



Abstract—FinFET, which is a double-gate field effect

transistor (DGFET), is more versatile than traditional

single-gate field effect transistors because it has two gates that

can be controlled independently. Usually, the second gate of

FinFETs is used to dynamically control the threshold voltage of

the first gate in order to improve circuit performance and

reduce leakage power. However, we can also utilize the second

gate to implement circuits with fewer transistors. This is

important since area efficiency is one of the main concerns in

modern circuit design. In this paper, a methodology for

effectively synthesizing logic circuits using both gates of

FinFETs as inputs is presented. Simulation results show that

independent-gate FinFET circuit implementation has

significant advantages over single-gate FinFET circuit

implementation in terms of power consumption and cell area.

Index Terms—FinFET, CMOS, Karnaugh map, circuit

synthesis, combinational logic.

I. INTRODUCTION

The two major members of the logic family are static

CMOS logic and pass-transistor logic. In general, circuits

implemented in static CMOS logic use more transistors, but

consume less power and achieve full voltage swing, while

circuits implemented in pass-transistor logic consume more

power and have reduced voltage swing, but use fewer

transistors.

As the size of transistors has scaled down, so have many

digital applications. Cell phones, laptops, sensors, and many

other applications all shrunk in size over the last few decades

and they are more and more portable. For this to happen,

chips in these digital applications have to be designed to

optimize the number of transistors used, the fewer the better.

For this reason, pass-transistor logic is an attractive option.

However, pass-transistor logic creates possible situations in

which NMOS transistors have to drive a high logic value or

PMOS transistors have to drive a low logic value. Since

NMOS transistor is not a good pull-up device (and PMOS

transistor is not a good pull-down device), outputs of

pass-transistor circuits will suffer from a voltage drop Vth and

never achieve full voltage swing to VDD. With the continuing

scaling of supply voltage, the voltage swing reduction cannot

be tolerated. Therefore, another approach to reduce the

transistor count (and area) in digital circuits is needed.

The emergence of FinFET provides a promising solution.

FinFET, a double-gate device in which a second gate is added

Manuscript received January 16, 2010.

Michael C. Wang received his Master of Engineering in Electrical

Engineering from Princeton University, Princeton, NJ 08544 USA (phone:

949-433-7789; fax: 949-679-7359; e-mail: mcwang@alumni.princeton.edu).

opposite to the traditional (first) gate, has long been

recognized for its potential to better control short-channel

effects [1] [2]. Fabrication of FinFET is very close to that of

conventional CMOS process. As a result, planar product

designs have been converted to FinFET without disruption to

the physical area, thereby demonstrating its compatibility

with today’s planar CMOS design methodology and

automation techniques [3].

 The additional back gate of FinFETs gives circuit

designers many options. It can serve as a secondary gate that

enhances the performance of the front (first) gate. For

example, if the front gate voltage is VDD (transistor is ON) the

back gate can be biased to VDD to provide bigger current

drive, which reduces transistor delay. If the front gate voltage

is 0 (transistor is OFF), the back gate can be biased to 0,

which raises the threshold voltage of the front gate and

reduces the leakage current. This can be achieved by simply

tying the front gate and the back gate together. FinFETs

configured this way are called single-gate FinFET, or

SG-FinFET. Most recent FinFET circuit researches, such as

FinFET SRAM [4], focus on utilizing the back gate to

improve circuit performance. On the other hand, the back

gate can also be used independently as an input to reduce the

number of transistors needed to implement many logic

functions. For an N-FinFET, the transistor turns on if either

the front gate or the back gate is VDD – this is equivalent to

two NMOS transistors in parallel. FinFETs configured this

way are called independent-gate FinFET, or IG-FinFET.

Recent researches, such as a 3-transistor FinFET NAND gate

[5], utilize this property. However, we have not seen any

research that utilizes this property beyond a simple logic gate

such as a NAND gate. The main contribution we make in this

paper is proposing a general methodology for effectively

synthesizing any logic circuit by using both gates of FinFETs

as inputs.

This paper is organized as followed: In Section II, we

explain the IG-FinFET circuit design methodology in detail.

In Section III, we present several circuits synthesized using

the proposed methodology. In Section IV, we examine

simulation results of a majority gate and a 2-1 MUX

implemented using SG-FinFET static CMOS logic,

SG-FinFET pass-transistor logic, and IG-FinFET static

CMOS logic. We conclude the paper in Section V.

II. DESIGN METHODOLOGY

In this section, we propose an IG-FinFET circuit design

methodology. In Section A, we give a brief overview of the

logic family. In Section B, we describe the proposed

Independent-Gate FinFET Circuit Design

Methodology

Michael C. Wang

IAENG International Journal of Computer Science, 37:1, IJCS_37_1_06
__

(Advance online publication: 1 February 2010)

methodology. In Section C, we describe another type of

FinFET and discuss how it affects the proposed methodology.

