

 Abstract— A number of successful implementation of
Multiple-Valued Logic (MVL) circuits using Very Large Scale
Integration (VLSI) technology has been reported in the
literature. The Ant Colony (ACO) optimization algorithm is a
meta-heuristic that mimics the ants’ behavior in finding the
shortest path to reach food sources. We have previously
introduced ACO-based heuristic for synthesis of two-level MVL
functions. In this paper, we introduce a hybrid ACO-Direct
Cover (DC) technique for synthesis of multi-level MVL
functions. In this technique, we use ants to decompose the given
MVL function into a number of levels and synthesize each
sub-function using a DC-based technique. A benchmark set
consisting of 50000 randomly generated 2-varaible 4-valued
functions is used to compare the results obtained using the
proposed approach with those obtained using existing
techniques. It is shown that on average the proposed hybrid
technique produces more efficient realizations in terms of the
chip area consumed in synthesizing a given MVL function.

 Index Terms—Multiple-Valued Logic, Multi-level Synthesis,
Direct Cover Algorithms, Ant Colony Optimization, Heuristic
Optimization Techniques.

I. INTRODUCTION
 A number of successful implementations of multi-valued
logic (MVL) circuits using Complementary Metal Oxide
Semiconductor (CMOS) technology have been reported in
the literature. These include memory applications [1]-[4],
high speed arithmetic circuits [5]-[6], image processing [7],
Radix-4 encryption [8], and robotics/machine learning
[9]-[10]. The use of MVL in the above mentioned
applications has led to the advantages of requiring less chip
area, less pin-count, and faster speed as compared to those
achieved using binary logic. Recent review on the use of
MVL in Very Large Scale Integration (VLSI) technology can
be found in [11]-[13].

There are 324)(24
2

==
nrr 2-variable 4-valued

functions as compared to 42 2–varaible 2–valued (binary)
functions. Exploring the search space in finding optimal
synthesis of such large number of 4-valued functions is
prohibitively expensive and that resorting to heuristic

Manuscript received January 10, 2010. This work was supported in part

by Kuwait University under Grants WI 05/04 and WI 02/07.

Mostafa Abd-El-Barr is with the Information Science Department, CFW,

Kuwait University, Adylia Campus, P. O. Box 5969, Safat 13060, Kuwait.
Phone 965-2-498-3301; Fax: 965-2-532-9417; email:
mostafa.abedelbarr@gmail.com

algorithms (HAs) is a necessity [14]. The use of HAs in
producing near-minimal sum-of products (PLA) realization
of MVL functions can be categorized as functional
decomposition [15]-[16], iterative functional improvement
[17], direct cover [18]-[21], and evolutionary optimization
[22]-[27]. The author has introduced a hybrid Ant-Colony
(ACO) Direct Cover algorithm for two-level synthesis of
MVL functions [28]. The algorithm used the ACO in finding
the shortest path to the (near) optimal number of product
terms that cover a given MVL function.

Multi-level synthesis of binary and MVL functions has been
proposed in the literature [29]-[33]. None of the reported
techniques investigated the possibility of integrating the DC
and the ACO in multi-level synthesis of MVL functions. In
this paper a hybrid ACO-DC algorithm for multi-level
synthesis of MVL functions is introduced. The proposed
technique works by decomposing a given MVL function
using ACO and synthesizing the sub-functions using the best
known DC-based algorithm. A benchmark set consisting of
50000 randomly generated 2-varaibale 4-valued function is
used to test the results obtained using the proposed hybrid
ACO-DC multi-level synthesis algorithm. The results
obtained using the ACO-DC algorithm are compared to those
obtained using existing techniques in terms of the average
number of MVL gates needed to synthesize a given MVL
function.

The paper is organized as follows. In Section 2, we present
some background material. In Section 3, we present the use
of the Ant Colony (ACO) optimization technique in
two-level synthesis of MVL functions. The proposed
ACO-DC technique for synthesis of multi-level MVL
functions is introduced in Section 4. In Section 5 we present
the experimental results obtained and comparison with other
techniques. Section 6 concludes the paper.

II. BACKGROUND MATERIAL
An n-variable r-valued function, f(X), is defined as a
mapping f:Rn → R where R={0,1,…,r-1} is a set of r logic
values with r ≥ 2 and X={x1,x2,…,xn} is a set of n r-valued
variables.

