
 
 

  
Abstract—Images may contain large number of patterns 

generated by various stochastic processes. Defining and 
modeling these patterns represents one of the fundamental 
importance of generic image processing tasks, such as 
perceptual grouping, segmentation, compression, restoration, 
and recognition. This paper summarizes the various techniques 
that are used in statistical modeling of images. Statistical 
analysis of images reveals two interesting properties:                   
(i) invariance of image statistics to scaling of images, and           
(ii) non-Gaussian behavior of image statistics, i.e. high kurtosis, 
heavy tails, and sharp central cusps. In this paper we review 
some recent results in statistical modeling of natural images 
that attempt to explain these patterns. Two categories of results 
are considered: (i) studies of probability models of images or 
image decompositions, and (ii) discoveries of underlying image 
manifolds while restricting to natural images.  
 
Index Terms—Digital Image Processing, Statistical Image 
Models and Markov Random Model 

I. INTRODUCTION 
Many successful methods in image processing and 

computer vision rely on statistical models of images, and it is 
thus of continuing interest to develop improved models, both 
in terms of their ability to precisely capture image structures, 
and in terms of their tractability when used in applications. 
Constructing such a model is difficult, primarily because of 
the intrinsic high dimensionality of the space of images. Two 
simplifying assumptions are usually made to reduce model 
complexity. The first is Markovianity in which the density of 
a pixel conditioned on a small neighborhood is assumed to be 
independent from the rest of the image. The second 
assumption is homogeneity in which the local density is 
assumed to be independent of its absolute position within the 
image. The set of models satisfying both of these 
assumptions constitute the class of homogeneous Markov 
random fields (hMRFs). 

Probabilities are associated with the definitions of image 
patterns and are even derived from deterministic definitions. 
In statistical image processing, we view an image x as a 
realization of a random field with joint probability density 
function (pdf) g(x). Solutions to problems such as 
segmentation, compression, and restoration rely on g(x); the 
more accurately it can be specified, better the solution. Of 
course, we rarely have enough information to specify the 
joint pdf exactly. The main objective of this paper is to 
review the state of art of existing realistic image model that  
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approximates g(x) which allows efficient image processing 
of algorithms. Image models become popular and 
indispensable when people realized the vision problems, 
typically the segmentation problems which are ill-posed. 
Extra information is needed to account for regularities in 
real-world scenes. All early models assumed simple 
smoothness (sometimes piece wisely) of surfaces or image 
regions, and they were developed from different 
perspectives. For example, physically-based models, 
regularization theory, and energy functional, etc.  

This paper addresses the state of art of existing statistical 
models. Also, this paper reviews seven classes of models 
namely: (1) Markov random field models [1-23], (2) 
Hierarchical models [24-33], (3) Shape based models[34-46],  
(4) Finite mixture models[47-49], (5) AM-FM models 
[50-52], (6) Context models [53],[54], (7) Autoregressive 
models[81], [84], [85]. Organization of this paper is as 
follows. Section II discusses the Markov random filed 
modeling technique. Hierarchical models such as 
mutiresolution (Wavelet domain) models and multiscale 
models are analyzed in section III. In section IV, the shape 
based models such as deformable models, active contours 
(snakes) and its variants are reviewed. The other models such 
as autoregressive models, finite mixture models, context 
models and AM-FM models are discussed in section V. 
Conclusion is provided in section VI. 

II. MARKOV RANDOM FIELD MODEL 

A.  State of art of MRF Modeling Technique 
Based on the nature of potential function, MRF models 

may be classified into: causal MRF, non-causal MRF, 
Gaussian MRF, Ising model, pots models and hidden MRFs. 
The tree diagram for the MRF model is shown in Fig.1. 
Non-causal Markov models are widely used in early vision 
applications for the representation of images in 
high-dimensional inverse problem. For most non-causal 
representations, the graph associated to the Markov model is 
the rectangular lattice equipped with the nearest (or second 
nearest) neighborhood system. Non-causal MRFs do not 
impose unwanted directionality effects. However 
implementation of this model is not straightforward.  