A. Logic Family

In static CMOS logic circuits, outputs are always

connected to either VDD through a pull-up network, or 0

through a pull-down network, so that they are never floating.

Since NMOS transistors are good at passing 0 and PMOS

transistors are good at passing VDD, NMOS transistors are

used in the pull-down network and PMOS transistors are

used in the pull-up network.

Pass-transistor logic circuits can be designed by first

generating binary decision diagrams, and then mapping

nodes to transistors and branches to wires [6]. In

pass-transistor logic circuits, transistors can pass 0 and VDD.

In other words, they “do more work” than transistors in static

CMOS logic circuits that only pass either 0 (NMOS

transistors) or VDD (PMOS transistors). Intuitively, the

number of transistors needed to implement pass-transistor

logic circuits is generally smaller than the number of

transistors needed to implement static CMOS logic circuits.

Unfortunately, for that reason, pass-transistor logic circuits

do not achieve full voltage swing at output nodes because

transistors have to pass 0 and VDD, and as mentioned earlier,

each type of transistor is only good at passing either 0 or VDD.

To restore output voltage, techniques such as appending a

three-transistor level restorer at output nodes are required.

 Both static CMOS logic and pass-transistor logic were

developed for conventional MOSFETs. If FinFET

technology is available, we can easily adapt both circuit

design methodologies by replacing NMOS transistors with

N-FinFETs and PMOS transistors with P-FinFETs, then, tie

both gates of FinFETs together. In other words, we can

design the FinFET version of static CMOS logic circuits or

pass-transistor logic circuits that retains the same

functionalities as the MOSFET version by using

SG-FinFETs, which, in the mean time, provide better circuit

performance and reduce leakage current through effective

suppression of short-channel effect and near-ideal

subthreshold swing.

B. Algorithm

IG-FinFETs are FinFETs whose gates are tied to different

inputs. Logically, an IG-FinFET is equivalent to two

MOSFETs in parallel with different inputs. The remainder of

this paper will focus on IG-FinFET circuit design.

We now develop a methodology for synthesizing logic

functions using IG-FinFETs in addition to SG-FinFETs

(which are logically equivalent to traditional MOSFETs).

We use Karnaugh map as a tool to aid us in analyzing logic

functions. Readers can find a brief introduction to Karnaugh

map in [7]. Table 1 shows a general algorithm for

synthesizing logic functions.

Circuits in either static CMOS logic or pass-transistor

logic can be synthesized using the methodology shown in

Table 1. For static CMOS logic, the driver in step 6 is either

0 (pull-down network) or VDD (pull-up network). Once one of

the networks is completed, the other network can then be

constructed by transforming parallel (or serial) connections

to serial (or parallel) connections. For pass-transistor logic,

the driver in step 6 is an input, thus it is a variable value. Note

that the SG-FinFET circuit design methodology is identical

to the traditional MOSFET circuit design methodology,

except NMOS transistors are replaced by N-FinFETs and

PMOS transistors are replaced by P-FinFETs.

The remaining question is how to map members of SPS

into transistors. This is where the IG-FinFET circuit design

methodology excels. For circuits implemented using only

SG-FinFETs, only sets whose elements are adjacent on a

hypercube can be included in SPS, whereas for circuits

implemented using both IG-FinFETs and SG-FinFETs, SPS

can include sets not otherwise allowed.

Let us illustrate this point with an example. Assume we

want to implement a function with only two inputs: A and B.

The Karnaugh will contain only 4 minterms. Table 2 shows

the comparison between implementations using only

SG-FinFETs and implementations using only IG-FinFETs in

terms of allowable sets for SPS.

It is easy to see that the sets allowed for an IG-FinFET

“covers” more minterms. Since implementing any logic

function is simply covering all minterms, circuits

implemented using only IG-FinFETs usually requires fewer

transistors.

We want to clarify an important point. IG-FinFET circuit

design methodology does not exclude the use of

SG-FinFETs. Therefore, in IG-FinFET circuit design

Table 2. Allowable sets for SPS comparison between an

SG-FinFET and an IG-FinFET for a 2-input function.

P PS
Sets allowed for SPS

SG-FinFET IG-FinFET

00

01

10

11

()

(00)

(01)

(10)

(11)

(00,01)

(00,10)

(00,11)

(01,10)

(01,11)

(10,11)

(00,01,10)

(00,01,11)

(00,10,11)

(01,10,11)

(00,01,10,11)

(00,01)

(00,10)

(01,11)

(10,11)

B’

A’

A

B

(00,01,10)

(00,01,11)

(00,10,11)

(01,10,11)

A’+B’

A+B’

A’+B

A+B

Table 1. Algorithm for synthesizing logic functions.

1. From any logic function, construct a Karnaugh map. Let P be

the set of all minterms.

2. Find the power set PS of P, let SPS be a subset of PS (See

Tables 2 and 3 for how to determine SPS for a 2-input

function).

