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Abstract—FinFET, which is a double-gate field effect 

transistor (DGFET), is more versatile than traditional 

single-gate field effect transistors because it has two gates that 

can be controlled independently. Usually, the second gate of 

FinFETs is used to dynamically control the threshold voltage of 

the first gate in order to improve circuit performance and 

reduce leakage power. However, we can also utilize the second 

gate to implement circuits with fewer transistors. This is 

important since area efficiency is one of the main concerns in 

modern circuit design. In this paper, a methodology for 

effectively synthesizing logic circuits using both gates of 

FinFETs as inputs is presented. Simulation results show that 

independent-gate FinFET circuit implementation has 

significant advantages over single-gate FinFET circuit 

implementation in terms of power consumption and cell area. 

 

Index Terms—FinFET, CMOS, Karnaugh map, circuit 

synthesis, combinational logic.  

 

I. INTRODUCTION 

The two major members of the logic family are static 

CMOS logic and pass-transistor logic. In general, circuits 

implemented in static CMOS logic use more transistors, but 

consume less power and achieve full voltage swing, while 

circuits implemented in pass-transistor logic consume more 

power and have reduced voltage swing, but use fewer 

transistors. 

As the size of transistors has scaled down, so have many 

digital applications. Cell phones, laptops, sensors, and many 

other applications all shrunk in size over the last few decades 

and they are more and more portable. For this to happen, 

chips in these digital applications have to be designed to 

optimize the number of transistors used, the fewer the better. 

For this reason, pass-transistor logic is an attractive option. 

However, pass-transistor logic creates possible situations in 

which NMOS transistors have to drive a high logic value or 

PMOS transistors have to drive a low logic value. Since 

NMOS transistor is not a good pull-up device (and PMOS 

transistor is not a good pull-down device), outputs of 

pass-transistor circuits will suffer from a voltage drop Vth and 

never achieve full voltage swing to VDD. With the continuing 

scaling of supply voltage, the voltage swing reduction cannot 

be tolerated. Therefore, another approach to reduce the 

transistor count (and area) in digital circuits is needed. 

The emergence of FinFET provides a promising solution. 

FinFET, a double-gate device in which a second gate is added 
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opposite to the traditional (first) gate, has long been 

recognized for its potential to better control short-channel 

effects [1] [2]. Fabrication of FinFET is very close to that of 

conventional CMOS process. As a result, planar product 

designs have been converted to FinFET without disruption to 

the physical area, thereby demonstrating its compatibility 

with today’s planar CMOS design methodology and 

automation techniques [3]. 

 The additional back gate of FinFETs gives circuit 

designers many options. It can serve as a secondary gate that 

enhances the performance of the front (first) gate. For 

example, if the front gate voltage is VDD (transistor is ON) the 

back gate can be biased to VDD to provide bigger current 

drive, which reduces transistor delay. If the front gate voltage 

is 0 (transistor is OFF), the back gate can be biased to 0, 

which raises the threshold voltage of the front gate and 

reduces the leakage current. This can be achieved by simply 

tying the front gate and the back gate together. FinFETs 

configured this way are called single-gate FinFET, or 

SG-FinFET. Most recent FinFET circuit researches, such as 

FinFET SRAM [4], focus on utilizing the back gate to 

improve circuit performance. On the other hand, the back 

gate can also be used independently as an input to reduce the 

number of transistors needed to implement many logic 

functions. For an N-FinFET, the transistor turns on if either 

the front gate or the back gate is VDD – this is equivalent to 

two NMOS transistors in parallel. FinFETs configured this 

way are called independent-gate FinFET, or IG-FinFET. 

Recent researches, such as a 3-transistor FinFET NAND gate 

[5], utilize this property. However, we have not seen any 

research that utilizes this property beyond a simple logic gate 

such as a NAND gate. The main contribution we make in this 

paper is proposing a general methodology for effectively 

synthesizing any logic circuit by using both gates of FinFETs 

as inputs. 

This paper is organized as followed: In Section II, we 

explain the IG-FinFET circuit design methodology in detail. 

In Section III, we present several circuits synthesized using 

the proposed methodology. In Section IV, we examine 

simulation results of a majority gate and a 2-1 MUX 

implemented using SG-FinFET static CMOS logic, 

SG-FinFET pass-transistor logic, and IG-FinFET static 

CMOS logic. We conclude the paper in Section V. 