Commonly used Non-causal Markov random fields are not 
in fact capable of representing the moderate-to-large 
scale-clustering present in naturally occurring images and 
can be time consuming to simulate, requiring iterative 
algorithms which can take hundreds of thousands of sweeps 
of the image to converge. However the causal MRF such as 
Pickard random field, the mutually compatible MRFs and 
Markov chain image model can approximate the non-causal 
MRFs. 

A Critical Review of Statistical Modeling of 
Digital Images 

Ibrahiem M. M. El Emary and S. Ramakrishnan  
 

IAENG International Journal of Computer Science, 37:1, IJCS_37_1_12
______________________________________________________________________________________

(Advance online publication: 1 February 2010)



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1 Tree Diagram of the MRF based Models 

    Pickard random fields are known to represent only a 
limited class of spatial statistics and generally yield 
directional artifacts in the image plane. On the other hand, 
accurate causal approximations of non-causal MRFs can be 
obtained by Markov Chain image model. 

Gaussian MRFs give rise to linear estimators, but the basic 
homogeneous Gaussian MRFs are well known to allow noise 
cancellation only at the expense of over smoothing the object. 
Generalized Gaussian MRFs preserve edges better while 
maintaining convex energies [4]. However none of these 
priors can give rise to maximum a posteriori (MAP) 
estimators truly accounting for the presence of both 
homogeneous parts and edges in the objects. Using pairwise 
interaction piecewise Gaussian MRFs (PG MRFs) with a 
non-interacting Boolean line process this problem is solved 
[15]. Compound Gauss-Markov random field (CGMRF) is 
used to model images by preserving the discontinuity [7]. 

A hidden Markov process (HMP) is a discrete-time finite 
state homogeneous Markov chain observed through a 
discrete time memory less invariant system [18]. The image 
is characterized by a finite set of transition densities indexed 
by the states of the Markov chain. Unlike hidden Markov 
fields, a hidden Markov chain uses one-dimensional set of 
pixels by scanning the two-dimensional sets. HMC-based 
segmentation methods can be competitive in some particular 
situations, and they are much faster than the HMRF based 
ones. The partially hidden Markov models (PHMM) 
combines the power of using the past as context and the 
power of hidden states in modeling. It differs from 
conventional hidden Markov models (HMMs) by 
conditioning the transition probabilities and emission/output 
probabilities on the previously observed symbols.  

Ising model attempts to minimize the boundary length 
between objects, which results in very high estimates for the 
MRF class transition costs and, thus, a strong favor for 
smooth boundaries. A non-stationary Ising model, with 
different parameters in uniform regions of pure region than at 
places where objects mix, might be a promising starting 
point. There are also methods that estimate Gibbs parameters 
with pre computed derivatives of log-partition functions. 
These algorithms were used primarily for learning MRF 
models with pair cliques, such as Ising models and Potts 
models. It has the advantage of taking the observations 
directly into account. Moreover, the study of the case of the 
homogeneous isotropic Potts model gives reasons dissuading 
from using the mean field approximation on the marginal 
field. 

 

B.  Markov Random Field Model 
 

Gibbs distributions are used to explicitly write the 
distributions of MRFs.  A Gibbs distribution is any 
distribution which can be expressed in the form  

( ) 1 exp{ ( )}c
c C

g x Z V x
∈

= −∑                       (1) 

Where Z is a normalizing constant also known as partition 
function, Vc( . ) is any function of a local group of points c, 
and C is the set of all such local groups. The key to the 
definition of the Gibbs distribution is the specification of 
these local groups of points. A local set of points, c, is called a 
clique if , ,s r c s∀ ∈ and r are neighbors. The clique 
associated with first and second order neighborhood system η 
is shown in Fig.2 
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Fig.2 Cliques Associated with Neighborhood Systems:             
(a) First Order Neighborhood η1; (b) Clique Types of η1; (c) 
Second Order Neighborhood η2; (d) Clique Types of η2 
 

If Gibbs distributions are restricted to use functions of 
cliques included by the neighborhood system s∂ , the random 
field X will have the property that 
 

s S∀ ∈        ( , ) ( , )s sp x x r s p x x r s⏐ ⏐≠ = ∈∂              (2) 
 

This is the fundamental property of an MRF. In fact, the 
Hammersley-Clifford theorem states that if X has a strictly 
positive density function, then X is a MRF if and only if the 
distribution of X has the form of Gibbs distribution. 
 