3. Perform union and intersection operations on members of

SPS.

4. Map members of SPS into transistors (NMOS, PMOS,

N-FinFET, and P-FinFET).

5. Map the union and intersection operations in step 3 as parallel

and serial connections. Let the resulting transistor network

be TR.

6. Connect one end of TR to a driver and connect the other end to

output.

7. Repeat steps 2-6 until the circuit is completed.

IAENG International Journal of Computer Science, 37:1, IJCS_37_1_06
__

(Advance online publication: 1 February 2010)

methodology, all 8 sets from Table 2 are allowed to be

included in SPS. In other words, IG-FinFET circuit design

methodology allows us to use IG-FinFETs in addition to

SG-FinFETs, thus gives us more options to map minterms

effectively to reduce the number of transistor required to

implement a circuit.

C. “AND” FinFET

A FinFET transistor can be treated as two MOSFET

transistors in parallel. In essence, FinFETs exhibit an “OR”

property – an N-FinFET turns ON if either one or both of its

gates are ON. The next logical question is whether or not

there exists a transistor exhibiting an “AND” property – it

turns ON if and only if both gates are ON.

Contrary to intuition, OR function and AND function are

closely related from the perspective of a threshold function. A

threshold function f(x1,x2...xn) is 1 if x1w1+x2w2+…+xnwn≥T

and 0 otherwise, where T is the threshold and wi is the

weight. A weight vector V=<w1,w2…wn;T> identifies a

specific function [8]. For example, V1=<1,1;1> is an OR

function because f(x1,x2) = 1 if and only if x1+x2≥1, and this

inequality is satisfied by having inputs (x1,x2) = (0,1), (1,0),

or (1,1), which is exactly what an OR function does.

Similarly, V2=<1,1;2> is an AND function. By comparing V1

and V2, we notice that the only difference that distinguishes

OR from AND is the threshold value.

Now let us try to apply this idea to FinFET. In Fig. 1 [9],

we see that the front gate’s threshold voltage reduces

dramatically if the back gate voltage is high (and vice versa).

We hypothesize that if we move the curve in Fig. 1 upward

continuously, eventually the threshold voltage of both gates

will rise to a point where both inputs have to be ON in order

to cause conduction – we have just described the “AND”

property that can theoretically be realized by raising the

threshold voltage of both gates.

To confirm this behavior, we use MEDICI [10], which is a

device level simulator, to simulate a prototype double gate

device. Fig. 2 is a schematic of the double gate device that we

simulated.

There are several things we can do to raise the threshold

voltage of a gate. Threshold voltage of Gate 1 of a FinFET is

as follow: VthG1=ØmsG1+Vth0-γ[VG2-(ØmsG2+Vth0)], where Øms

is the work function, Vth0 is the threshold voltage found

without any secondary effect, VG2 is the Gate 2 voltage, VthG1

is the Gate 1 threshold voltage, and γ is a fixed parameter that

depends on the geometry of the device [11].

From the equation, it is clear that raising the work function

of the gate is the easiest way to increase the threshold voltage.

Therefore, in our simulation, we raise the work function from

the original 4.5eV to 5.2eV. This choice of work function is

practical since it can be achieved by using p+ polysilicon,

which are widely used as transistor gate material today (p+

polysilicon has work function of 5.17eV ~ 5.2eV [12]). The

simulation results are displayed in Fig. 3.

The solid horizontal line (10-4A) in Fig. 3 represents the

cutoff current between ON and OFF operation. We also limit

the input value to discrete value 0V and 1V. First, let us look

at a conventional FinFET operation, which is represented by

diamond dot curve (WF=4.5eV, VG2=1V) and square dots

curve (WF=4.5eV, VG2=0V). When the back gate (VG2) is at

1V, the transistor current, which is represented by diamond

dot curve, is always above the solid horizontal line. This

means the transistor is turned ON if VG2 is high. If VG2 = 0

(represented by square dot curve), we see that the curve rises

above the solid horizontal cutoff line only if the front gate

(VG1) is 1. If Both V G1 and V G2 are 0, then the transistor is

OFF. This behavior is exactly what traditional FinFETs

exhibit. Now let us look at the double gate device with work

function of 5.2eV. We notice that the current is ON if and

only if both VG1 and VG2 are 1 (represented by triangle dot

curve at 1V, which crosses over the cutoff line). For any other

combination of VG1 and VG2, the current are far below the

solid horizontal line and the transistors are OFF. Clearly, this

is a FinFET with the “AND” behavior – it is equivalent to

two MOS transistors in series.

Fig. 2. Schematic of a double gate device.

Fig. 3. Drain current vs. Front gate voltage of a double gate

device under different work function 4.5eV and 5.2eV with

different back gate (VG2) bias 0V and 1V.

Fig 1. Front gate threshold voltage as a function of back gate

voltage for N-FinFET.