 

II. DESIGN METHODOLOGY 

In this section, we propose an IG-FinFET circuit design 

methodology. In Section A, we give a brief overview of the 

logic family. In Section B, we describe the proposed 
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methodology. In Section C, we describe another type of 

FinFET and discuss how it affects the proposed methodology. 

A. Logic Family 

In static CMOS logic circuits, outputs are always 

connected to either VDD through a pull-up network, or 0 

through a pull-down network, so that they are never floating. 

Since NMOS transistors are good at passing 0 and PMOS 

transistors are good at passing VDD, NMOS transistors are 

used in the pull-down network and PMOS transistors are 

used in the pull-up network.  

Pass-transistor logic circuits can be designed by first 

generating binary decision diagrams, and then mapping 

nodes to transistors and branches to wires [6]. In 

pass-transistor logic circuits, transistors can pass 0 and VDD. 

In other words, they “do more work” than transistors in static 

CMOS logic circuits that only pass either 0 (NMOS 

transistors) or VDD (PMOS transistors). Intuitively, the 

number of transistors needed to implement pass-transistor 

logic circuits is generally smaller than the number of 

transistors needed to implement static CMOS logic circuits. 

Unfortunately, for that reason, pass-transistor logic circuits 

do not achieve full voltage swing at output nodes because 

transistors have to pass 0 and VDD, and as mentioned earlier, 

each type of transistor is only good at passing either 0 or VDD. 

To restore output voltage, techniques such as appending a 

three-transistor level restorer at output nodes are required.  

 Both static CMOS logic and pass-transistor logic were 

developed for conventional MOSFETs. If FinFET 

technology is available, we can easily adapt both circuit 

design methodologies by replacing NMOS transistors with 

N-FinFETs and PMOS transistors with P-FinFETs, then, tie 

both gates of FinFETs together. In other words, we can 

design the FinFET version of static CMOS logic circuits or 

pass-transistor logic circuits that retains the same 

functionalities as the MOSFET version by using 

SG-FinFETs, which, in the mean time, provide better circuit 

performance and reduce leakage current through effective 

suppression of short-channel effect and near-ideal 

subthreshold swing. 

B. Algorithm 

IG-FinFETs are FinFETs whose gates are tied to different 

inputs.  Logically, an IG-FinFET is equivalent to two 

MOSFETs in parallel with different inputs. The remainder of 

this paper will focus on IG-FinFET circuit design. 

We now develop a methodology for synthesizing logic 

functions using IG-FinFETs in addition to SG-FinFETs 

(which are logically equivalent to traditional MOSFETs). 

We use Karnaugh map as a tool to aid us in analyzing logic 

functions. Readers can find a brief introduction to Karnaugh 

map in [7]. Table 1 shows a general algorithm for 

synthesizing logic functions. 

Circuits in either static CMOS logic or pass-transistor 

logic can be synthesized using the methodology shown in 

Table 1. For static CMOS logic, the driver in step 6 is either 

0 (pull-down network) or VDD (pull-up network). Once one of 

the networks is completed, the other network can then be 

constructed by transforming parallel (or serial) connections 

to serial (or parallel) connections. For pass-transistor logic, 

the driver in step 6 is an input, thus it is a variable value. Note 

that the SG-FinFET circuit design methodology is identical 

to the traditional MOSFET circuit design methodology, 

except NMOS transistors are replaced by N-FinFETs and 

PMOS transistors are replaced by P-FinFETs. 

The remaining question is how to map members of SPS 

into transistors. This is where the IG-FinFET circuit design 

methodology excels. For circuits implemented using only 

SG-FinFETs, only sets whose elements are adjacent on a 

hypercube can be included in SPS, whereas for circuits 

implemented using both IG-FinFETs and SG-FinFETs, SPS 

can include sets not otherwise allowed. 

Let us illustrate this point with an example. Assume we 

want to implement a function with only two inputs: A and B. 

The Karnaugh will contain only 4 minterms. Table 2 shows 

the comparison between implementations using only 

SG-FinFETs and implementations using only IG-FinFETs in 

terms of allowable sets for SPS. 

It is easy to see that the sets allowed for an IG-FinFET 

“covers” more minterms. Since implementing any logic 

function is simply covering all minterms, circuits 

implemented using only IG-FinFETs usually requires fewer 

transistors. 

We want to clarify an important point. IG-FinFET circuit 

design methodology does not exclude the use of 

SG-FinFETs. Therefore, in IG-FinFET circuit design 

Table 2. Allowable sets for SPS comparison between an 

SG-FinFET and an IG-FinFET for a 2-input function. 