The potential function Vc(x) may be is defined as 
 

sr s rc
{s,r} C

V (x) b x x )
∈

= −  ρ(λ⏐ − ⏐∑                           (3) 

Where bsr > 0, λ  is a scaling parameter, (.)ρ is a monotone 
increasing function. The efficiency of the model highly 
depends of the selection of (.)ρ . Various (.)ρ studied by 
different authors can be classified as convex, non- convex 
and others like generalized Gaussian, scalable potential 
functions. Some of the potential functions are listed below. 
 
Non- Convex Log Prior Distributions 
 

Non-Gaussian MRFs are interesting because they can 
potentially model both the edges and smooth regions of 
images. The simpler Gibbs distributions is of the form 
 

{ , }
log ( ) tan)sr s r

s r C
g x b x x cons tρ λ

∈

= −  ( ⏐ − ⏐ +∑     (4) 

Where λ  is a scaling parameter, and ρ is monotone 
increasing but not convex function. A typical function used 
by Blake and Zissreman [4] is 
 

2( ) min{ρ Δ = ⏐Δ⏐ , Τ}                                      (5) 
Where T is a variable threshold parameter. This function is 
shown in Fig.3 for T= 0.5. Notice that the function is 
quadratic near zero, but the flat region beyond the value of T. 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
Convex Log Prior Distributions     
 

Convex functions have been considered in [4]. They chose 
the Huber function by the following formula 

2 if  
( ) 2 2T -             if   

{Δ                             ⏐Δ⏐ ≤Τ
ρ Δ =

Τ + |Δ Τ | |Δ| >Τ    (6)  

For values greater than T, the linear region of this function 
also allows sharp edges, yet convexity makes the MAP 
estimate efficient to compute. This function is shown in Fig.4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Generalized Gaussian Markov Random Field   

 
This distribution may be written in the form of log 

likelihood function represented by: 
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Fig. 4 convex cost function 

    ∆ = λ⏐Xs-Xr⏐ 
 
 
ρ (∆) = Huber function 

Fig. 3 Non - convex cost function 
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{ , }

log ( ) tan
p pp

sr sr sr s r

s s r C

g x a x b x x cons tλ
∈

⎛ ⎞
= − ⏐ ⏐ + ⏐ − ⏐ +⎜ ⎟

⎝ ⎠
∑ ∑    (7) 

Where b is a symmetric positive definite matrix, asr= sr

r S

B
∈
∑  

and bsr= - Bsr. 1 p 2≤ ≤ , and λ is the parameter which 
is inversely proportional to the scale of x. The choice of p is 
critical in determining the character of the model. Large 
values of p discourage abrupt discontinuities while smaller 
values of p allow them. This function determines the 
tendency of neighboring pixels to be attached and plays a role 
analogous to the influence function of robust statistics.   
 
Scalable Potential Functions  

 
Bouman and Sauer [22] showed that the following 

function characterize all scale invariant functions:- 
             
Δ  = i jx x− , this cost function is shown in Fig. 5. 
 

p

i j i j(x , x , p) x x ,p 0ρ = − >          (8) 
 

Pickard’s theory enables us to construct isotropic GRFs, it 
does not answer the question of the uniqueness of such 
random fields.  John K. Goutsias [16] answers these 
questions systematically by developing a unified theory for 
the mathematical description of GRFs. He derived the local 
transfer function as a function of local neighborhood.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
In [12], Sridhar Lakshmanan and Haluk Derin proposed a 

class of GRF called multilevel logistic (MLL) distribution. 
The MLL distribution defined as follows:  A parameter is 
associated with each clique type, except for single pixel 
cliques say kβ  with clique type k. The potential function for 
all cliques of that type is then defined as follows:- 
 

{ ij k        if all x  in  c  are equal 
ck        o therw iseV ( ) k

k
x β

β−=     (9) 
 

