
 
 

 

 
  Abstract— A number of successful implementation of 
Multiple-Valued Logic (MVL) circuits using Very Large Scale 
Integration (VLSI) technology has been reported in the 
literature. The Ant Colony (ACO) optimization algorithm is a 
meta-heuristic that mimics the ants’ behavior in finding the 
shortest path to reach food sources. We have previously 
introduced ACO-based heuristic for synthesis of two-level MVL 
functions. In this paper, we introduce a hybrid ACO-Direct 
Cover (DC) technique for synthesis of multi-level MVL 
functions. In this technique, we use ants to decompose the given 
MVL function into a number of levels and synthesize each 
sub-function using a DC-based technique. A benchmark set 
consisting of 50000 randomly generated 2-varaible 4-valued 
functions is used to compare the results obtained using the 
proposed approach with those obtained using existing 
techniques. It is shown that on average the proposed hybrid 
technique produces more efficient realizations in terms of the 
chip area consumed in synthesizing a given MVL function.  
 
  Index Terms—Multiple-Valued Logic, Multi-level Synthesis, 
Direct Cover Algorithms, Ant Colony Optimization, Heuristic 
Optimization Techniques. 
 

 

I. INTRODUCTION 
  A number of successful implementations of multi-valued 
logic (MVL) circuits using Complementary Metal Oxide 
Semiconductor (CMOS) technology have been reported in 
the literature. These include memory applications [1]-[4], 
high speed arithmetic circuits [5]-[6], image processing [7], 
Radix-4 encryption [8], and robotics/machine learning 
[9]-[10]. The use of MVL in the above mentioned 
applications has led to the advantages of requiring less chip 
area, less pin-count, and faster speed as compared to those 
achieved using binary logic. Recent review on the use of 
MVL in Very Large Scale Integration (VLSI) technology can 
be found in [11]-[13].  

There are 324)( 24
2
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nrr  2-variable 4-valued 

functions as compared to 42  2–varaible 2–valued (binary) 
functions. Exploring the search space in finding optimal 
synthesis of such large number of 4-valued functions is 
prohibitively expensive and that resorting to heuristic  

 
Manuscript received January 10, 2010. This work was supported in part 

by Kuwait University under Grants WI 05/04 and WI 02/07.  
 
Mostafa Abd-El-Barr is with the Information Science Department, CFW, 

Kuwait University, Adylia Campus, P. O. Box 5969, Safat 13060, Kuwait.  
Phone 965-2-498-3301; Fax: 965-2-532-9417; email: 
mostafa.abedelbarr@gmail.com   

 
algorithms (HAs) is a necessity [14]. The use of HAs in 
producing near-minimal sum-of products (PLA) realization 
of MVL functions can be categorized as functional 
decomposition [15]-[16], iterative functional improvement 
[17], direct cover [18]-[21], and evolutionary optimization 
[22]-[27]. The author has introduced a hybrid Ant-Colony 
(ACO) Direct Cover algorithm for two-level synthesis of 
MVL functions [28]. The algorithm used the ACO in finding 
the shortest path to the (near) optimal number of product 
terms that cover a given MVL function.  

 
Multi-level synthesis of binary and MVL functions has been 
proposed in the literature [29]-[33]. None of the reported 
techniques investigated the possibility of integrating the DC 
and the ACO in multi-level synthesis of MVL functions. In 
this paper a hybrid ACO-DC algorithm for multi-level 
synthesis of MVL functions is introduced.  The proposed 
technique works by decomposing a given MVL function 
using ACO and synthesizing the sub-functions using the best 
known DC-based algorithm. A benchmark set consisting of 
50000 randomly generated 2-varaibale 4-valued function is 
used to test the results obtained using the proposed hybrid 
ACO-DC multi-level synthesis algorithm. The results 
obtained using the ACO-DC algorithm are compared to those 
obtained using existing techniques in terms of the average 
number of MVL gates needed to synthesize a given MVL 
function. 

