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Abstract—Kakuro puzzle grids consist of overlap-
ping continuous runs (collections of adjoined white
cells) that are either exclusively horizontal or vertical.
Constraints offer clues to their completion, achieved
through the legal placement of values in the cells.
To ascertain any potential applicability of Kakuro for
real-world problems, it is first necessary to establish
the underlying mathematical properties of the puz-
zle. Domain information is used to inform the devel-
opment of algorithms for the automated solution of
Kakuro puzzles through the application of search and
pruning techniques, and inferences concerning prob-
lem properties are drawn. Results obtained are used
to propose a method applicable to both smaller puz-
zles and larger counterparts, indicating the most ef-
fective automated approach.
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1 Introduction

Kakuro puzzles, also called Cross-Sum puzzles, consist of
an n×m grid containing black and white cells. The ini-
tially empty white cells are organised into overlapping
continuous runs that are exclusively either horizontal or
vertical. A run-total, usually given in a black “clue” cell,
is associated with each run; the puzzle is solved by enter-
ing values (typically in the range 1, . . . , 9 inclusive) into
the white cells such that each run sums to the specified
run-total and no digit is duplicated in any run. Assuming
only numbers in the range 1, . . . , 9 are used, a run can be
between one and nine cells in length with a corresponding
run-total in the range 1, . . . , 45; the majority of published
puzzles contain runs that are at least two cells in length.
Most published puzzles are well formed [1], meaning that
a unique solution exists.
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Figure 1: A typical Kakuro puzzle grid

The name “Kakuro” is derived from “Kasan Karuso”, the
Japanese word for “addition” appended to the Japanese
pronunciation of the English word “cross”. This name
was a part of a rebranding by Japan’s Nikoli Puzzles
Group of Dell Magazines’ “Cross Sum” puzzles, as they
were then known. Such puzzles were published as early
as 1966 [2] by Dell Magazines. However, Kakuro’s
huge popularity is recent; Kakuro puzzles first appeared
the United Kingdom on September 14th 2005 in The
Guardian newspaper.

The popularity of Kakuro in Japan is now reported sec-
ond only to Sudoku [2]. Sudoku puzzles have been
linked with important real-world applications including
timetabling [3], conflict free wavelength routing [4], ex-
perimental design [3] and more recently, coding theory
due to its potential usefulness in the construction of era-
sure correction codes [5]. At present, very little has been
published specifically on Kakuro, however, their solution
has been shown to be NP-Complete [6] through demon-
strating the relationship between Kakuro and the Hamil-
tonian Path Problem, and 3SAT (the restriction of the
Boolean satisfiability problem).

It is possible that Kakuro-type puzzles may have simi-
lar applications to Sudoku. A project [7] has been con-
ducted to establish the properties of Kakuro puzzles,
since an understanding of the usefulness of these puzzles
may arise from detailed analysis of their underlying prop-
erties. Both Kakuro and Sudoku contain some form of
non-duplication constraints, however Kakuro puzzles ad-
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ditionally possess run-total constraints, meaning placed
values not only have to be distinct from others within a
run, but must sum to the correct target. Kakuro puzzles
do not contain given values. Values do not necessarily
appear a specified number of times within a puzzle grid
and may appear more than once in a row or column; the
repeated values must appear in distinct runs within that
row or column.

As part of an investigation into the possible applicabil-
ity of Kakuro to real-world problems, it was necessary
to develop methods for the efficient automated solution
of Kakuro puzzles. In particular, the authors considered
whether puzzle domain information could usefully be em-
ployed to speed solution time. This paper describes the
findings of that investigation.

Section 2 considers the size and complexity of the search
space for an automated Kakuro puzzle solver. The knowl-
edge gained is then employed in Section 3 to determine
the most appropriate basic standard search technique to
pursue. An implementation of that technique is outlined
in Section 4, and improvements to it that are suggested
by puzzle domain information are discussed. The results
of the most promising approaches are compared in Sec-
tion 5. Section 6 concludes on the effectiveness of using
puzzle domain information to increase the efficiency of an
automated solver, briefly outlining the consequences this
may have for the potential application of Kakuro to the
solution of real-world problems.

2 Problem Size and Complexity

Let a Kakuro grid be termed K, where K has dimension
n × m, and the cell at row i and column j (1 ≤ i ≤
n, 1 ≤ j ≤ m) be termed ki,j . Each cell is either a
white cell (to be later assigned a numerical value from a
given, valid range, usually 1, . . . , 9) or a black cell. White
cells within grid K belong to the set W and collectively
form runs, each of which are exclusively either horizontal
or vertical. Each run is represented as a tuple rl (l =
1, . . . , p), where rl ∈ r, the set of all tuples, and p is the
number of runs contained in the puzzle grid. The tuple rl

is defined here to contain no repeated elements. Let | rl |
be the number of cells contained in run rl. Most black
cells contain numerical “clues”; these are the run-totals
(tl ∈ t) that correspond to the runs within the puzzle
grid that vertically or horizontally follow it.