Where ck denotes any clique type k. For the single pixel 
cliques, the potential function is defined as 
 

( )      if       for ( , )ck m ij mV x x g c i jα= = =            (10) 
 
Where mα  is a parameter associated with region m. By 
assigning the same potential function to all cliques of a 
certain type, independent of their positions in the image, it is 
implicitly assumed that the random variable X is 
homogeneous.  The values of kβ  influence the sizes and 
shapes of the resulting regions, while those of mα  influence 
the relative likelihood of each region type. Other model 
parameters such as: the gray levels gm , the number of region 
types M and noise parameters such as variance are assumed 
known.  

C. Hidden Markov Models 
Hidden Markov models are mixture models in which the 

populations from one observation to the next are selected 
according to an unobserved finite state-space Markov chain 
[18]. We assume that ( )n n N

X
∈

 is a Markov chain, with 

each 1{ ,....., }n kX w w∈ and with stationary transition 
probabilities. 
 

1[ , ]ij n i n jc P X w X w+= = =                                (11) 
This does not depend on “n”. Thus, the initial distribution is 
given by 
 

1
[ ]j iji

j k
P X w c

≤ ≤

= = = ∑∏                (12) 

and the transition matrix A = [aij] has entries 
 

1
1

[ \ ]ij n j n i ij ij
j k

a P X w X w c c+
≤ ≤

= = = = ∑      (13) 
 

III. HIERARCHICAL IMAGE MODELS 
 

Markov random fields discussed in the previous section is 
efficient and powerful framework for specifying nonlinear 
interactions between features of the same nature or of a 
different one. They help in combining and organizing spatial 
and temporal information by introducing strong generic 
knowledge about the features to be estimated. When they are 
associated with the MAP criterion, they lead to the 
minimization of a global energy function which may exhibit 
local minima. This minimization is generally performed 
using deterministic or stochastic relaxation algorithms. 
Stochastic algorithms may be drastically time consuming 
while deterministic schemes often get stuck in local minima 
of the energy function.  

In addition, it is known that hierarchical methods can 
improve significantly the convergence rate of iterative 
schemes. They are useful when the energy function to be 
minimized presents many local minima. It has indeed been 
conjectured that multiresolution analysis may, to certain 
extent, smooth the energy landscape. Deterministic 
relaxation schemes can then be used at coarse scales to get a 
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good initial guess, which may be refined over increasing 
resolution. Thus combination of Markovian models and 
hierarchical methods such as Gaussian pyramids, wavelets 
decomposition gives consistent and tractable statistical 
models. Hence, in this section we will discuss the hierarchical 
models such as multiresolution and multiscale models. Tree 
diagram of the hierarchical image models is shown in Fig. 6. 

 
 
 

 

 

 

 

 

 

 

 

 

Fig.6 Tree diagram of the hierarchical models 

A. State of art of Hierarchical Image Models 
 
Concept of hierarchical processing received an increasing 

attention from both the computer vision and signal 
processing communities [24-33]. Many multiresolution 
models have been developed to represent statistical 
dependence among image pixels, one such multiresolution 
model is based on HMM is proposed for wavelet coefficients 
in [25]. In that paper, wavelet coefficients across resolutions 
are modeled as HMM and resolution are represented by the 
time-like role in the Markov chain. If we view wavelet 
coefficients as special cases of features, the model in [26] 
considers features observed at multiple resolutions. 

The wavelet transform nearly decorrelates many images 
and can be viewed as an approximate Karhunen–Loève 
transform (KLT). This basic property is exploited by early 
wavelet coders and wavelet denoising algorithms. 
Nevertheless, significant dependencies still exist between 
wavelet coefficients. Each statistical wavelet model in the 
literature focuses on a certain type of dependencies, which 
attempts to capture using a relatively simple and tractable 
model. These models are classified into following three 
categories [23]: 1) Interscale Models in which the 
magnitudes of wavelet coefficients in typical images are 
strongly correlated across scales. Consider a quadtree 
representation of wavelet coefficients, if a parent node has 
small magnitude, its children are very likely to be small too. 
This property is exploited in Shapiro’s embedded zerotree 
wavelet (EZW) coder. Combining the self-similarity across 
scales with a clever scheme for set partitioning in hierarchical 
trees (SPIHT). Said and Pearlman developed an even better 
coder. The hidden Markov tree model (HMT) also captures 
the dependencies between a parent and its children. A hidden 
state is associated with each wavelet coefficient; conditioned 