  
The paper is organized as follows. In Section 2, we present 
some background material. In Section 3, we present the use 
of the Ant Colony (ACO) optimization technique in 
two-level synthesis of MVL functions. The proposed 
ACO-DC technique for synthesis of multi-level MVL 
functions is introduced in Section 4. In Section 5 we present 
the experimental results obtained and comparison with other 
techniques. Section 6 concludes the paper. 

II. BACKGROUND MATERIAL 
An  n-variable r-valued function, f(X), is defined as a 
mapping f:Rn → R where R={0,1,…,r-1} is a set of r logic 
values with r ≥ 2 and X={x1,x2,…,xn} is a set of n  r-valued 
variables.  

 
Definition 1: An n-variable r-valued function, f(X), is 
defined as a mapping f:Rn → R where R={0,1,…,r-1} is a set 
of r logic values with r ≥ 2 and },...,,{ 21 nxxxX =  is a set 
of n  r-valued variables.  
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Definition 2: A window literal axb on a MVL variable x is 
defined as follows: 
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Where a,b∈ R and a ≤ b.     □ 
 
Definition 3: A tsum (truncated sum) operator is defined as  
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Where ai ∈ R and ⊕ represents the truncated sum operation.     

 

Definition 4: A product term (PT), ),...,,( 21 nxxxP , is defined 
as the minimum of a set of window literals such that 
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where ai ,bi∈R, ai ≤ bi and c ∈ {1,2,…, r-1} is called the value of 
the PT.     □ 

 
Definition 5: An assignment of values to variables such that 

nn axaxax ==== ...,, 2211 , where ai ∈{0, 1, …, r-1}, in 

an MVL function ),...,,( 21 nxxxf  is called a minterm, iff: 

),...,,( 21 nxxxf ≠ 0.     □ 
  

A minterm is a special case of a product term, PT, which is 
dependent on all variables and for 
which nn bababa ==== ...,, 2211 . Consider, for example, 
the 2-variable 4-valued function shown in Fig. 1. In this function 

2,2

2

3,3

1

1,1

2

1,1

1

0,0

2

3,3

1 3 and ,2 ,1 xxxxxx ••• are examples of minterms in 
the function. 

 
Fig. 1: Tabular representation of a 2-variable 4-valued function. 

The Direct cover (DC) approaches for synthesis of MVL 
functions consist of the following main steps:  

 
(1) choose a minterm, 
(2)  identify a suitable implicant that covers the chosen minterm, 
(3) obtain a reduced function by removing the identified 

implicant, and 
(4) Repeat steps 1 to 3 until no more minterms remain 

uncovered. 
 
The DC approaches reported in the literature differ in the way 
minterms are chosen and the way according to which 
implicants are identified. In [20] minterms are selected 
randomly and implicants are selected such that they result in 
the largest number of zero minterms (LRZ). In [18] a metric 
called the isolation weight (IW) is used in selecting minterms 
while an efficiency factor is used in selecting the implicant 
most suitable for covering the selected minterm. The IW is 

measure of the degree to which other minterms cluster 
around the targeted minterm. The efficiency factor is defined 
as the largest factor resulting from dividing the cost of each 
implicant that covers the targeted minterm by the number of 
minterms it covers. In [19] a metric called the isolation factor 
(IF) is used in selecting minterms while implicants are 
selected based on a metric called the Relative Break Count 
(RBC). The IF provides a measure of the degree to which a 
specific minterm can combine with other minterms in the 
function. The RBC provides a degree to which the function is 
simplified if the implicant under consideration is selected. 
The last two techniques choose minterms in increasing order 
of values, i.e., they start with lower minterm values and 
proceed to higher minterm values. In [21], the most isolated 
minterm is selected first and from all implicants which cover 
that minterm, the one that is not strongly "coupled" with its 
neighbours is selected. A measure of coupling the strength of 
an implicant with its neighbours, called Neighbourhood 
Relative Count (NRC), is used in selecting implicants such 
that the implicant with lowest NRC is selected.  It is observed 
that there is no general agreement on which of the above 
criterion is the best for synthesizing a given MVL function. 
An attempt has been made in the work reported in [34] to 
analyze combination of restricted subset of criteria and 
comparing the results obtained in terms of the number of 
implicants needed to cover a given function.  