Definition 1: An n-variable r-valued function, f(X), is
defined as a mapping f:Rn → R where R={0,1,…,r-1} is a set
of r logic values with r ≥ 2 and },...,,{ 21 nxxxX = is a set
of n r-valued variables.

Ant Colony Heuristic Algorithm For Multi-Level
Synthesis of

Multiple-Valued Logic Functions

Mostafa Abd-El-Barr, Senior Member IEEE, Member, IAENG

IAENG International Journal of Computer Science, 37:1, IJCS_37_1_07
__

(Advance online publication: 1 February 2010)

mailto:mostafa.abedelbarr@gmail.com�

Definition 2: A window literal axb on a MVL variable x is
defined as follows:



 ≤≤−

=
e otherwis

b xif ar
x

ba

0
 1,

Where a,b∈ R and a ≤ b. □

Definition 3: A tsum (truncated sum) operator is defined as







−
−<++++++

=

⊕⊕⊕=

e otherwis r
rnaaif anaaa

naaanaaatsum

1
1...21 ...21

...21),...,2,1(

Where ai ∈ R and ⊕ represents the truncated sum operation.

Definition 4: A product term (PT),),...,,(21 nxxxP , is defined
as the minimum of a set of window literals such that

),...,,,min(,...,,),...,,(
,,

2

,

1

,,

2

,

121
22112211 nnnn ba

n

bababa

n

baba

n xxxcxxxcxxxP =•=
where ai ,bi∈R, ai ≤ bi and c ∈ {1,2,…, r-1} is called the value of
the PT. □

Definition 5: An assignment of values to variables such that

nn axaxax ==== ...,, 2211 , where ai ∈{0, 1, …, r-1}, in

an MVL function),...,,(21 nxxxf is called a minterm, iff:

),...,,(21 nxxxf ≠ 0. □

A minterm is a special case of a product term, PT, which is
dependent on all variables and for
which nn bababa ==== ...,, 2211 . Consider, for example,
the 2-variable 4-valued function shown in Fig. 1. In this function

2,2

2

3,3

1

1,1

2

1,1

1

0,0

2

3,3

1 3 and ,2 ,1 xxxxxx ••• are examples of minterms in
the function.

Fig. 1: Tabular representation of a 2-variable 4-valued function.

The Direct cover (DC) approaches for synthesis of MVL
functions consist of the following main steps:

(1) choose a minterm,
(2) identify a suitable implicant that covers the chosen minterm,
(3) obtain a reduced function by removing the identified

implicant, and
(4) Repeat steps 1 to 3 until no more minterms remain

uncovered.

The DC approaches reported in the literature differ in the way
minterms are chosen and the way according to which
implicants are identified. In [20] minterms are selected
randomly and implicants are selected such that they result in
the largest number of zero minterms (LRZ). In [18] a metric
called the isolation weight (IW) is used in selecting minterms
while an efficiency factor is used in selecting the implicant
most suitable for covering the selected minterm. The IW is

measure of the degree to which other minterms cluster
around the targeted minterm. The efficiency factor is defined
as the largest factor resulting from dividing the cost of each
implicant that covers the targeted minterm by the number of
minterms it covers. In [19] a metric called the isolation factor
(IF) is used in selecting minterms while implicants are
selected based on a metric called the Relative Break Count
(RBC). The IF provides a measure of the degree to which a
specific minterm can combine with other minterms in the
function. The RBC provides a degree to which the function is
simplified if the implicant under consideration is selected.
The last two techniques choose minterms in increasing order
of values, i.e., they start with lower minterm values and
proceed to higher minterm values. In [21], the most isolated
minterm is selected first and from all implicants which cover
that minterm, the one that is not strongly "coupled" with its
neighbours is selected. A measure of coupling the strength of
an implicant with its neighbours, called Neighbourhood
Relative Count (NRC), is used in selecting implicants such
that the implicant with lowest NRC is selected. It is observed
that there is no general agreement on which of the above
criterion is the best for synthesizing a given MVL function.
An attempt has been made in the work reported in [34] to
analyze combination of restricted subset of criteria and
comparing the results obtained in terms of the number of
implicants needed to cover a given function.