on their hidden states, the coefficients are Gaussian, 
independent and identically distributed (iid). 2) Intrascale 
Models: Strong dependencies in the form of spatial clusters 
exist between wavelet coefficients inside each subband. 
Compression algorithms such as the morphological coder 
exploit the spatial clustering of these wavelet coefficients. 
The EQ coder models wavelet coefficients as independent 
generalized Gaussian distributed (GGD) with zero mean and 
slowly varying variance. Local statistics are estimated from 
the data. This model has recently found applications to 
denoising. 3) Composite Dependency Models: Both types of 
dependencies above may be combined [32].  

Multiscale processing is an old but powerful idea. It is 
usually applicable whenever one wishes to implement an 
image processing algorithm that is iterative in nature and 
requires many successive updates. The basic principle is to 
construct an image pyramid and to start applying the 
procedure at the coarsest level on a very small version of the 
image. Upon convergence, the solution is propagated to the 
next finer level where it is used as starting condition. One 
then proceeds with this coarse-to-fine iteration strategy until 
one reaches the finest level of the pyramid which corresponds 
to the image itself. There are numerous examples of the 
application of this principle in the literature. Mallat et al [30] 
employ a quadtree like pyramid for unsupervised texture 
segmentation and Lovell et al [31] uses a multiscale 
relaxation algorithm applied to image classification. 

 
 

B. Multiresolution and Multiscale Models 
 

Histogram and log-histogram of the wavelet coefficients in 
one subband is shown in Fig.7.  The dotted line is a 
generalized Gaussian approximation. The solid line is a 
two-component Gaussian mixture model fitted to the data. 
Although the generalized Gaussian density is a better fit, by 
using only two states in the Gaussian mixture model, one can 
achieve a close fit to the histogram. The Gaussian mixture 
model is not exact, but it allows simple and efficient 
algorithms, especially for capturing dependencies between 
wavelet coefficients. 

The form for the marginal distribution of a wavelet 
coefficient iw comes directly from the efficiency of the 
wavelet transform in representing real-world images: a few 
wavelet coefficients are large, but most are small. Gaussian 
mixture modeling runs as follows:- 

 
 

 
 

Fig. 7 Histogram and log-histogram of the wavelet 
coefficients 
 
Associate with each wavelet coefficient iw  an unobserved 
hidden state variable { , )iS S L∈ . The value of Si dictates 
which of the two components in the mixture model generates
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iw . State S corresponds to a zero-mean, low-variance 
Gaussian. If we let  
 

{ }2 2 2( , , ) 1 2 exp ( ) 2g x xμ σ πσ μ σ= − −     (14) 
 
Denote the Gaussian pdf, then we can write 
 

( ) ( )2
;, 0 ,i i i S if w S S g w σ= =           (15)  

 
State L, in turn, corresponds to a zero-mean, high-variance 
Gaussian 
 

( ) ( )2
;, 0 ,i i i L if w S L g w σ= =            (16) 

With 2 2
L Sσ σ> . The marginal pdf f( iw ) is obtained by a 

convex combination of the conditional densities 
 

( ) 2 2
; ;( ;0, ) ( ,0, )S L

i i i S i i i L if w p g w p g wσ σ= +         (17) 

 
The S

iP and L
iP can be interpreted as the probability that iw  

is small or large (in the statistical sense), respectively. 
 

 
 
Fig. 8. Illustrating the parent–child relationship between 
regions at a coarse-scale and a fine-scale segmentation of an 
image. 
 

