracePort which
use a simple interface to analyse multiple signals but
it also requires a specialized hardware and Chipscope
pro tool.

3. Not only all I/O signals are accessible through Chip-
scope but also internal wires can be traced [50] which
are really helpful in Conformance testing specially
when setting up triggering conditions we have lot
more options to setup a trigger condition for exam-
ple in test case A discussed it is really easy to setup
a trigger condition to wait for an Overload Frame
signal, while for external Logic analysers only I/0O
signals are available.

4. Virtual I/O is a real time tool for pattern generation,
but doesn’t require any physical interface or port
hence not only it save resources but also doesn’t have
the physical impairments of an external signal. Also
the ability to insert Virtual I/O cores into a design
allows users to interactively verify the design much
faster and easier, and the ability to define specific
I/0 can greatly reduce the time spent in verification.

7 Conclusions and Future Work

In this paper we have presented an approach to utilize
Virtual I/Os and Integrated Logic Analysers to perform
CAN conformance testing in accordance with the ISO
standards. It has been shown that the facility is capable
of performing the full range of test required and specially
related to CAN bit timing tests conforming to the
relevant CAN standard [21]. In conclusion, this facility
can be assembled and used for a fraction of the cost of a

regular test facility for CAN conformance. A full list of
the how each individual test may be implemented when
using a facility such as this has been described in [20].

As a final note, it can be seen that test facility that has
been described is not restricted to the CAN protocol, and
with suitable modifications can be used to test confor-
mance of many alternate network protocols, for example
TTCAN [51].

References

[1] ISO/IEC. Information Technology- OSI - Confor-
mance testing Methodology and frame work- Part
1: General concepts, ISO/IEC IS 9646-1, 1994.

[2] Sheikh, I, Short, M. and Pont, M.J. “Hardware Im-
plementation of a Shared Clock Protocol for CAN:
A Pilot Study,” In proceedings of 4jth UK Embedded
Forum,, Southampton, UK. 9/2008

[3] Sheikh, I. and Short, M. “Improving information
throughput in Controller Area Networks: Imple-
menting the dual-speed approach,” In: Proceedings
of the 8th International Workshop on Real-Time
Networks (RTN09), Dublin, Ireland. 6/2009

[4] Mohor, I. Ethernet IP Core Design
Document. Revision 0.4, Available at
http://www.opencores.org/cvsweb.shtml/ethernet/
doc/eth_design_document.pdf.

[5] Raja, N. "FPGA Implementation of a SIP message
processor,” MSc Thesis, Computer Engineering De-
partment, North Carolina University, 2006.

(Advance online publication: 1 February 2010)

TAENG International Journal of Computer Science, 37:1, IJCS 37 1 05

[6]

[7]

Gmbh, R.B. "E-Ray Flex Ray IP Module,” User
manual, Revision 1.2.6, 2007.

Bottoms, B. “The third millenniums test dilemma,”
IEEFE Design & Test of Computers,”, V15, pp. 7-11,
10/98

Lai, R. “A Survey of Communication protocol test-
ing,” Journal of Systems and Software,”, V62, pp.
21-46, 2002

Dutton, B.F. and Stroud, C.E. “Soft Core Em-
bedded Processor Based Built-In Self-Test of FP-
GAs,” In: Proceedings IEEE International Sympo-
stum. on Defect and Fault Tolerance in VLSI Sys-
tems, Chicago,Illinois, 10/2009

IEEE 1802.3, Methodology and Implementation for
AUI Cable Conformance Testing, Supplement to
IEEE STD 802-1990.

Conformance Test Methodology for Local and
Metropolitan Area Networks: Supplement to Car-
rier Sense Multiple Access with Collision Detection
(CSMA/CD) Access Method and Physical Layer
Specifications Type 10BASE-T Medium Attachment
Unit (MAU) Conformance Test Methodology (Sec-
tion 6).