P PS 
Sets allowed for SPS 

SG-FinFET IG-FinFET 

00 

01 

10 

11 

() 

(00) 

(01) 

(10) 

(11) 

(00,01) 

(00,10) 

(00,11) 

(01,10) 

(01,11) 

(10,11) 

(00,01,10) 

(00,01,11) 

(00,10,11) 

(01,10,11) 

(00,01,10,11) 

(00,01) 

(00,10) 

(01,11) 

(10,11) 

B’ 

A’ 

A 

B 

(00,01,10) 

(00,01,11) 

(00,10,11) 

(01,10,11) 

 

A’+B’ 

A+B’ 

A’+B 

A+B 

Table 1. Algorithm for synthesizing logic functions. 

1. From any logic function, construct a Karnaugh map. Let P be 

the set of all minterms. 

2. Find the power set PS of P, let SPS be a subset of PS (See 

Tables 2 and 3 for how to determine SPS for a 2-input 

function). 

3. Perform union and intersection operations on members of 

SPS. 

4. Map members of SPS into transistors (NMOS, PMOS, 

N-FinFET, and P-FinFET). 

5. Map the union and intersection operations in step 3 as parallel 

and serial connections. Let the resulting transistor network 

be TR. 

6. Connect one end of TR to a driver and connect the other end to 

output. 

7. Repeat steps 2-6 until the circuit is completed. 
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methodology, all 8 sets from Table 2 are allowed to be 

included in SPS. In other words, IG-FinFET circuit design 

methodology allows us to use IG-FinFETs in addition to 

SG-FinFETs, thus gives us more options to map minterms 

effectively to reduce the number of transistor required to 

implement a circuit. 

C. “AND” FinFET 

A FinFET transistor can be treated as two MOSFET 

transistors in parallel. In essence, FinFETs exhibit an “OR” 

property – an N-FinFET turns ON if either one or both of its 

gates are ON. The next logical question is whether or not 

there exists a transistor exhibiting an “AND” property – it 

turns ON if and only if both gates are ON.  

Contrary to intuition, OR function and AND function are 

closely related from the perspective of a threshold function. A 

threshold function f(x1,x2...xn) is 1 if x1w1+x2w2+…+xnwn≥T 

and 0 otherwise, where T is the threshold and wi is the 

weight. A weight vector V=<w1,w2…wn;T> identifies a 

specific function [8]. For example, V1=<1,1;1> is an OR 

function because f(x1,x2) = 1 if and only if x1+x2≥1, and this 

inequality is satisfied by having inputs (x1,x2) = (0,1), (1,0), 

or (1,1), which is exactly what an OR function does. 

Similarly, V2=<1,1;2> is an AND function. By comparing V1 

and V2, we notice that the only difference that distinguishes 

OR from AND is the threshold value. 

Now let us try to apply this idea to FinFET. In Fig. 1 [9], 

we see that the front gate’s threshold voltage reduces 

dramatically if the back gate voltage is high (and vice versa). 

We hypothesize that if we move the curve in Fig. 1 upward 

continuously, eventually the threshold voltage of both gates 

will rise to a point where both inputs have to be ON in order 

to cause conduction – we have just described the “AND” 

property that can theoretically be realized by raising the 

threshold voltage of both gates. 

To confirm this behavior, we use MEDICI [10], which is a 

device level simulator, to simulate a prototype double gate 

device. Fig. 2 is a schematic of the double gate device that we 

simulated. 

There are several things we can do to raise the threshold 

voltage of a gate. Threshold voltage of Gate 1 of a FinFET is 

as follow: VthG1=ØmsG1+Vth0-γ[VG2-(ØmsG2+Vth0)], where Øms 

is the work function, Vth0 is the threshold voltage found 

without any secondary effect, VG2 is the Gate 2 voltage, VthG1 

is the Gate 1 threshold voltage, and γ is a fixed parameter that 

depends on the geometry of the device [11]. 

From the equation, it is clear that raising the work function 

of the gate is the easiest way to increase the threshold voltage. 

Therefore, in our simulation, we raise the work function from 

the original 4.5eV to 5.2eV. This choice of work function is 

practical since it can be achieved by using p+ polysilicon, 

which are widely used as transistor gate material today (p+ 

polysilicon has work function of 5.17eV ~ 5.2eV [12]). The 

simulation results are displayed in Fig. 3.  