The Ant Colony Optimization (ACO) algorithm is based on
experimental work which concludes that ants select the
shortest path between their nest and food resource, in the
existence of alternate paths between the two. It is
hypothesized that while traveling their way, ants deposit a
substance called pheromone, the intensity of which is used by
individual ants to make probabilistic choice at decision points
(see Figure 2(a)). The probability that a given path will be
selected again by future ants is increased due to the increase
in the amount of pheromone. New pheromone will be
released on the chosen path, which makes it more attractive
for future ants (see Figure 2(b)). Shortly, all ants will select
the shortest path as shown in Figure 2(c) [35]-[36], and [38].

The behaviour of ants in the ACO algorithm can be
summarized as follows. The problem is represented as a
graph G. A colony of ants concurrently and asynchronously
moves through each neighbor nodes of G. At each node, ants
select the best partial solution by applying a stochastic local
decision policy which makes use of the information
contained in the local node and an ant's routing table. As they
move, ants incrementally build optimized solutions to the
problem. When the solution is being built, it is evaluated by
every ant and the information about that solution goodness is
put on the pheromone trails of the path used. This pheromone
information will direct the search of future ants, until a
feasible solution is found. A general outline of the ACO
algorithm is presented in Figure 3 [35]-[36], [38], and [40].

III. TWO-LEVEL SYNTHESIS OF MVL FUNCTIONS USING
ACO

We have introduced in [28] an algorithm that uses ACO for
two-level synthesis of MVL functions. According to this

IAENG International Journal of Computer Science, 37:1, IJCS_37_1_07
__

(Advance online publication: 1 February 2010)

algorithm, each implicant in the given function is represented
by a string consisting of five integers attribute, see Figure 4.

(a) (b) (c)

Fig. 2: Selection of shortest path to food sources by Ants.

Figure 3: Ant Colony pseudo-code algorithm.

X2pn 2X1pn 2X1pn 1 X2pn 1Cpn

Figure 4: Implicant representation in ACO.

The first attribute in Fig. 4, pnC , represents the value of the
constant of n-th product term. The 2nd and 3rd attributes,

21 11 and
pnpn

xx represent the boundary of the literal on the

first variable 1x of the corresponding product term (see
Definition 2). The 4th and the 5th attributes,

21 22 and
pnpn

xx represent the boundary of the literal on the

second variable 2x of the corresponding product term.

The idea is to use the ants to find the best coverage
(analogous to choosing the shortest path) by choosing the
right minterms and the appropriate implicants. Every time an
ant selects a minterm (or an implicant) it will put some
pheromone trails on that minterm (or implicant). This action
will make the next ant to perform its selection based on the
additional pheromone information. The probability of
choosing a minterm (or implicant) depends on the pheromone
values and a heuristic value of that minterm (or implicant).
Each ant will carry a ‘bag’ in which it stores all selected
implicants. The size of the bag itself is equal to the length of
the truth table of the function. Two different approaches: Ant
Colony Optimization for MVL synthesis (ACO-MVL) and

Ant Colony Optimization – using Selection Criteria – for
MVL synthesis (ACOSC-MVL) were introduced. Figure 5
shows the pseudo code of ACOSC-MVL [24]. The
daemon_action() function is a procedure that will be
performed periodically or when it is needed, e.g., when it is
required to reset the pheromone value on all minterms (or
implicants). This is performed at the beginning of all ants'
movement and if a stagnancy in the solution is found.

Figure 5: Pseudo code of ACOSC-MVL.

IV. THE PROPOSED MULTI-LEVEL SYNTHESIS OF MVL
FUNCTIONS USING ACO-DC

In this technique ants are used to decompose a given function
into a number of levels. Each sub-function is then
synthesized using the best known DC-based technique found
in the literature. Working from the circuit’s output, the
proposed algorithm proceeds as follows:

(1) place a certain gate type at this level, e.g. tsum gate (see
Definition 3),
(2) decompose the given function using ACO, and
(3) Synthesize the (sub)-functions using the best DC-based
technique found in the literature.

Steps 2 and 3 can be performed repeatedly to create a
multi-level structure. However, only 3-level synthesis is
performed in this paper. In addition, we limit the application
of the proposed algorithm to the case of 2- input tsum gate
(see Definition 3) at the output of the circuit’s last level. We
opted to use the DC-based algorithm proposed in [25] since it
represents the best baseline DC technique available in the
literature. For 4-valued functions, Table 1 summarizes the
different possible decompositions of values 0, 1, 2, and 3
using the tsum operation (see Definition 3).