IAENG International Journal of Computer Science, 37:1, IJCS_37_1_06
__

(Advance online publication: 1 February 2010)

Though the method of creating “AND” FinFET by raising

the work function of the gate looks promising, there are some

problems with this approach. The biggest challenge is the

subthreshold swing associated with high back gate bias

(VG2=1). As we can see from the triangle dot curve, it takes

entire 1V voltage swing to raise the current from OFF state to

ON state, which means we cannot reduce VDD any further.

This does not bode well when many applications today are

operating with supply voltage lower than 1V. The

subthreshold swing problem also results in small ON current,

which substantially increases the delay of this device. We

currently do not have a solution to this subthreshold swing

problem. However, we believe this problem can be solved,

and we will leave that to device physicists. We will instead

focus at the additional design advantages that “AND”

FinFET presents. Table 3 shows the comparison between

circuits implemented using only SG-FinFETs and circuits

implemented using only IG-FinFETs in terms of allowable

sets for SPS with the addition of “AND” FinFET.

III. EXAMPLES

In this section, we will go over 5 logic gates: a 3-input

majority gate, a 2-1 MUX, a 3-input XOR function, a 2-bit

comparator, and a 2-bit equality checker.

All schematics and simulations presented in this paper are

based on FinFET. We want to limit extra variables, such as

type of transistors, in order to highlight differences between

SG-FinFET circuit design implementation and IG-FinFET

circuit design implementation. Fig. 4 shows a list of legends

that will be used in this section.

A. Majority Gate

A majority gate is commonly used in a full adder. A typical

majority gate has three inputs and one output. If more than

half of the inputs are 1, it returns 1 on the output, otherwise it

returns 0. Schematics of SG-FinFET static CMOS logic

implementation, SG-FinFET pass-transistor logic

implementation, and IG-FinFET static CMOS

implementation of a majority gate are shown in Fig. 5.

The IG-FinFET static CMOS majority gate, as shown in

Fig. 5(c), contains just 6 transistors. By examining the

circuit, we can obtain the output expression,

Out’=(A’+B’)*(A’+C’)*(B’+C’), which is actually in the

OR-AND logic form (in contrast with the more intuitive

AND-OR logic form). To construct the pull-down network,

we want (A’+B’)*(A’+C’)*(B’+C’)=1 (so that Out=0, which

means pull-down network is triggered to pass 0).

Implementation each of A’+B’, A’+C’, and B’+C’ requires

two NMOS transistors, but since both transistors share the

same source and drain, they can be merged into one single

N-FinFET. Next, we place these N-FinFETs in series as

implied by the product sign of the OR-AND logic expression.

Similarly, we construct the pull-up network to complete the

circuit shown in Fig. 5(c).

Karnaugh maps in Fig. 6 and Fig. 7 illustrate the same

point graphically. For example, Fig. 6(a) shows minterms

that satisfy A+B=1, Fig. 6(b) shows minterms that satisfy

A+C=1, Fig. 6(c) shows minterms that satisfy B+C=1, and

Fig. 6(d) shows minterms that satisfy all three conditions,

and these minterms are exactly same as the 1-minterms for a

majority gate. Since each condition can be realized by one

FinFET, total of three FinFETs are needed to realize the

pull-up network. The pull-down network is similarly

constructed and illustrated in Fig. 7. As expected, the

resulting circuit has six transistors as shown in Fig. 5(c).

Fig. 4. List of legends. (a) SG N-FinFET (b) SG P-FinFET (c)

IG N-FinFET (d) IG P-FinFET (e) IG “AND” N-FinFET (f)

IG “AND” P-FinFET (g) Minterms allowed by an IG-FinFET

(h) Minterms allowed by an IG “AND” FinFET (i) Minterms

allowed by a pull-up, a pull-down network, or a

pass-transistor network.

Table 3. Allowable sets for SPS comparison between an

SG-FinFET and an IG-FinFET with the addition of “AND”

FinFET for a 2-input function.

P PS
Sets allowed for SPS

SG-FinFET IG-FinFET

00

01

10

11

()

(00)

(01)

(10)

(11)

(00,01)

(00,10)

(00,11)

(01,10)

(01,11)

(10,11)

(00,01,10)

(00,01,11)

(00,10,11)

(01,10,11)

(00,01,10,11)

(00,01)

(00,10)

(01,11)

(10,11)

B’

A’

A

B

(00)

(01)

(10)

(11)

(00,01,10)

(00,01,11)

(00,10,11)

(01,10,11)

A’*B’

A*B’

A’*B

A*B

A’+B’

A+B’

A’+B

A+B

Fig. 5. Schematics of different implementations of a majority

gate. (a) SG-FinFET static CMOS logic implementation (b)

SG-FinFET pass-transistor logic implementation, and (c)

IG-FinFET static CMOS logic implementation.