The solid horizontal line (10-4A) in Fig. 3 represents the 

cutoff current between ON and OFF operation. We also limit 

the input value to discrete value 0V and 1V. First, let us look 

at a conventional FinFET operation, which is represented by 

diamond dot curve (WF=4.5eV, VG2=1V) and square dots 

curve (WF=4.5eV, VG2=0V). When the back gate (VG2) is at 

1V, the transistor current, which is represented by diamond 

dot curve, is always above the solid horizontal line. This 

means the transistor is turned ON if VG2 is high. If VG2 = 0 

(represented by square dot curve), we see that the curve rises 

above the solid horizontal cutoff line only if the front gate 

(VG1) is 1. If Both V G1 and V G2 are 0, then the transistor is 

OFF. This behavior is exactly what traditional FinFETs 

exhibit. Now let us look at the double gate device with work 

function of 5.2eV. We notice that the current is ON if and 

only if both VG1 and VG2 are 1 (represented by triangle dot 

curve at 1V, which crosses over the cutoff line). For any other 

combination of VG1 and VG2, the current are far below the 

solid horizontal line and the transistors are OFF. Clearly, this 

is a FinFET with the “AND” behavior – it is equivalent to 

two MOS transistors in series. 

 
Fig. 2. Schematic of a double gate device. 

 
Fig. 3. Drain current vs. Front gate voltage of a double gate 

device under different work function 4.5eV and 5.2eV with 

different back gate (VG2) bias 0V and 1V. 

 
Fig 1. Front gate threshold voltage as a function of back gate 

voltage for N-FinFET. 
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Though the method of creating “AND” FinFET by raising 

the work function of the gate looks promising, there are some 

problems with this approach. The biggest challenge is the 

subthreshold swing associated with high back gate bias 

(VG2=1). As we can see from the triangle dot curve, it takes 

entire 1V voltage swing to raise the current from OFF state to 

ON state, which means we cannot reduce VDD any further. 

This does not bode well when many applications today are 

operating with supply voltage lower than 1V. The 

subthreshold swing problem also results in small ON current, 

which substantially increases the delay of this device. We 

currently do not have a solution to this subthreshold swing 

problem. However, we believe this problem can be solved, 

and we will leave that to device physicists. We will instead 

focus at the additional design advantages that “AND” 

FinFET presents. Table 3 shows the comparison between 

circuits implemented using only SG-FinFETs and circuits 

implemented using only IG-FinFETs in terms of allowable 

sets for SPS with the addition of “AND” FinFET. 

 

III. EXAMPLES 

In this section, we will go over 5 logic gates: a 3-input 

majority gate, a 2-1 MUX, a 3-input XOR function, a 2-bit 

comparator, and a 2-bit equality checker.  

All schematics and simulations presented in this paper are 

based on FinFET. We want to limit extra variables, such as 

type of transistors, in order to highlight differences between 

SG-FinFET circuit design implementation and IG-FinFET 

circuit design implementation. Fig. 4 shows a list of legends 

that will be used in this section. 

A. Majority Gate 

A majority gate is commonly used in a full adder. A typical 

majority gate has three inputs and one output. If more than 

half of the inputs are 1, it returns 1 on the output, otherwise it 

returns 0. Schematics of SG-FinFET static CMOS logic 

implementation, SG-FinFET pass-transistor logic 

implementation, and IG-FinFET static CMOS 

implementation of a majority gate are shown in Fig. 5. 

The IG-FinFET static CMOS majority gate, as shown in 

Fig. 5(c), contains just 6 transistors. By examining the 

circuit, we can obtain the output expression, 

Out’=(A’+B’)*(A’+C’)*(B’+C’), which is actually in the 

OR-AND logic form (in contrast with the more intuitive 

AND-OR logic form). To construct the pull-down network, 

we want (A’+B’)*(A’+C’)*(B’+C’)=1 (so that Out=0, which 

means pull-down network is triggered to pass 0). 

Implementation each of A’+B’, A’+C’, and B’+C’ requires 

two NMOS transistors, but since both transistors share the 

same source and drain, they can be merged into one single 

N-FinFET. Next, we place these N-FinFETs in series as 

implied by the product sign of the OR-AND logic expression. 

Similarly, we construct the pull-up network to complete the 

circuit shown in Fig. 5(c).  

Karnaugh maps in Fig. 6 and Fig. 7 illustrate the same 

point graphically. For example, Fig. 6(a) shows minterms 

that satisfy A+B=1, Fig. 6(b) shows minterms that satisfy 

A+C=1, Fig. 6(c) shows minterms that satisfy B+C=1, and 

Fig. 6(d) shows minterms that satisfy all three conditions, 

and these minterms are exactly same as the 1-minterms for a 

majority gate. Since each condition can be realized by one 

FinFET, total of three FinFETs are needed to realize the 

pull-up network. The pull-down network is similarly 

constructed and illustrated in Fig. 7. As expected, the 

resulting circuit has six transistors as shown in Fig. 5(c). 