TABLE 1: 4-valued decomposition table

Logic Value Possible decomposition
0 (0,0)

1 (0,1), (1,0)

2 (0,2), (1,1), (2,0)

3 (0,3), (1,2), (1,3), (2,1), (2,2), (2,3), (3,0), (3,1), (3,2),
(3,3)

In the proposed algorithm an ant will travel through the truth
table of the given function and for each entry in the table it

For r number of runs do
 For a number of ants

daemon_action();
 ant[a].L = {};
 while (checkTable()){
 { M = selectMintermACO();
 L = selectImplicantACO(M);
 ant[a].L  ant[a].L + L;
 }
 calculate_fitness(ant[a]);
 done

 pheromone_update_minterm();
 pheromone_update_implicant();
done

procedure AC_ MetaHeuristic();
 while (not_termination)
 generateSolutions ();
 pheromoneUpdate ();
 daemon actions (); //optional
 end while
end procedure

IAENG International Journal of Computer Science, 37:1, IJCS_37_1_07
__

(Advance online publication: 1 February 2010)

will select one combination out of the possible
decompositions shown in Table 1. The probability of
selecting a possible decomposition is calculated as p = τd / Σ
τd, where τd is the pheromone value of dth possible
decomposition. After an ant finishes selecting a possible
decomposition for all positions in the table, the best ant will
update the pheromone on the selected combination of
decomposition. The amount of pheromone dropped is
proportional to its fitness and calculated as follows: ∆τ = PW
• Ff, where PW is the pheromone weight and Ff =
(100-Ng)/100 is the functional fitness, where Ng is the number
of gates used. Using such fitness function calculation; the
representation that has least number of gates will have the
highest Ff. In addition to Ff, we use an additional criterion in
selecting the best representation called logic balance, B,
which is calculated as the difference in the number of gates
between the two sub-functions generated by the ant’s
decomposition process. The lower the difference is, the better
the selection. We believe that having a balanced circuit is
desirable. The proposed algorithm will try to find the circuits
representation that uses the least number of gates. Out of
these representations, the one that has the best logic balance
will be selected.

Example: Consider the 2-variable 4-valued function shown
in Fig. 1. Table 2 shows an enumeration of the possible paths
for ants to travel through the function. This enumeration is
done by passing through the function row-wise from left to
right (from 0 to 15). Let us assume that an ant selects the
following path: ((0,0), (2,0), (2,1), (0,1), (0,0), (2,0), (2,1),
(1,1), (0,0), (0,0), (0,1), (2,1), (0,0), (0,0), (0,0), (0,0)). This
leads to the decomposition shown in Fig. 6.

Fig. 6: Ant decomposition of the function of in Fig. 1.

From this figure, it is easy to see that F1 can be synthesized

using 3 literal gates,
2,2

2

3,3

1

2,1

2

3,3

1

1,0

2

2,1

1 1 and ,1 ,2 xxxxxx •••

while F2 requires only one literal gate,
2,0

2

3,2

11 xx• . This makes
the total number of gates needed to realize the function in Fig.
1 to be 5 gates, including the tsum combining both F1 and F2.
 The Ff value of this representation is equal to (100-5)/100 =
0.95 while the balance is equal to 2. Suppose that any other
ant managed to get a representation with higher Ff, then the
representation of the later will be used. The algorithm will
iterate until a certain stopping criteria such as the number of
iterations is met. We provide in the next section the
experimental results obtained using the proposed technique.

V. EXPERIMENTAL RESULTS AND COMPARISON

The proposed algorithm has been tested using a benchmark
consisting of 50000 randomly generated 2-variables 4-valued
functions. This set of benchmark functions is used to evaluate
the performance of the proposed algorithm as well as other
existing techniques found in literature. Comparison is made
based on the average number of basic gates, as a measure of
the number of product terms, needed to synthesize a given
MVL function.

TABLE 2: Possible Ant paths for the function in Fig. 1
Minterm

Possible path Position Logic
Value

0 0 (0,0)
1 2 (0,2), (1,1), (2,0)
2 3 (0,3), (1,2), (1,3), (2,1), (2,2),

(2,3), (3,0), (3,1), (3,2), (3,3)
3 1 (0,1), (1,0)
4 0 (0,0)
5 2 (0,2), (1,1), (2,0)
6 3 (0,3), (1,2), (1,3), (2,1), (2,2),

(2,3), (3,0), (3,1), (3,2), (3,3)
7 2 (0,2), (1,1), (2,0)
8 0 (0,0)
9 0 (0,0)

10 1 (0,1), (1,0)
11 3 (0,3), (1,2), (1,3), (2,1), (2,2),

(2,3), (3,0), (3,1), (3,2), (3,3)
12 0 (0,0)
13 0 (0,0)
14 0 (0,0)
15 0 (0,0)

The ACO parameters used in the experiments are as follows:
(a) number of runs = 10,
(b) number of iterations = 200,
(c) Number of ants = 30.