IAENG International Journal of Computer Science, 37:1, IJCS_37_1_06
__

(Advance online publication: 1 February 2010)

B. 2-1 MUX

A 2-1 MUX is another widely used 3-input function. It has

applications in both combination logic and sequential logic.

Schematics of SG-FinFET CMOS logic implementation,

SG-FinFET pass-transistor logic implementation, and

IG-FinFET static CMOS logic implementation of a 2-1 MUX

are shown in Fig. 8. A, B are the primary input bits, S is the

select bit. The output bit is equal to A if S=0, and B if S=1. In

other word, the output function is Out=S’*A+S*B, where S’

is the complement of S.

 The IG-FinFET static CMOS logic implementation of a

2-1 MUX can be constructed similar to the IG-FinFET static

CMOS logic majority gate described in Section III.A. The

OR-AND logic expression is Out’=(S+A’)*(S’+B’), which

can be mapped as two N-FinFETs in series in the pull-down

network and two P-FinFETs in series in the pull-up network.

The resulting circuit, which is shown in Fig. 8(c), contains

only 4 transistors.

 Karnaugh maps in Fig. 9 and Fig. 10 illustrate the same

point graphically. For example, Fig. 9(a) shows minterms

that satisfy S+A=1, Fig. 9(b) shows minterms that satisfy

S’+B=1, and Fig. 9(c) shows minterms that satisfy both

conditions, and these minterms are exactly same as the

1-minterms for a 2-1 MUX. Since each condition can be

realized by one FinFET, total of two FinFETs are needed to

realize the pull-up network. The pull-down network is

similarly constructed and illustrated in Fig. 10. As expected,

the resulting circuit has four transistors as shown in Fig. 8(c).

Compare to the SG-FinFET static CMOS logic

implementation of a 2-1 MUX, the IG-FinFET static CMOS

logic implementation of a 2-1 MUX effectively cuts the

number of transistors needed in half.

Note that SG-FinFET pass-transistor logic

implementation, which is shown in Fig. 8(b), actually

achieves the smallest area among all three implementations,

even though it uses one more transistor (include

level-restorer circuit) than the IG-FinFET static CMOS logic

implementation. However, its high power consumption

(almost twice as much as the IG-FinFET static CMOS logic

implementation) makes it less attractive for low-power

applications.

C. 3-input XOR Gate

A 3-input XOR gate is another useful 3-input function. A

full adder is essentially a majority gate and a 3-input XOR

gate. Schematic of IG-FinFET pass-transistor logic

implementation of a 3-input XOR gate is shown in Fig. 11. If

an odd number s of inputs is 1, the output is 1, otherwise it is

0. Put it in another way, a 3-input XOR gate returns 1 if one

or three inputs are 1, while a majority gate returns 1 if two or

three inputs are 1. Like all pass-transistor logic circuits, the

circuit in Fig. 11 suffers from reduced voltage swing.

Therefore, level restorer circuits must be appended to the

output node.

Karnaugh maps in Fig. 12 and Fig. 13 illustrate how the

circuit is synthesized. For example, Fig. 12(a) shows

minterms that satisfy A+B’=1, Fig. 12(b) shows minterms

Fig. 6. Karnaugh maps for synthesizing the pull-up network

of the circuit in Fig. 5(c). (a) Allow A+B (b) Allow A+C (c)

Allow B+C (d) Allow (A+B)*(A+C)*(B+C).

Fig. 7. Karnaugh maps for synthesizing the pull-down

network of the circuit in Fig. 5(c). (a) Allow A’+B’ (b)

Allow A’+C’ (c) Allow B’+C’ (d) Allow

(A’+B’)*(A’+C’)*(B’+C’).

Fig. 8. Schematics of different implementations of a 2-1

MUX. (a) SG-FinFET static CMOS logic implementation

(b) SG-FinFET pass-transistor logic implementation, and

(c) IG-FinFET static CMOS logic implementation.

Fig. 9. Karnaugh maps for synthesizing the pull-up network

of the circuit in Fig. 8(c). (a) Allow S+A (b) Allow S’+B (c)

Allow (S+A)*(S’+B).

Fig. 10. Karnaugh maps for synthesizing the pull-down

network of the circuit in Fig. 8(c). (a) Allow S+A’ (b) Allow

S’+B’ (c) Allow (S+A’)*(S’+B’).

IAENG International Journal of Computer Science, 37:1, IJCS_37_1_06
__

(Advance online publication: 1 February 2010)

that satisfy A’+B=1, and Fig. 12(c) shows minterms that

satisfy both conditions. To realize the function, all we need to

do it is driving the network shown in Fig. 12(c) with the input

C. Since each condition can be realized by one FinFET, total

of two FinFETs are needed to realize this network. The other

part of the circuit is similarly constructed and illustrated in

Fig. 13. As expected, the resulting circuit has four

transistors, which is a significant improvement over the

conventional 3-input XOR gate implementation that requires

eight transistors.