 

 

 

 
Fig. 4. List of legends. (a) SG N-FinFET (b) SG P-FinFET (c) 

IG N-FinFET (d) IG P-FinFET (e) IG “AND” N-FinFET (f) 

IG “AND” P-FinFET (g) Minterms allowed by an IG-FinFET 

(h) Minterms allowed by an IG “AND” FinFET (i) Minterms 

allowed by a pull-up, a pull-down network, or a 

pass-transistor network. 

Table 3. Allowable sets for SPS comparison between an 

SG-FinFET and an IG-FinFET with the addition of “AND” 

FinFET for a 2-input function. 

P PS 
Sets allowed for SPS 

SG-FinFET IG-FinFET 

00 

01 

10 

11 

() 

(00) 

(01) 

(10) 

(11) 

(00,01) 

(00,10) 

(00,11) 

(01,10) 

(01,11) 

(10,11) 

(00,01,10) 

(00,01,11) 

(00,10,11) 

(01,10,11) 

(00,01,10,11) 

(00,01) 

(00,10) 

(01,11) 

(10,11) 

B’ 

A’ 

A 

B 

(00) 

(01) 

(10) 

(11) 

(00,01,10) 

(00,01,11) 

(00,10,11) 

(01,10,11) 

 

A’*B’ 

A*B’ 

A’*B 

A*B 

A’+B’ 

A+B’ 

A’+B 

A+B 

 
Fig. 5. Schematics of different implementations of a majority 

gate. (a) SG-FinFET static CMOS logic implementation (b) 

SG-FinFET pass-transistor logic implementation, and (c) 

IG-FinFET static CMOS logic implementation. 
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B. 2-1 MUX 

A 2-1 MUX is another widely used 3-input function. It has 

applications in both combination logic and sequential logic. 

Schematics of SG-FinFET CMOS logic implementation, 

SG-FinFET pass-transistor logic implementation, and 

IG-FinFET static CMOS logic implementation of a 2-1 MUX 

are shown in Fig. 8. A, B are the primary input bits, S is the 

select bit. The output bit is equal to A if S=0, and B if S=1. In 

other word, the output function is Out=S’*A+S*B, where S’ 

is the complement of S.  

 The IG-FinFET static CMOS logic implementation of a 

2-1 MUX can be constructed similar to the IG-FinFET static 

CMOS logic majority gate described in Section III.A. The 

OR-AND logic expression is Out’=(S+A’)*(S’+B’), which 

can be mapped as two N-FinFETs in series in the pull-down 

network and two P-FinFETs in series in the pull-up network. 

The resulting circuit, which is shown in Fig. 8(c), contains 

only 4 transistors. 

 Karnaugh maps in Fig. 9 and Fig. 10 illustrate the same 

point graphically. For example, Fig. 9(a) shows minterms 

that satisfy S+A=1, Fig. 9(b) shows minterms that satisfy 

S’+B=1, and Fig. 9(c) shows minterms that satisfy both 

conditions, and these minterms are exactly same as the 

1-minterms for a 2-1 MUX. Since each condition can be 

realized by one FinFET, total of two FinFETs are needed to 

realize the pull-up network. The pull-down network is 

similarly constructed and illustrated in Fig. 10. As expected, 

the resulting circuit has four transistors as shown in Fig. 8(c). 

Compare to the SG-FinFET static CMOS logic 

implementation of a 2-1 MUX, the IG-FinFET static CMOS 

logic implementation of a 2-1 MUX effectively cuts the 

number of transistors needed in half. 

Note that SG-FinFET pass-transistor logic 

implementation, which is shown in Fig. 8(b), actually 

achieves the smallest area among all three implementations, 

even though it uses one more transistor (include 

level-restorer circuit) than the IG-FinFET static CMOS logic 

implementation. However, its high power consumption 

(almost twice as much as the IG-FinFET static CMOS logic 

implementation) makes it less attractive for low-power 

applications. 