The MAX-MIN ant system [39] is used to control the range
of pheromone values in any possible path. Any stagnancy
occurring during the iteration will be perturbed by forcing a
pheromone initial value to all possible paths, hence, creating
a chance for ant to try to explore new areas in the search
space.

In the first few experiments, we tried to find out the best
value for PW, pheromone evaporation rate (ρ) and
pheromone range. Using the above parameters, we can see
that the best performance in terms of quality of solution and
stability of the algorithm can be achieved when 2 ≤ PW ≤ 3
and ρ is equal to 0.05. Throughout our experiments, we use
PW = 2.5.

Table 3 shows a comparison of the results obtained using the
proposed technique with those obtained using the techniques
proposed in [25], [27], and [37]. We choose to compare the
proposed technique with these techniques because the latter
two techniques use a multiplexer (MUX) as an additional

IAENG International Journal of Computer Science, 37:1, IJCS_37_1_07
__

(Advance online publication: 1 February 2010)

gate at the circuit output. In our proposed technique we add a
tsum gat at the output. The first four techniques in Table 3
were shown to produce better results compared to those
produced using the best reported DC-based technique [19].

From Table 3, we can see that on average the proposed
ACO-DC technique results in a reduction is the number of
gates (as a measure of the chip area) needed to realize a given
2-variable 4-valued function as compared to those needed
using the techniques reported in [25], [27], and [37].

TABLE 3: Comparison Table
Algorithm Average # gates
Minterm Injection [25] 7.09408
Multiple- Connected Pseudo
 Minterm Injection [27]

7.09276

MCPM (PI_SM method) [37] 7.09064
MCPM (PI_CM method) [37] 7.0705
The proposed ACO-DC approach 7.02906

VI. CONCLUDING REMARKS

In this paper, we have introduced a new hybrid ACO and DC
heuristic algorithm for synthesis of multi-level MVL
functions. The algorithm is based on using the ACO to
decompose a given MVL function into a number of simpler
sub-functions. The DC is then used to synthesise each of the
obtained sub-functions. The performance of the proposed
algorithm has been tested using a benchmark consisting of
50000 randomly generated 2-variable 4-valued functions and
compared against existing comparable DC-based techniques.
The results show that the proposed technique outperforms
other existing techniques in terms of the average number of
gates, as a measure of the chip area, needed to realize a given
MVL function.

ACKNOWLEDGMENT

The author would like to acknowledge the financial support
received from Kuwait University through funded Research
Project # WI 02/07.

REFERENCES

[1] K. Naiff, D. Rich and K. Smalley. A Four-State ROM
Using Multilevel Process Technology. IEEE Journal of
Solid-State Circuits, April 1984, Vol. 19(2). pp.
174–179.

[2] Intel Strata TM Flash. Available

at: http://www.intel.com/design/flash/isf/overview.pdf
and http://www.intel.com/design/flash/isf/overview.pd
f.

[3] T. Okuda, T. Murotani. A four-level storage 4Gb

DRAM. IEEE Journal of Solid-State Circuits Volume
32(11), 1997, pp. 1743 – 1747.

[4] S. Sudirgo. Quantum and Spin-Based Tunneling

Devices for Memory Systems. PhD thesis, Rochester

Institute of Technology, May 2006. Available
at: https://ritdml.rit.edu/dspace/bitstream/1850/2066/1/
SSudirgoThesis052006.pdf (2006)

[5] S., Kawahito, M. Kameyama, T. Higuchi, H. Yamada,.

A 32×32-bit multiplier using multiple-valued MOS
current-mode circuits. IEEE Journal of Solid-State
Circuits. Volume 23(1), Feb. 1988, pp. 124 – 132.

[6] J. Kim and S. Ahn, “High-speed CMOS demultiplexer

with redundant multi-valued logic”, International
Journal of Electronics, 94, 2007, pp. 915-924.