D. 2-Bit Comparator

Comparator is a widely used circuit that has many

applications in computer architecture. A classic comparator

is usually implemented by using many single-bit

comparators, each one can be implemented with a single

AND gate. In contrast of a single-bit comparator, a 2-bit

comparator compares two 2-bit numbers, X=[AB] and

Y=[CD]. If X >Y, the output is 1, otherwise the output is 0.

The circuit schematic of a 2-bit comparator in IG-FinFET

static CMOS logic implementation is shown in Fig. 14.

Karnaugh maps in Fig. 15 and Fig. 16 illustrate how the

circuit is synthesized. Note that this is an example of using

both conventional FinFETs and “AND” FinFETs to

implement a function. For example, Fig. 15(a) shows

minterms that satisfy A+C’=1, Fig. 15(b) shows minterms

that satisfy A*C’=1, Fig. 15(c) shows minterms that satisfy

B*D’=1, and Fig. 15(d) shows minterms that satisfy

(A+C’)*(A*C’+B*D’)=1, and these minterms are exactly

same as the 1-minterms for a 2-bit comparator. Since each

condition can be realized by one FinFET, total of three

FinFETs are needed to realize the pull-up network. The

pull-down network is similarly constructed and illustrated in

Fig. 16. As expected, the resulting circuit has six transistors

as shown in Fig. 14. In term of the number of transistors per

bit, the 2-bit comparator implementation is superior because

it requires on average three transistors per bit (six transistors

for two bits), while a classical single-bit comparator

implementation requires at least four transistors.

Fig. 11. Schematic of IG-FinFET pass-transistor logic

implementation of a 3-input XOR gate.

Fig. 12. Karnaugh maps for synthesizing the C network of

the circuit in Fig. 11. (a) Allow A+B’ (b) Allow A’+B (c)

Allow (A+B’)*(A’+B).

Fig. 13. Karnaugh maps for synthesizing the C’ network of

the circuit in Fig. 11. (a) Allow A+B (b) Allow A’+B’ (c)

Allow (A+B)*(A’+B’).

Fig. 14. Schematic of IG-FinFET static CMOS logic

implementation of a 2-bit comparator.

Fig. 15. Karnaugh maps for synthesizing the pull-up

network of the circuit in Fig. 24. (a) Allow A+C’ (b) Allow

A*C’ (c) Allow B*D’ (d) Allow (A+C’)*(A*C’+B*D’).

Fig. 16. Karnaugh maps for synthesizing the pull-down

network of the circuit in Fig. 24. (a) Allow B’+D (b) Allow

A’+C (c) Allow A’*C (d) Allow (B’+D)*(A’+C)+(A’*C).

IAENG International Journal of Computer Science, 37:1, IJCS_37_1_06
__

(Advance online publication: 1 February 2010)

E. 2-Bit Equality Checker

Like a comparator, an equality checker is also a widely used

circuit that has many applications in computer architecture.

A classic equality checker is usually implemented by using

many single-bit equality checkers, each one can be

implemented with a single AND gate. In contrast of a

single-bit equality checker, a 2-bit equality checker checks to

see if two 2-bit numbers are the same. For two 2-bit number

X=[AB] and Y=[CD], if X=Y, the output is 1, otherwise the

output is 0. The circuit schematic in IG-FinFET static CMOS

logic implementation is shown in Fig. 17.

 Karnaugh maps in Fig. 18 and Fig. 19 show how the

circuit is synthesized. For example, Fig. 18(a) shows

minterms that satisfy B’+D=1, Fig. 18(b) shows minterms

that satisfy B+D’=1, Fig. 18(c) shows minterms that satisfy

A’+C=1, Fig. 18(d) shows minterms that satisfy A+C’=1,

and Fig. 18(e) shows minterms that satisfy all conditions,

and these minterms are exactly same as the 1-minterms for a

2-bit comparator. Since each condition can be realized by one

FinFET, total of four FinFETs are needed to realize the

pull-up network. The pull-down network is similarly

constructed and illustrated in Fig. 19. As expected, the

resulting circuit has eight transistors as shown in Fig. 17.

This implementation is very efficient since it only requires

eight FinFETs. The conventional implementation requires

approximately 20 transistors (2 XNOR gates for each bit and

1 AND gate to combine the result of each bit).

One crucial point that we want to make is the duality

relationship between conventional “OR” FinFETs and

“AND” FinFETs. Parallel “OR” N-FinFETs in the

pull-down network transform into serial “AND” P-FinFETs

in the pull-up network, and serial “AND” N-FinFETs in the

pull-down network transform into parallel “OR” P-FinFETs

in the pull-up network. This can be easily proven by

considering the NMOS-PMOS duality relationship and the

fact that logically, a conventional “OR” FinFET is two

MOSFETs in parallel, while an “AND” FinFET is two

MOSFETs in series.