C. 3-input XOR Gate 

A 3-input XOR gate is another useful 3-input function. A 

full adder is essentially a majority gate and a 3-input XOR 

gate. Schematic of IG-FinFET pass-transistor logic 

implementation of a 3-input XOR gate is shown in Fig. 11. If 

an odd number s of inputs is 1, the output is 1, otherwise it is 

0. Put it in another way, a 3-input XOR gate returns 1 if one 

or three inputs are 1, while a majority gate returns 1 if two or 

three inputs are 1. Like all pass-transistor logic circuits, the 

circuit in Fig. 11 suffers from reduced voltage swing. 

Therefore, level restorer circuits must be appended to the 

output node.  

Karnaugh maps in Fig. 12 and Fig. 13 illustrate how the 

circuit is synthesized. For example, Fig. 12(a) shows 

minterms that satisfy A+B’=1, Fig. 12(b) shows minterms 

 
Fig. 6. Karnaugh maps for synthesizing the pull-up network 

of the circuit in Fig. 5(c). (a) Allow A+B (b) Allow A+C (c) 

Allow B+C (d) Allow (A+B)*(A+C)*(B+C). 

 
Fig. 7. Karnaugh maps for synthesizing the pull-down 

network of the circuit in Fig. 5(c). (a) Allow A’+B’ (b) 

Allow A’+C’ (c) Allow B’+C’ (d) Allow 

(A’+B’)*(A’+C’)*(B’+C’). 

 
Fig. 8. Schematics of different implementations of a 2-1 

MUX. (a) SG-FinFET static CMOS logic implementation 

(b) SG-FinFET pass-transistor logic implementation, and 

(c) IG-FinFET static CMOS logic implementation. 

 
Fig. 9. Karnaugh maps for synthesizing the pull-up network 

of the circuit in Fig. 8(c). (a) Allow S+A (b) Allow S’+B (c) 

Allow (S+A)*(S’+B). 

 
Fig. 10. Karnaugh maps for synthesizing the pull-down 

network of the circuit in Fig. 8(c). (a) Allow S+A’ (b) Allow 

S’+B’ (c) Allow (S+A’)*(S’+B’). 
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that satisfy A’+B=1, and Fig. 12(c) shows minterms that 

satisfy both conditions. To realize the function, all we need to 

do it is driving the network shown in Fig. 12(c) with the input 

C. Since each condition can be realized by one FinFET, total 

of two FinFETs are needed to realize this network. The other 

part of the circuit is similarly constructed and illustrated in 

Fig. 13. As expected, the resulting circuit has four 

transistors, which is a significant improvement over the 

conventional 3-input XOR gate implementation that requires 

eight transistors. 

D. 2-Bit Comparator 

Comparator is a widely used circuit that has many 

applications in computer architecture. A classic comparator 

is usually implemented by using many single-bit 

comparators, each one can be implemented with a single 

AND gate. In contrast of a single-bit comparator, a 2-bit 

comparator compares two 2-bit numbers, X=[AB] and 

Y=[CD]. If X >Y, the output is 1, otherwise the output is 0. 

The circuit schematic of a 2-bit comparator in IG-FinFET 

static CMOS logic implementation is shown in Fig. 14. 

Karnaugh maps in Fig. 15 and Fig. 16 illustrate how the 

circuit is synthesized. Note that this is an example of using 

both conventional FinFETs and “AND” FinFETs to 

implement a function. For example, Fig. 15(a) shows 

minterms that satisfy A+C’=1, Fig. 15(b) shows minterms 

that satisfy A*C’=1, Fig. 15(c) shows minterms that satisfy 

B*D’=1, and Fig. 15(d) shows minterms that satisfy 

(A+C’)*(A*C’+B*D’)=1, and these minterms are exactly 

same as the 1-minterms for a 2-bit comparator. Since each 

condition can be realized by one FinFET, total of three 

FinFETs are needed to realize the pull-up network. The 

pull-down network is similarly constructed and illustrated in 

Fig. 16. As expected, the resulting circuit has six transistors 

as shown in Fig. 14. In term of the number of transistors per 

bit, the 2-bit comparator implementation is superior because 

it requires on average three transistors per bit (six transistors 

for two bits), while a classical single-bit comparator 

implementation requires at least four transistors. 

 
Fig. 11. Schematic of IG-FinFET pass-transistor logic 

implementation of a 3-input XOR gate. 

 
Fig. 12. Karnaugh maps for synthesizing the C network of 

the circuit in Fig. 11. (a) Allow A+B’ (b) Allow A’+B (c) 

Allow (A+B’)*(A’+B). 

 
Fig. 13. Karnaugh maps for synthesizing the C’ network of 

the circuit in Fig. 11. (a) Allow A+B (b) Allow A’+B’ (c) 

Allow (A+B)*(A’+B’). 