 
Wavelet coefficients have often been modeled as 

realizations from a zero-mean GGD. In fact, the GGD models 
the marginal densities of the wavelet coefficients more 
accurately than the Gaussian mixture, as shown in Fig. 7, 
especially in the tails of the distribution. However, the 
Gaussian mixture model discussed above can approximate 
the generalized Gaussian density arbitrarily well by adding 
more hidden states. Of course, as the number of states in the 
model increases, the model becomes more computationally 
complex and less robust. As can be seen in Fig. 7, Justin K. 
Romberg et al [24] are matching the marginal histogram very 
closely using only two states. One can think of this two-state 
mixture model as an approximation to the generalized 
Gaussian model. The parent child relationship is shown in 
Fig. 8 and a result of segmentation by multiscale method for 
three different scales (1 to 3) is shown in Fig. 9. 
 

 

(a)          (b) 

 

        (c)           (d) 

Fig. 9. (a) Actual image and (b)–(d) three different scales (1 
to 3) of segmentation given by the multiscale segmentation 
algorithm 
 

IV. SHAPE BASED MODELS 
 

In image analysis, graphical models are most often referred 
to as Markov random fields. Much of the statistical literature 
in image segmentation has used Markov random field 
models, not for shape variables, but for the “true” image 
underlying the observed gray value image. Although these 
image models are well suited for the description of textures, 
they can represent only little a priori information about the 
shape of the displayed object and are most often limited to 
describe some smoothness in shape. This necessitates the 
need for shape based models. In this section shape based 
models such as deformable models, algebraic curves and 
active contours (or snakes) are discussed. The concept of 
deformable templates was introduced as a means of modeling 
spatial patterns/shapes [34]. They define the template as a 
prototype for a desired/ideal pattern and they associate a 
deformation mechanism with the template graph. Markov 
chain to describe the deformation mechanism of nodes in a 
grid is used in [35]. Max Mignotte et al [36] presented an 
original statistical classification method using a deformable 
template model to separate natural objects from man-made 
objects in an image provided by high resolution sonar.  L.H. 
Staib and J.S. Duncan [37] for example, have used a 
parametric template model to locate the road boundary in 
radar images where the two straight, parallel edges of a road 
are parameterized. A similar approach for shape matching is 
proposed [38] which combines, in the same manner, both the 
available knowledge of the shape properties (as prior model) 
and an observation model (as likelihood model). Cootes et al. 
[39] uses deformable shape descriptors built from a training 
set of images. The deformations are modeled using linear 
combinations of the eigenvectors of variations from the mean 
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shape, thus defining the shape class and allowing 
deformation reflecting the variations in the training set.  

Sclaroff [40] use linear deformations equivalent to the 
modes of vibration of the original shape. However, these 
modes are based on a generic elastic model that is not likely 
to be representative of the real variations which occur in a 
class of shapes. The Bayesian fitness measure they proposed 
is dependent on a shape model, a gray-level foreground 
model, and a gray-level background model. Yongmei Wang, 
Lawrence H. Staib [41] proposed a unified framework for 
boundary finding, where a Bayesian formulation, based on 
prior knowledge and the edge information of the input image 
(likelihood), is employed.  

Other shape based models are active contour or snakes, 
algebraic curves and polynomials, piecewise and local image 
models. A snake or active contour is a virtual object (living 
on the image plane) which can deform elastically (thus 
possessing internal energy), and which is immersed in a 
potential field (thus having external/ potential energy), which 
is a function of certain features of the image. An algebraic 
curve is defined as zero set of polynomials in two variables. 
Other related representations such as the quadric surface 
(e.g., cones, ellipsoids, hyperboloids, etc.) admit both a 
parametric and an implicit form. Piecewise image model and 
local image models are based on well-defined local image 
characteristics. Piecewise image model (PIMs), which model 
images as every where obeying a certain property (such as 
constancy or linearity) in a piecewise manner, and local 
image model (LIM’s), which characterize images as obeying 
a certain property (such as monotonically or convexity) over 
every sub-image of specified geometry. 