IEEE 802 Standard for Local and Metropolitan Area
Networks: Overview and Architecture.

Lawrenz, W. Kinowski, P. and Kircher, G. “CAN
Conformance Testing-The Developing ISO Standard
and Necessary Extensions,” In Proceedings of Inter-
national Truck and Bus Meeting and Exposition,, In-
dianapolis, Indiana, 11,/98

Lee, M.H. Kim, S.K. Park, M.S. Bae, Y.S. Chung,
P. “IEEE 1284 softcore-implementation issues,”
ASICs, 1999. AP-ASIC °99. The First IEEE Asia
Pacific Conference on ,, pp 266-269, 99.

IEEE standard for data delivery and logical channels
for IEEE 1284 interfaces, IEEE Std 128/.4-2000, pp
i-51, 2000.

Sanyal, S. “Meeting Interoperability Requirements,”
XCELL Journal, Xilinx Inc, Fall 2004.

Interoperability Lab, University of New Hampshire;
http://iol.unh.edu

“SignalTap II Embedded Logic analyser,” Altera;
http://www.altera.com/products/software/pld/des-
ign/verification/signaltap2/sig-index.html.

“ChipScope Pro Serial I/O Tool Kit,” Xilinx;
http://www.xilinx.com/ise/optional_prod/cspro_sio-
kit.htm.

[20]

[23]

[24]

[25]

[26]

[27]

[30]

[31]

Sheikh, I. and Short, M. “CAN Conformance
Testing-A New approach,”tech-report ESIL-09-01,
ESL, Engineering Department, University of Leices-
ter, 2/2009.

R. Bosch, CAN Specification 2.0”, Postfach,
Stuttgart, Germany: Robert Bosch GmbH, 1991.

Short, M. and Pont, M.J. “Fault-Tolerant Time-
Triggered Communication Using CAN,” I[EEE
Transactions on Industrial Informatics, V15, N2,
2007.

Broster, I. and Burns, A. “Timely use of the CAN
protocol in critical hard real-time systems with
faults, 7 In Proceedings of the 13th Euromicro Con-
ference on Real-time Systems (ECRTS), Delft, The
Netherlands, 06/2001.

Pedreiras, P. and Almeida, L. “EDF message
scheduling on controller area network,” Comput-
ing and Control Engineering Journal, pp. 163-170,
08/2002.

Philips Semiconductor, SJA1000 Stand-alone CAN
controller, Data Sheet, 01,/2000.

Microchip, MCP2515 Stand-alone CAN Controller
with SPI Interface

ISO, Road Vehicles- Controller Area Network (CAN)
- Conformance Test Plan, DIS-16845, 2000.

Kirschbaum, A. Renner, F.M. Wilmes, A. and
Glesner, M. “Rapid-prototyping of a CAN-Bus con-
troller: a case study,” In proceedings of Rapid System
Prototyping, Seventh IEEFE International Workshop
on , pp.146-151, 06/1996.

Nimsub, K. Dawi, K. Kyuhyung, C. Jinsang, K. and
Wonkyung, C. “Design and Verification of a CAN
Controller for Custom ASIC,” CAN in Automation
Proceedings of 10th iCC, 2005.

Zarri, G. Colucci, F. Dupuis, F. Mariani, R.
Pasquariello, M. Risaliti, G. and Tibaldi, C. “On the
verification of automotive protocols,” In Proceedings
of Design, Automation and Test in Furope, 20006,
pp.6-10. V2, 03/2006.

Winter, A. Bittruf, D. Tanurhan, Y. and Muller-
Glaser, K.D. “Rapid prototyping of a communica-
tion controller for the CAN bus,” Rapid System Pro-
totyping, 1996. Proceedings., Seventh IEEE Interna-
tional Workshop on, pp.152-157, 06/1996.

CAN 2.0 eVC, Yogitech SPA, 2005.