 
Fig. 14. Schematic of IG-FinFET static CMOS logic 

implementation of a 2-bit comparator. 

 
Fig. 15. Karnaugh maps for synthesizing the pull-up 

network of the circuit in Fig. 24. (a) Allow A+C’ (b) Allow 

A*C’ (c) Allow B*D’ (d) Allow (A+C’)*(A*C’+B*D’). 

 
Fig. 16. Karnaugh maps for synthesizing the pull-down 

network of the circuit in Fig. 24. (a) Allow B’+D (b) Allow 

A’+C (c) Allow A’*C (d) Allow (B’+D)*(A’+C)+(A’*C). 
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E. 2-Bit Equality Checker 

Like a comparator, an equality checker is also a widely used 

circuit that has many applications in computer architecture. 

A classic equality checker is usually implemented by using 

many single-bit equality checkers, each one can be 

implemented with a single AND gate. In contrast of a 

single-bit equality checker, a 2-bit equality checker checks to 

see if two 2-bit numbers are the same. For two 2-bit number 

X=[AB] and Y=[CD], if X=Y, the output is 1, otherwise the 

output is 0. The circuit schematic in IG-FinFET static CMOS 

logic implementation is shown in Fig. 17. 

 Karnaugh maps in Fig. 18 and Fig. 19 show how the 

circuit is synthesized. For example, Fig. 18(a) shows 

minterms that satisfy B’+D=1, Fig. 18(b) shows minterms 

that satisfy B+D’=1, Fig. 18(c) shows minterms that satisfy 

A’+C=1, Fig. 18(d) shows minterms that satisfy A+C’=1, 

and Fig. 18(e) shows minterms that satisfy all conditions, 

and these minterms are exactly same as the 1-minterms for a 

2-bit comparator. Since each condition can be realized by one 

FinFET, total of four FinFETs are needed to realize the 

pull-up network. The pull-down network is similarly 

constructed and illustrated in Fig. 19. As expected, the 

resulting circuit has eight transistors as shown in Fig. 17. 

This implementation is very efficient since it only requires 

eight FinFETs. The conventional implementation requires 

approximately 20 transistors (2 XNOR gates for each bit and 

1 AND gate to combine the result of each bit). 

One crucial point that we want to make is the duality 

relationship between conventional “OR” FinFETs and 

“AND” FinFETs. Parallel “OR” N-FinFETs in the 

pull-down network transform into serial “AND” P-FinFETs 

in the pull-up network, and serial “AND” N-FinFETs in the 

pull-down network transform into parallel “OR” P-FinFETs 

in the pull-up network. This can be easily proven by 

considering the NMOS-PMOS duality relationship and the 

fact that logically, a conventional “OR” FinFET is two 

MOSFETs in parallel, while an “AND” FinFET is two 

MOSFETs in series. 

 

IV. SIMULATION RESULTS 

In this section, we present simulation results in 30nm 

technology generated from Synopsys Sentaurus, which is a 

device level simulator [13], for all six circuits mentioned in 

Sections III.A and III.B. Schematics of these circuits can be 

found in Fig. 5 and Fig. 8. Before we present the results, we 

will explain how we perform simulations and extract data 

listed in Tables 4 and 5. 

A. Layout Consideration 

In FinFET technology, device widths are dispensed in 

units of whole fins only. [14] This is known as device width 

quantization, which limits our ability to size transistors 

effectively in FinFET circuit. On top of that, there is also 

problem with IG-FinFETs with even number of fins because 

of the difficulty in routing inputs. However, it is shown in 

[15] that both inputs can be easily routed in IG-FinFETs with 

three fins (or more generally, any odd number of fins). For 

this reason, we chose three as the number of fins of P-FinFET 

to the number of fins of N-FinFET (three fins P-FinFET to 

one fin N-FinFET). As shown in Tables 4 and 5, IG-FinFET 

circuit implementation achieves on average 25% reduction in 

cell area. 

B. Delay Extraction 

For a simple logic gate, delay can be estimated as the time 

difference between 10% and 90% of the voltage swing. For 

example, if we are trying to bring node A from 0V to 1V, then 

the delay is the time it takes for node A to go from 0.1V to 

0.9V. In our simulation, we assumed that all the intermediate 

nodes have 1fF capacitance while the output nodes and input 

buses have 5fF capacitance.    

Simulation results show that SG-FinFET static CMOS 

logic circuits are approximately 2.2 times faster than 

 
Fig. 17. Schematic of IG-FinFET static CMOS logic 

implementation of a 2-bit equality checker. 