From a Bayesian perspective, snakes are interpretable as 
maximum a posteriori (MAP) contour estimators, where the 
internal and external energies are associated with the a priori 
probability function (or prior) and the likelihood function 
(observation model), respectively[44- 46]. The same is true 
for deformable templates where the prior biases the estimate 
toward the template shape. Let v be the contour to be 
estimated on the observed image I, a Bayesian approach 
requires the following steps:  
1) Specification of a prior p(v) capturing a priori information/ 
constraints on v;  
2) Derivation of a likelihood function p(I/v) modeling the 
observed image conditioned on the true contour;  
3) Specification of a loss function L( v, v’)measuring how 
much loss is incurred by an estimate v’ when the true contour 
is in fact v. 
Once these elements are in place, an optimal Bayes rule is the 
function of the data, called an estimator, and denoted ( )v I)

that minimizes the a posteriori expected loss  
 

( )
'

'( ) arg min ( , )
v

v I L v v p v I dv= ∫
)                       (18) 

 
Where p(v/I) is the a posteriori probability density function 
obtained via Bayes law. 
 

V. OTHER STATISTICAL IMAGE MODELS 
 

In this section, statistical image models such as finite 
mixture model, AM-FM model, context model and 
autoregressive models are discussed. 
 

A. Finite Mixture Models 
 

In finite mixture modeling each pixel of observed image is 
a sample from a mixture of distributions. Assume that the 
data X=(x1,……,xT) are drawn independently and generated 
by a mixture density model[47- 49] . The likelihood of the 
data is given by the joint density 

( ) ( )
1

T

i
i

p x p xθ θ
=

= ∏                                  (19) 

 
Where the mixture density is 
 

( ) ( )
1

, ( )
K

i i k k k
k

p x p x C p Cθ θ
=

= ∑                    (20) 

 
Where θ = (θ1… θK) are the unknown parameters for each 
p(x/Ck, θk), called the component densities. Ck denotes the 
class k and it is assumed that the number of classes, K, is 
known in advance. 
 
B. AM-FM Models 

The solutions of the reaction diffusion partial differential 
equations are in the form of amplitude modulated and 
frequency modulated (AM-FM) function which is 
computable model. AM-FM functions which admit 
non-stationary amplitude and frequency modulations. A 2-D 
AM–FM ( , )x yμ function takes the form 
 

( , ) ( , ) exp[ ( , )]x y a x y j x yμ ψ=                        (21) 
 
Where a(x, y) and ( , )x yψ are arbitrary real-valued 
functions [50, 51]. Without loss of generality, we assume that 
a(x, y) >0. The AM and FM components of interest that are 
contained in ( , )x yμ in (21) are the instantaneous amplitude 
a(x, y) and the instantaneous frequency vector

( , ) [ ( , ), ( , )]Tx y u x y v x yψ∇ =  . The functions   u(x, y) 
and v(x, y) are the horizontal and vertical instantaneous 
frequencies of ( , )x yμ . 
 

Given ( , )x yμ  , the AM and FM functions may be 
calculated using the straightforward demodulation formulae  
 

[ ]( , ) Re ( , ) ( , )x y x y j x yψ μ μ∇ = ∇                 (22) 
 
and 
 

( , ) ( , )a x y x yμ=                (23) 
These formulae yield exact solutions at all points where
( , ) 0x yμ ≠ . The frequency equation (22) may be 

interpreted as a specialized instance of a Poletti equation; its 
use is motivated by the fact that the exponential function in 
(21) is invariant under differentiation. Oriented, highly 
repetitive images such as fingerprints are well suited for 
AM–FM modeling because they are dominated by 
nonstationary, locally narrowband processes and contain 
locally quasiperiodic patterns. 
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C. Context Models 
A context model assumes that the distribution of the 

current symbol depends only on the context in which it 
occurs [53],[54]. That is, given its context, the current symbol 
is conditionally independent of past data symbols. Associated 
with a given context model is a finite set of contexts or 
conditioning events C , a context determining rule or function 
that assigns a context C to each data sequence x1,…, xi, and a 
finite set of pdfs, one for each context. Each context is 
characterized by a finite subset of past variables and a subset 
of their possible outcomes. Associated with each context C is 
the conditional pdf p(./C) , and the average encoding rate is 
approximately given by 
 