IV. SIMULATION RESULTS

In this section, we present simulation results in 30nm

technology generated from Synopsys Sentaurus, which is a

device level simulator [13], for all six circuits mentioned in

Sections III.A and III.B. Schematics of these circuits can be

found in Fig. 5 and Fig. 8. Before we present the results, we

will explain how we perform simulations and extract data

listed in Tables 4 and 5.

A. Layout Consideration

In FinFET technology, device widths are dispensed in

units of whole fins only. [14] This is known as device width

quantization, which limits our ability to size transistors

effectively in FinFET circuit. On top of that, there is also

problem with IG-FinFETs with even number of fins because

of the difficulty in routing inputs. However, it is shown in

[15] that both inputs can be easily routed in IG-FinFETs with

three fins (or more generally, any odd number of fins). For

this reason, we chose three as the number of fins of P-FinFET

to the number of fins of N-FinFET (three fins P-FinFET to

one fin N-FinFET). As shown in Tables 4 and 5, IG-FinFET

circuit implementation achieves on average 25% reduction in

cell area.

B. Delay Extraction

For a simple logic gate, delay can be estimated as the time

difference between 10% and 90% of the voltage swing. For

example, if we are trying to bring node A from 0V to 1V, then

the delay is the time it takes for node A to go from 0.1V to

0.9V. In our simulation, we assumed that all the intermediate

nodes have 1fF capacitance while the output nodes and input

buses have 5fF capacitance.

Simulation results show that SG-FinFET static CMOS

logic circuits are approximately 2.2 times faster than

Fig. 17. Schematic of IG-FinFET static CMOS logic

implementation of a 2-bit equality checker.

Fig. 18. Karnaugh maps for synthesizing the pull-up

network of the circuit in Fig. 17. (a) Allow B’+D (b) Allow

B+D’ (c) Allow A’+C (d) Allow A+C’ (e) Allow

(B’+D)*(B+D’)*(A’+C)*(A+C’).

Fig. 19. Karnaugh maps for synthesizing the pull-down

network of the circuit in Fig. 17. (a) Allow B*D’ (b) Allow

B’*D (c) Allow A*C’ (d) Allow A’*C (e) Allow

(B*D’)+(B’*D)+(A*C’)+(A’*C).

IAENG International Journal of Computer Science, 37:1, IJCS_37_1_06
__

(Advance online publication: 1 February 2010)

SG-FinFET pass-transistor logic circuit and 3.5 times faster

than IG-FinFET static CMOS logic circuit.

C. Power Extraction Consideration

We will not consider dynamic power consumption on

output nodes and input buses because in our simulations,

outputs switch same number of times on these nodes. The

sole exception is the SG-FinFET pass-transistor logic

implementation for majority gate, which has 5 inputs (A, A’,

B, C, C’) compare to 3 inputs (A’, B’, C’) of the other two

implementations. The extra inputs lead to more dynamic

power consumption for SG-FinFET pass-transistor logic

implementation, but since it already has the highest active

and leakage power consumption, omitting dynamic power

consumption calculation will not change the fact that

SG-FinFET pass-transistor logic circuits are usually inferior

in term of power consumption.

Active power is the power consumed when both pull-up

and pull-down network are active, creating a direct current

path from VDD to ground, while leakage power is the power

consumed when charges “leak” through a transistor that is

off. Calculating the active and leakage components of power

consumption separately is very difficult. Therefore, we will

calculate the aggregated power consumption by first

calculating instantaneous power P(t) = V(t)*I(t), then sum up

P(t) for all times (in our simulation, t: 0~1000ps), which will

give us the total energy consumed for this operation. This is

easy to do since Sentaurus can provide information about

voltage and current across each transistor at any time.

Finally, sum up the energy consumption for all transistors

and divide by clock period to obtain the active and leakage

power consumption, which is listed in Table 4 for majority

gate and Table 5 for 2-1 MUX.

Note that the input sequence in our simulation implies that

input C (for majority gate) or input S (for 2-1 MUX) switches

most frequently, while input A switches least frequently. The

placement of inputs in a circuit has some impacts on power

consumption [16]. For consistency, we place the least

frequent switching input closest to the output and the most

frequent switching input farthest from the output.

Simulation results show that IG-FinFET static CMOS

logic circuits consume least amount of power. In comparison,

SG-FinFET static CMOS logic circuits consume about 52%

more power and SG-FinFET pass-transistor logic circuits

consume about 98% more power.

V. CONCLUSION

FinFET not only has superior performance over bulk

silicon MOSFET, but is primed to take over bulk silicon

MOSFET as the dominant transistor choice for sub-45nm

technology. In this paper, we present a methodology for

synthesizing logic circuits using independent-gate FinFETs,

which leads to reduction in number of transistors (and chip

area) needed to implement circuits. The methodology is

based on the existing MOSFET circuit synthesis

methodology and can be readily adapted for

independent-gate FinFETs by making minor modifications.