 

The Ant Colony Optimization (ACO) algorithm is based on 
experimental work which concludes that ants select the 
shortest path between their nest and food resource, in the 
existence of alternate paths between the two. It is 
hypothesized that while traveling their way, ants deposit a 
substance called pheromone, the intensity of which is used by 
individual ants to make probabilistic choice at decision points 
(see Figure 2(a)). The probability that a given path will be 
selected again by future ants is increased due to the increase 
in the amount of pheromone. New pheromone will be 
released on the chosen path, which makes it more attractive 
for future ants (see Figure 2(b)). Shortly, all ants will select 
the shortest path as shown in Figure 2(c) [35]-[36], and [38].  

The behaviour of ants in the ACO algorithm can be 
summarized as follows. The problem is represented as a 
graph G. A colony of ants concurrently and asynchronously 
moves through each neighbor nodes of G. At each node, ants 
select the best partial solution by applying a stochastic local 
decision policy which makes use of the information 
contained in the local node and an ant's routing table. As they 
move, ants incrementally build optimized solutions to the 
problem. When the solution is being built, it is evaluated by 
every ant and the information about that solution goodness is 
put on the pheromone trails of the path used. This pheromone 
information will direct the search of future ants, until a 
feasible solution is found. A general outline of the ACO 
algorithm is presented in Figure 3 [35]-[36], [38], and [40].  

III. TWO-LEVEL SYNTHESIS OF MVL FUNCTIONS USING 
ACO   

 

We have introduced in [28] an algorithm that uses ACO for 
two-level synthesis of MVL functions. According to this 
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algorithm, each implicant in the given function is represented 
by a string consisting of five integers attribute, see Figure 4. 

                
(a)                   (b)                    (c)                                     

 

Fig. 2: Selection of shortest path to food sources by Ants. 

 

 
 

Figure 3:  Ant Colony pseudo-code algorithm. 
 

 

X2pn 2X1pn 2X1pn 1 X2pn 1Cpn

 
 

Figure 4: Implicant representation in ACO. 
  

The first attribute in Fig. 4, pnC , represents the value of the 
constant of n-th product term. The 2nd and 3rd attributes, 

21 11  and 
pnpn

xx represent the boundary of the literal on the 

first variable 1x  of the corresponding product term (see 
Definition 2). The 4th and the 5th attributes, 

21 22  and 
pnpn

xx represent the boundary of the literal on the 

second variable 2x  of the corresponding product term.   
 

The idea is to use the ants to find the best coverage 
(analogous to choosing the shortest path) by choosing the 
right minterms and the appropriate implicants. Every time an 
ant selects a minterm (or an implicant) it will put some 
pheromone trails on that minterm (or implicant). This action 
will make the next ant to perform its selection based on the 
additional pheromone information. The probability of 
choosing a minterm (or implicant) depends on the pheromone 
values and a heuristic value of that minterm (or implicant). 
Each ant will carry a ‘bag’ in which it stores all selected 
implicants. The size of the bag itself is equal to the length of 
the truth table of the function. Two different approaches: Ant 
Colony Optimization for MVL synthesis (ACO-MVL) and 

Ant Colony Optimization – using Selection Criteria – for 
MVL synthesis (ACOSC-MVL) were introduced. Figure 5 
shows the pseudo code of ACOSC-MVL [24]. The 
daemon_action() function is a procedure that will be 
performed periodically or when it is needed, e.g., when it is 
required to reset the pheromone value on all minterms (or 
implicants). This is performed at the beginning of all ants' 
movement and if a stagnancy in the solution is found. 

 
Figure 5: Pseudo code of ACOSC-MVL. 

 

IV. THE PROPOSED MULTI-LEVEL SYNTHESIS OF MVL 
FUNCTIONS USING ACO-DC   

 
In this technique ants are used to decompose a given function 
into a number of levels. Each sub-function is then 
synthesized using the best known DC-based technique found 
in the literature. Working from the circuit’s output, the 
proposed algorithm proceeds as follows: 
 
(1) place a certain gate type at this level, e.g. tsum gate (see 
Definition 3), 
(2) decompose the given function using ACO, and 
(3) Synthesize the (sub)-functions using the best DC-based 
technique found in the literature. 