 
Fig. 18. Karnaugh maps for synthesizing the pull-up 

network of the circuit in Fig. 17. (a) Allow B’+D (b) Allow 

B+D’ (c) Allow A’+C (d) Allow A+C’ (e) Allow 

(B’+D)*(B+D’)*(A’+C)*(A+C’). 

 
Fig. 19. Karnaugh maps for synthesizing the pull-down 

network of the circuit in Fig. 17. (a) Allow B*D’ (b) Allow 

B’*D (c) Allow A*C’ (d) Allow A’*C (e) Allow 

(B*D’)+(B’*D)+(A*C’)+(A’*C). 
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SG-FinFET pass-transistor logic circuit and 3.5 times faster 

than IG-FinFET static CMOS logic circuit. 

C. Power Extraction Consideration 

We will not consider dynamic power consumption on 

output nodes and input buses because in our simulations, 

outputs switch same number of times on these nodes. The 

sole exception is the SG-FinFET pass-transistor logic 

implementation for majority gate, which has 5 inputs (A, A’, 

B, C, C’) compare to 3 inputs (A’, B’, C’) of the other two 

implementations. The extra inputs lead to more dynamic 

power consumption for SG-FinFET pass-transistor logic 

implementation, but since it already has the highest active 

and leakage power consumption, omitting dynamic power 

consumption calculation will not change the fact that 

SG-FinFET pass-transistor logic circuits are usually inferior 

in term of power consumption. 

Active power is the power consumed when both pull-up 

and pull-down network are active, creating a direct current 

path from VDD to ground, while leakage power is the power 

consumed when charges “leak” through a transistor that is 

off. Calculating the active and leakage components of power 

consumption separately is very difficult. Therefore, we will 

calculate the aggregated power consumption by first 

calculating instantaneous power P(t) = V(t)*I(t), then sum up 

P(t) for all times (in our simulation, t: 0~1000ps), which will 

give us the total energy consumed for this operation. This is 

easy to do since Sentaurus can provide information about 

voltage and current across each transistor at any time. 

Finally, sum up the energy consumption for all transistors 

and divide by clock period to obtain the active and leakage 

power consumption, which is listed in Table 4 for majority 

gate and Table 5 for 2-1 MUX.   

Note that the input sequence in our simulation implies that 

input C (for majority gate) or input S (for 2-1 MUX) switches 

most frequently, while input A switches least frequently. The 

placement of inputs in a circuit has some impacts on power 

consumption [16]. For consistency, we place the least 

frequent switching input closest to the output and the most 

frequent switching input farthest from the output. 

Simulation results show that IG-FinFET static CMOS 

logic circuits consume least amount of power. In comparison, 

SG-FinFET static CMOS logic circuits consume about 52% 

more power and SG-FinFET pass-transistor logic circuits 

consume about 98% more power. 

 

V. CONCLUSION 

FinFET not only has superior performance over bulk 

silicon MOSFET, but is primed to take over bulk silicon 

MOSFET as the dominant transistor choice for sub-45nm 

technology. In this paper, we present a methodology for 

synthesizing logic circuits using independent-gate FinFETs, 

which leads to reduction in number of transistors (and chip 

area) needed to implement circuits. The methodology is 

based on the existing MOSFET circuit synthesis 

methodology and can be readily adapted for 

independent-gate FinFETs by making minor modifications. 

Simulation results show that compared to other logic 

implementations, FinFET logic circuits achieve significant 

area and power reduction without voltage or transistor 

scaling, even though they suffer greatly in circuit speed.  
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Table 4. Summary of majority gate implementations. 

FinFET SG-FinFET SG-FinFET IG-FinFET 

Logic Style CMOS Pass-Trans. CMOS 

# Transistor 10 9 6 

Area (nm
2
) 475200 529200 348300 

F. Delay (ps) 10.913 31.227 24.270 

R. Delay (ps) 14.204 31.883 70.314 

Power (uW) 44.7 57.5 28.0 

 

Table 5. Summary of 2-1 MUX implementations. 

FinFET SG-FinFET SG-FinFET IG-FinFET 

Logic Style CMOS Pass-Trans. CMOS 

# Transistor 8 5 4 

Area (nm
2
) 415800 243000 273600 

F. Delay (ps) 15.249 20.148 28.132 

R. Delay (ps) 9.079 28.604 49.769 

Power (uW) 31.5 41.4 22.0 
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