[7] M. Bhardwaj and T. Srikanthan and C. T. Clarke. VLSI

Costs of Arithmetic Parallelism: A Residue Reverse
Conversion Perspective (1999). Available at:

 http://euler.ecs.umass.edu/paper/final/paper-138.ps

[8] H. Osseily, A. Haider, and A. Kassem,

“Implementation of RSA Encryption Using Identical
Modulus Algorithm”, Proceedings of the 3rd
International Conference on Information and
Communication Technologies: From Theory to
Applications, April 2008, pp. 1-6.

[9] C. Files and M. A Perkowski, “Multi-valued functional

decomposition as a machine learning method”,
Proceedings of the International Symposium on
Multiple-Valued Logic (ISMVL '98), May1998, pp.173
-178.

[10] B. Zupan. Machine Learning Based on Functional

Decomposition. PhD thesis, University of Ljubljana,
Slovenia (1997).

[11] E. Dubrova, “Multiple-Valued Logic in VLSI”,

Multiple-Valued Logic: An International Journal, 2002,
pp. 1-17.

[12] K. Current, “Multiple-Valued Logic Circuits”,

Computer Engineering Handbook, 2nd Edition, CRC
Presss 2008, Vojin Oklobdzija (Editior), Digital Design
and Fabrication, Chapter 8, pp. 1-25.

[13] M. Khan, “Synthesis of quaternary reversible/quantum

comparators”, Journal of Systems Architectures, vol.
54, no. 10, October 2008, pp. 977-982.

[14] P. Tirumalai, and J. Butler, “Minimization Algorithms

for Multiple-Valued Programmable Logic Arrays”,
IEEE Transactions of Computers, vol. 40, no. 2,
February 1991, pp. 167-177.

[15] M. Abd-El-Barr, Z. Vranesic, and S. Zaky,

“Algorithmic Synthesis of MVL Functions for CCD
Implementation”, IEEE Transactions on Computers,
vol. 40, no. 8, August 1991, pp. 977-986.

[16] M. Abd-El-Barr, G. Hamid, M. Hasan, “Synthesis of

MVL functions using input and output assignments”,
IEE Proceedings- Circuits, Devices, and Systems, vol.
145, no. 3, June 1998, pp. 207-212.

IAENG International Journal of Computer Science, 37:1, IJCS_37_1_07
__

(Advance online publication: 1 February 2010)

http://www.intel.com/design/flash/isf/overview.pdf�
http://www.intel.com/design/flash/isf/overview.pdf�
http://www.intel.com/design/flash/isf/overview.pdf�
http://www.intel.com/design/flash/isf/overview.pdf�
https://ritdml.rit.edu/dspace/bitstream/1850/2066/1/SSudirgoThesis052006.pdf�
https://ritdml.rit.edu/dspace/bitstream/1850/2066/1/SSudirgoThesis052006.pdf�
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4�
http://citeseer.ist.psu.edu/rd/85213099%2C435590%2C1%2C0%2CDownload/http%3AqSqqSqeuler.ecs.umass.eduqSqpaperqSqfinalqSqpaper-138.ps�

[17] M. Abd-El-Barr and L. Al-Awami, “Iterative-based

minimization of unary 4-valued functions for
current-mode CMOS realization”, Proceedings 34th
International Symposium on Multiple-Valued Logic
(ISMVL), Toronto, Canada, May 2004, pp. 315-320.

[18] P. Besslich, “Heuristic Minimization of MVL functions:

A Direct Cover Approach. IEEE Transactions on
Computers, vol. 35, no. 2, February 1986, pp. 134-144.

[19] G. Dueck and D. Miller, “A Direct Cover MVL

Minimization Using the Truncated Sum”, Proceeding
of the 17th international symposium on multi-valued
logic, 1987, pp. 221-227.

[20] G. Promper and J. Armstrong, “Representation of

Multi-valued Functions Using Direct Cover Method”,
IEEE Transactions on Computers, 30(9), 1981, pp.
674-679.

[21] C. Yang and Y.-M. Wang, “A neighborhood decoupling

algorithm for truncated sum minimization”,
Proceedings, 20th International Symposium on
Multiple Valued Logic, 1990, pp. 153-160.

[22] W. Wang and C. Moraga, “Evolutionary Methods in the

Design of Quaternary Digital Circuits”, IEEE Proc.
28th-Int. Symposium on Multiple-Valued Logic, 1998,
pp.89-94.