 
Steps 2 and 3 can be performed repeatedly to create a 
multi-level structure. However, only 3-level synthesis is 
performed in this paper. In addition, we limit the application 
of the proposed algorithm to the case of 2- input tsum gate 
(see Definition 3) at the output of the circuit’s last level. We 
opted to use the DC-based algorithm proposed in [25] since it 
represents the best baseline DC technique available in the 
literature. For 4-valued functions, Table 1 summarizes the 
different possible decompositions of values 0, 1, 2, and 3 
using the tsum operation (see Definition 3). 

 
TABLE 1: 4-valued decomposition table 

Logic Value Possible decomposition 
0 (0,0) 

1 (0,1), (1,0) 

2 (0,2), (1,1), (2,0) 

3 (0,3), (1,2), (1,3), (2,1), (2,2), (2,3), (3,0), (3,1), (3,2), 
(3,3) 

 
In the proposed algorithm an ant will travel through the truth 
table of the given function and for each entry in the table it 

For r number of runs do 
     For a number of ants 

daemon_action(); 
        ant[a].L = {}; 
        while (checkTable()){ 
        { M = selectMintermACO(); 
  L = selectImplicantACO(M); 
  ant[a].L  ant[a].L + L; 
       } 
 calculate_fitness(ant[a]); 
     done  
 
     pheromone_update_minterm(); 
     pheromone_update_implicant(); 
done 
 
 

procedure AC_ MetaHeuristic(); 
  while (not_termination) 
 generateSolutions (); 
 pheromoneUpdate (); 
 daemon actions (); //optional 
   end while 
end procedure 
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will select one combination out of the possible 
decompositions shown in Table 1. The probability of 
selecting a possible decomposition is calculated as p = τd / Σ 
τd, where τd is the pheromone value of dth possible 
decomposition. After an ant finishes selecting a possible 
decomposition for all positions in the table, the best ant will 
update the pheromone on the selected combination of 
decomposition. The amount of pheromone dropped is 
proportional to its fitness and calculated as follows: ∆τ = PW 
• Ff, where PW is the pheromone weight and Ff = 
(100-Ng)/100 is the functional fitness, where Ng is the number 
of gates used. Using such fitness function calculation; the 
representation that has least number of gates will have the 
highest Ff.  In addition to Ff, we use an additional criterion in 
selecting the best representation called logic balance, B, 
which is calculated as the difference in the number of gates 
between the two sub-functions generated by the ant’s 
decomposition process. The lower the difference is, the better 
the selection. We believe that having a balanced circuit is 
desirable. The proposed algorithm will try to find the circuits 
representation that uses the least number of gates. Out of 
these representations, the one that has the best logic balance 
will be selected.  

 
Example: Consider the 2-variable 4-valued function shown 
in Fig. 1. Table 2 shows an enumeration of the possible paths 
for ants to travel through the function. This enumeration is 
done by passing through the function row-wise from left to 
right (from 0 to 15).  Let us assume that an ant selects the 
following path: ((0,0), (2,0), (2,1), (0,1), (0,0), (2,0), (2,1), 
(1,1), (0,0), (0,0), (0,1), (2,1), (0,0), (0,0), (0,0), (0,0)). This 
leads to the decomposition shown in Fig. 6.  

 
 

Fig. 6: Ant decomposition of the function of in Fig. 1. 
 
From this figure, it is easy to see that F1 can be synthesized 

using 3 literal gates, 
2,2

2

3,3

1

2,1

2

3,3

1

1,0

2

2,1

1 1 and ,1 ,2 xxxxxx •••  

while F2 requires only one literal gate,
2,0

2

3,2

11 xx• . This makes 
the total number of gates needed to realize the function in Fig. 
1 to be 5 gates, including the tsum combining both F1 and F2.  
 The Ff value of this representation is equal to (100-5)/100 = 
0.95 while the balance is equal to 2. Suppose that any other 
ant managed to get a representation with higher Ff, then the 
representation of the later will be used. The algorithm will 
iterate until a certain stopping criteria such as the number of 
iterations is met. We provide in the next section the 
experimental results obtained using the proposed technique.  