( ) ( ) ( )2log
x

H X C p x C p x C= −∑                  (24) 

When X appears in context C, and the overall average rate is 
approximately 
 

( ) ( )( )
c C

H X C p C H X C
∈

= ∑                            (25) 

Where P(C) is the probability of context C occurring. It is 
useful to note that this approach will achieve rate H(X/C) 
even if the current symbol is not conditionally independent of 
the past, given the contexts. Usually the number of contexts, 
i.e., the cardinality of the set C, is much less than the number 
of possible past sequences. If the pdfs, P(./C) , are a priori 
unknown, they can usually be estimated by maintaining 
counts of symbol occurrences within each context or by 
estimating the parameters of an assumed pdf. 
 

D. Autoregressive Model 
Here the image is modeled as autoregressive process. The 

model parameters are estimated by solving Yule-walker 
equations or by using Kalman filters. Assume that the 
original image, S (m; n); is modeled by a 2-D autoregressive 
(AR) process [81], [84], [85] with a non-symmetric half plane 
(NSHP) region of support   
 

( , ) ( , ) ( , )ijS m n c S m i n j w m n= − − +∑             (26) 

Where cij  are the model coefficients, and w(m; n) is a 
zero-mean white Gaussian random field with finite variance 
which drives the process. 

VI. CONCLUSION 
Among the various image models Markov random field 

model is widely used technique. A variety of distinct models 
exists within the class of MRFs, depending on the choice of 
potential function that assigns cost differences between 
neighboring pixels. Markov random field models are 
efficient and powerful framework for specifying nonlinear 
interactions between features of the same nature or of a 
different one. They help to combine and organize spatial and 
temporal information by introducing strong generic 
knowledge about the features to be estimated.  

When they are associated with the MAP criterion, they 
lead to the minimization of a global energy function which 
may exhibit local minima. This minimization is generally 
performed using deterministic or stochastic relaxation 
algorithms. Stochastic algorithms may be drastically time 

consuming while deterministic schemes often get stuck in 
local minima of the energy function. In addition, it is known 
that hierarchical methods can improve significantly the 
convergence rate of iterative schemes. They are useful when 
the energy function to be minimized presents many local 
minima. It has indeed been conjectured that multiresolution 
analysis may, to certain extent, smooth the energy landscape. 
Deterministic relaxation schemes can then be used at coarse 
scales to get a good initial guess, which may be refined over 
increasing resolution. Thus, combination of Markovian 
models and hierarchical methods such as Gaussian pyramids, 
wavelets decomposition gives consistent and tractable 
statistical models. 

Much of the statistical literature in image segmentation has 
used Markov random field models, not for shape variables, 
but for the “true” image underlying the observed gray value 
image. Although these image models are well suited for the 
description of textures, they can represent only little a priori 
information about the shape of the displayed object and are 
most often limited to describe some smoothness in shape. 
Shape based models such as deformable templates, algebraic 
curves and active contours are used to mitigate this problem. 

Shape based models typically consider only global or local 
deformations. While global templates involve large structural 
interactions and contain less parameters to be optimized, 
these global parameters cannot exercise local control along 
the contour and their physical meaning are sometimes 
obscure. In contrast, local models such as snakes contain 
more parameter and exert local control, but they are ill-suited 
incorporation of global contour model.  Hence a model is 
needed for representing any arbitrary shape, accounts for 
global changes due to rigid motions, and retains ability for 
local control. Which may be achieved by means of the 
contour model is based on a stable and regenerative shape 
matrix which is invariant and unique under rigid motions. 
Combined with the local characteristics of the Markov 
random field to model local deformations, this yields prior 
distribution that exerts influence over a global model while 
allowing for deformations. 

Markov random filed models are more suitable for texture 
kind of images, where as hierarchical models provide faster 
computational methods, and shape based models are much 
useful when there is structural information along with the 
statistical data is available for modeling. If the probability 
density function cannot be represented by single distribution 
alone then finite mixture model is useful.  If modeling is 
based on the context especially for compression kind of 
applications then context modeling is appropriate. AM-FM 
models are employed for fingerprint kind of images.   
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