[23] B. Sarif, and M. Abd-El-Barr, “Synthesis of MVL

Functions - Part I: The Genetic Algorithm Approach”,
International Conference on Microelectronics, ICM
'06. 16-19 Dec. 2006, pp. 154 – 157.

[24] M. Abd-El-Barr and B. Sarif, “Synthesis of MVL

Functions - Part II: The Ant Colony Optimization
Approach”, International Conference on
Microelectronics, ICM '06. 16-19 Dec. 2006, pp.158 –
161.

[25] B. Sarif, and M. Abd-El-Barr, “Synthesis of MVL

Functions Using Discrete Particle Swarm
Optimization”, Proceedings, 2008 IEEE Swarm
Intelligence Symposium, St. Louis, USA, September
21-23, 2008.

[26] M. Abd-El-Barr and B. Sarif,” Weighted and Ordered

Direct Cover Algorithms for Minimization of MVL
Functions”, Proceedings of the 37th International
Symposium on Multiple Valued Logic, 2007, pp. 48-53.

[27] B. Sarif and M. Abd-El-Barr, “Fuzzy-based Direct

Cover Algorithm for synthesis of Multi-Valued Logic
Functions”, Proceedings of IASTED International
Conferen ce on Circuits and Systems, Hawaii, USA,
2008, pp. 625-630.

[28] M. Abd-El-Barr, “Non-binary functional synthesis

using ACO-based heuristic”, International Journal of
Electronics, vol. 95, no. 1, January 2008, pp. 39-56.

[29] C. Tasi and M. Marek-Sadowska, “Multilevel logic
synthesis for arithmetic functions”, Proceedings 33r
 Design Automation Conference (DAC), Las Vegas,
USA, 1996, pp. 242-247.

[30] M. Jiang, Y. Jiang, Y. Li, A. Mishchenko, S. Sinha, T.

Villa, and R. Brayton, “Optimization of multi-valued
multi-level networks”, Proceedings 32nd IEEE
International Symposium on Multiple-Valued Logic
(ISMVL), May 2002, pp. 1-10.

[31] J. Jiang and R. Brayton, “Software Synthesis from

synchronous specifications using logic simulation
techniques”, Proceedings the 39th Annual Design
Automation Conference, New Orleans, USA, 2002,
pp. 319-324.

[32] T. Sasao, “Switching Theory for logic synthesis”,

Kluwer Academic Publishers, February 1999, ISBN:
0-7923-8456-3.

[33] M. Gao, J. Jiang, Y. Jiang, Y. Li, S. Sinha, and R.

Brayton, “MVSIS: Software Synthesis from
synchronous specifications using logic simulation
techniques”, Proceedings International Workshop on
Logic Synthesis, (IWLS01), 2001.

[34] M. Abd-El-Barr and Louai Al-Awami.. Analysis of

Direct Cover Algorithms for Minimization of MVL
Functions. International Conference on
Microelectronics (ICM 2003), Cairo, Egypt, Dec.
2003. pp. 308- 312.

[35] M. Dorigo and G. Di Caro, “New Ideas in

Optimization”, McGraw Hill, London, UK, 1999.

[36] M. Dorigo and T. Stutzle. The Ant Colony

Optimization Meta-heuristic: Algorithms, Applications
and Advances. 2002.

[37] B. Sarif and M. Abd-El-Barr, “The Use of Multiple

Connected Pseudo Minterms in the Synthesis of MVL
Functions”, Proceedings of the 39th International
Symposium on Multiple Valued Logic, May 2009,
Okinawa, Japan, pp. 145-150.

[38] M. Dorigo, “Ant Colony Optimization”, Scholarpedia,

2007, 2(3): 1461.

[39] T. Stuzle and H. Hoos, “MAX-MIN Ant System and
local search for the traveling salesman problem”, IEEE
International Conference on Evolutionary
Computation, April 1997, pp. 309-314.

[40] K. Lee and M. El-Sharkawi, “Modern Heuristic

Optimization Techniques”, Institute of Electrical and
Electronics Engineers (IEEE), January 2008, ISBN
9780470225868.

IAENG International Journal of Computer Science, 37:1, IJCS_37_1_07
__

(Advance online publication: 1 February 2010)

	INTRODUCTION
	BACKGROUND MATERIAL
	Two-Level Synthesis of MVL Functions Using ACO
	The Proposed Multi-level Synthesis of MVL Functions using ACO-DC
	Experimental Results and Comparison
	Concluding Remarks