Simulation results show that compared to other logic

implementations, FinFET logic circuits achieve significant

area and power reduction without voltage or transistor

scaling, even though they suffer greatly in circuit speed.

REFERENCES

[1] H-S.P. Wong, D. Frank and P. Solomon, “Device design considerations

for double-gate, ground-plane, single-gated ultra-thin SOI MOSFETs at

the 25 nm channel length generation,” in Tech. Digest IEDM 1998, San

Francisco, CA, pp. 407–410.

[2] S. Christoloveanu, T. Ernst, D. Munteanu and T. Ouisse, “Ultimate

MOSFETs on SOI: Ultra thin, single gate, double gate, or ground plane,”

in Int. J. High Speed Electron. Syst., vol. 10, no. 1, pp. 217–230.

[3] E. J. Nowak, I. Aller, T. Ludwig, K. Kim, R. V. Joshi, C.-T Chuang, K

Bernstein and R. Puri, “Turning silicon on its edge,” in IEEE Circuits

Devices Mag., vol. 20, Jan.-Feb. 2004, pp. 20–31.

[4] A. Carlson, Z. Guo, S. Balasubramanian, L.T. Pang, T.J. King Liu and B.

Nikolic, “FinFET SRAM with Enhanced Read / Write Margins,” in SOI

Conference, 2006.

[5] A. Muttreja, N. Agarwal and N.K. Jha, “CMOS logic design with

independent-gate FinFETs,” in ICCD 25th International Conference,

2007, pp. 560-567.

[6] V. Bertacco, “Decision Diagrams and Pass Transistor Logic Synthesis,”

in Proc. of the ACM/IEEE International Workshop on Logic Synthesis,

May 1997, pp. 1-5.

[7] M. M. Vai, VLSI Design, Boca Raton, Florida, U.S.A: CRC Press, 2000,

pp. 46-48.

[8] Z. Kohavi, Switching & Finite Automata Theory, 2nd Ed.,

U.S.A.:McGraw-Hill Inc., 1979, pp. 7-2.

[9] D. Fried, J.S. Duster and K.T. Kornegay, “Improved Independent Gate

N-Type FinFET Fabrication and Characterization,” in IEEE Electron

Device Letter, Vol. 24, No. 9, September 2003, pp. 593.

[10] "Taurus Medici," 2009. [Online]. Available:

http://www.synopsys.com/Tools/TCAD/DeviceSimulation/Pages/Tauru

sMedici.aspx. [Accessed: Dec. 5, 2009].

[11] S. O'uchi, K. Sakamoto, K. Endo, M. Masahara, T. Matsukawa, Y.X.

Liu, M. Hioki, T. Nakagawa, T. Sekigawa, H. Koike and E. Suzuki,

“Variable-Threshold-Voltage FinFETs with a Control-Voltage Range

within the Logic-Level Swing Using Asymmetric Work-Function Double

Gates,” in VLSI Technology, Systems and Applications, 2008.

[12] R.S. Muller and T.I. Kamins, Device Electronics for Integrated Circuits,

3rd Ed, U.S.A: John Wiley & Sons, 2003, pp. 386.

[13] "Sentaurus Device," 2009. [Online]. Available:

http://www.synopsys.com/Tools/TCAD/DeviceSimulation/Pages/Sentau

rusDevice.aspx. [Accessed: Jun. 1, 2009].

[14] K. Bernstein, C. T. Chuang, R. Joshi and R. Puri, “Design and CAD

challenges in sub-90 nm CMOS technologies,” in ICCAD, Nov.2003, pp.

129-136.

[15] S. A. Tawfik and V. Kursun, "FinFET domino logic with independent

gate keepers", Microelectronics Journal, March 2009.

[16] L. Benini and G.D., Micheli, "Dynamic Power Management", 1st ed.

Springer, Nov 1997, pp. 24-25.

Table 4. Summary of majority gate implementations.

FinFET SG-FinFET SG-FinFET IG-FinFET

Logic Style CMOS Pass-Trans. CMOS

Transistor 10 9 6

Area (nm
2
) 475200 529200 348300

F. Delay (ps) 10.913 31.227 24.270

R. Delay (ps) 14.204 31.883 70.314

Power (uW) 44.7 57.5 28.0

Table 5. Summary of 2-1 MUX implementations.

FinFET SG-FinFET SG-FinFET IG-FinFET

Logic Style CMOS Pass-Trans. CMOS

Transistor 8 5 4

Area (nm
2
) 415800 243000 273600

F. Delay (ps) 15.249 20.148 28.132

R. Delay (ps) 9.079 28.604 49.769

Power (uW) 31.5 41.4 22.0

IAENG International Journal of Computer Science, 37:1, IJCS_37_1_06
__

(Advance online publication: 1 February 2010)