V. EXPERIMENTAL RESULTS AND COMPARISON 
 
The proposed algorithm has been tested using a benchmark 
consisting of 50000 randomly generated 2-variables 4-valued 
functions. This set of benchmark functions is used to evaluate 
the performance of the proposed algorithm as well as other 
existing techniques found in literature. Comparison is made 
based on the average number of basic gates, as a measure of 
the number of product terms, needed to synthesize a given 
MVL function. 
 

TABLE 2:  Possible Ant paths for the function in Fig. 1 
Minterm 

Possible path Position Logic 
Value 

0 0 (0,0) 
1 2 (0,2), (1,1), (2,0)  
2 3 (0,3), (1,2), (1,3), (2,1), (2,2), 

(2,3), (3,0), (3,1), (3,2), (3,3)  
3 1 (0,1), (1,0) 
4 0 (0,0) 
5 2 (0,2), (1,1), (2,0) 
6 3 (0,3), (1,2), (1,3), (2,1), (2,2), 

(2,3), (3,0), (3,1), (3,2), (3,3) 
7 2 (0,2), (1,1), (2,0) 
8 0 (0,0) 
9 0 (0,0) 

10 1 (0,1), (1,0) 
11 3 (0,3), (1,2), (1,3), (2,1), (2,2), 

(2,3), (3,0), (3,1), (3,2), (3,3) 
12 0 (0,0) 
13 0 (0,0) 
14 0 (0,0) 
15 0 (0,0) 

 
 

The ACO parameters used in the experiments are as follows:  
(a) number of runs = 10,  
(b) number of iterations = 200, 
(c) Number of ants = 30.  

 
The MAX-MIN ant system [39] is used to control the range 
of pheromone values in any possible path. Any stagnancy 
occurring during the iteration will be perturbed by forcing a 
pheromone initial value to all possible paths, hence, creating 
a chance for ant to try to explore new areas in the search 
space. 

  
In the first few experiments, we tried to find out the best 
value for PW, pheromone evaporation rate (ρ) and 
pheromone range. Using the above parameters, we can see 
that the best performance in terms of quality of solution and 
stability of the algorithm can be achieved when 2 ≤ PW ≤ 3 
and ρ is equal to 0.05. Throughout our experiments, we use 
PW = 2.5. 

 
Table 3 shows a comparison of the results obtained using the 
proposed technique with those obtained using the techniques 
proposed in [25], [27], and [37]. We choose to compare the 
proposed technique with these techniques because the latter 
two techniques use a multiplexer (MUX) as an additional 
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gate at the circuit output. In our proposed technique we add a 
tsum gat at the output. The first four techniques in Table 3 
were shown to produce better results compared to those 
produced using the best reported DC-based technique [19]. 
 
From Table 3, we can see that on average the proposed 
ACO-DC technique results in a reduction is the number of 
gates (as a measure of the chip area) needed to realize a given 
2-variable 4-valued function as compared to those needed 
using the techniques reported in [25], [27], and [37]. 
   

TABLE 3: Comparison Table 
Algorithm Average # gates 
Minterm Injection [25] 7.09408 
Multiple- Connected Pseudo 
 Minterm Injection [27] 

7.09276 

MCPM (PI_SM method) [37] 7.09064 
MCPM (PI_CM method) [37] 7.0705 
The proposed ACO-DC approach 7.02906 

 

VI. CONCLUDING REMARKS  
 
In this paper, we have introduced a new hybrid ACO and DC 
heuristic algorithm for synthesis of multi-level MVL 
functions. The algorithm is based on using the ACO to 
decompose a given MVL function into a number of simpler 
sub-functions. The DC is then used to synthesise each of the 
obtained sub-functions. The performance of the proposed 
algorithm has been tested using a benchmark consisting of 
50000 randomly generated 2-variable 4-valued functions and 
compared against existing comparable DC-based techniques. 
The results show that the proposed technique outperforms 
other existing techniques in terms of the average number of 
gates, as a measure of the chip area, needed to realize a given 
MVL function. 
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