Di Blasi, A. Colucci, F. and Mariani, R. “Y-CAN
Platform: A Re-usable Platform for Design, Verifi-
cation and Validation of CAN-Based Systems On a
Chip,” ETS- 2003 Symposium, 05/2003

(Advance online publication: 1 February 2010)

TAENG International Journal of Computer Science, 37:1, IJCS 37 1 05

[34]

Ferreira, J. Oliveira, A. and Fonesca, J. “An Exper-
iment to Assess Bit Error Rate in CAN,” In Pro-
ceedings of 3rd International Workshop of Real-time
Networks (RTN 04), Catania, Italy, 2004.

Ayavoo, D. Pont, M.J. Short, M. and Parker, S.
“Two novel shared-clock scheduling algorithms for
use with CAN-based distributed systems,” Micro-
processors and Microsystems, V31, N5, pp. 326-334,
2007.

Sheikh, I. and Short, M. “A low-cost and flexible ap-
proach to CAN conformance testing,” In Proceedings
of the 6th International Conference on Informat-
ics in Control, Robotics and Automation (ICINCO
2009), Milan, Ttaly, pp. 97-104, 07/2009.

Sheikh, I., Short, M. and Athaide, K.F. “Using Vir-
tual I/O for CAN Bit Timing Conformance Tests,”
In Proceedings of the World Congress on Engineer-
ing 2009, V1, pp. 480-485, London, UK, 07,/2009.

ISE Foundation, Xilinx Inc, 2008 ;
http://www .xilinx.com/ise.
uVision IDE Tool, Keil, 2008;

http://www keil.com/uvision.

Tan, H. DeMara, R.F. Thakkar, A.J. Ejnioui, A. and
Sattler, A.D. “Complexity and Performance Evalu-
ation of Two Partial Reconfiguration Interfaces on
FPGAs: a Case Study,” In Proceedings of the ERSA,
2006.

Schieferdecker, I and Grabowski, J. “Conformance
testing with TTCN,” Languages for Telecommuni-
cations Applications, V96, N4, pp. 8595, 2000.

“Using Digital Clock Managers (DCMs) in Spartan-
3 FPGAs, 7, XAPP462, Application Note, Xilinx
Inc, 2003.

“1 Port, High Speed CAN, USB Interface,” NI USB-
8473, National Instruments, 2008.

“CAN/CANopen Interface boards,” Softing AG,
2007; www.softing.com/home/en/pdf/ia/product-
info/can-bus/D_IA_41E_0711_CAN_Interface_Z.pdf.

Lawrenz, W. Kinowski, P. and Kircher, G. “CAN
Conformance Testing - State of the Art and Test Ex-
perience,” In Proceedings of 5th International CAN
Conference iCC98, San Jose, California, 11/1998.

Lab VIEW, National Instruments,
http://www.ni.com/labview86

2009;

TLA 5000B Logic Analyzers, Tektronics, Inc, 2009;
http://www.tek.com/products/logic_analyzers/tla5-
000

[48]

[51]

16900 Series Logic Analysis System
Mainframes, Agilent Technologies, 2008;
http://cp.literature.agilent.com/litweb/pdf/598904-
21EN.pdf.

Deep Storage with Xilinx Chipscope Pro
and Agilent Technologies FPGA Trace
Port Analyzer, Agilent Technologies, 2003;

http://cp.literature.agilent.com/litweb/pdf/598873-
52EN.pdf.

Lee, T. Fan, Y. Yen, S Tsai, C. and Hsiao, R. “An
Integrated Functional Verification Tool for FPGA
Systems,” Second International Conference on Inno-
vative Computing, Information and Control, ICICIC
07, pp.203-203, 09/2007.

Fuhrer,T. Mller, B. Dieterle, W. and Hartwich, F.
“Time-triggered Communication on CAN (Time-
triggered CAN TTCAN),” Proceedings of iCC 2000,
Amsterdam, The Netherlands, 2000.

(Advance online publication: 1 February 2010)