A horizontal run is defined:

rl = (ki,js , . . . , ki,je) ki,jx ∈ rl, 1 ≤ js ≤ jx ≤ je ≤ m

where the run is in row i (1 ≤ i ≤ n), beginning in column
js and ending in column je. A vertical run is similarly
defined:

rl = (kis,j , . . . , kie,j) kix,j ∈ rl, 1 ≤ is ≤ ix ≤ ie ≤ n

where the run is in column j (1 ≤ j ≤ m), beginning in
row is and ending in row ie.

In order to gain an understanding of puzzle complexity,
first consider how many ways there are to complete an
individual run in a way which would satisfy the puz-
zle constraints - the run-total constraint, and the non-
duplication requirement. Assuming the puzzle is well-
formed, while different sets of distinct values might meet
the run constraints, and each set can be permuted into
different orderings, only one permutation of the set will
match the puzzle solution.

Lemma 1. The total number of valid, unordered ar-
rangements of | rl | distinct values (| rl |≤ x) for a
specific run, rl, with run-total tl, is given by the coef-
ficients of a|rl|ytl obtained from the series expansion of
the generating function:

x∏
i=1

(1 + ayi)

Proof. The number of distinct, unordered arrangements
of values for all run-lengths | rl |≤ x, that have run-
total tl, is equivalent to the number of distinct integer
partitions of tl, given by the coefficients of ytl in the series
expansion of the generating function [8]:

x∏
i=1

(1 + yi)

This generating function does not take into account the
number of ways a run-total, tl, can be partitioned into a
specific number of distinct parts, or a specific run-length.

Since each block of the partition may be described using
the dummy variable a, the number of occurrences of a
(the power of a) describes the number of blocks in the
partition and hence the number of cells present in the
run. Therefore, the coefficients of a|rl|ytl describes the
number of partitions of tl into | rl | parts or the number
of arrangements of | rl | distinct values in a run of length
| rl | with run-total tl.

Most published puzzles use the range of values 1, . . . , 9,
i.e. x = 9.

Lemma 2. Let q be the number of valid, unordered ar-
rangements of | rl | distinct values (| rl |≤ x) for a spe-
cific run rl with run-total tl, then the number of ordered
arrangements of these values is given by:
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q | rl |!

Proof. There are | rl |! ways of ordering | rl | distinct
values.

For example, the run (k2,4, k2,5) in the grid of Fig. 1 con-
sists of two cells with a run-total 16. Following expansion
of the generating function of Lemma 1, the coefficient of
a2x16 = 1; there is one unordered way of completing the
run. However, the ordering of values within a run is im-
portant; multiplying this result by | rl |! = 2!, there are
two ordered ways of completing this run. Similarly, the
run (k5,3, k5,4, k5,5, k5,6) in the grid of Fig. 1 consists of
four cells with a run-total 20. Following expansion of
the generating function of Lemma 1, the coefficient of
a4x20 = 12; there are twelve unordered way of complet-
ing the run but 12× | rl |! = 12× 4! = 288 ordered ways
of completing this run.

Instead of individual runs, full puzzles will now be looked
at to establish bounds on the number of valid arrange-
ments of digits from the range 1, . . . , 9 that may be placed
into a grid. The search space, where states within such
search space represent a partial assignment of values in a
grid, can become very large, particularly for larger puzzle
grids. Therefore, the puzzle constraints must be used to
avoid arriving at value arrangements (states) that contain
some arrangement, or partial arrangement of values that
can definitely not be in the solution. States and search
spaces are described in more detail in Section 3. Depend-
ing on the constraint(s) currently enforced, a given grid
may possess a number of valid “solutions”. If both puzzle
constraints are relaxed, each white cell within the puzzle
could potentially accept any of the nine values in the
standard range 1, . . . , 9. A trivial upper bound, U1, on
the number of valid arrangements of values in a Kakuro
puzzle grid is given:

Lemma 3. Let w be the number of white cells within a
Kakuro grid. Then the number of valid arrangements of
values in a Kakuro grid is U1 ≤ 9w.

For the sample puzzle grid of Fig. 1, which possesses
sixteen white cells, U1 ≤ 916 ≈ 1.853 × 1015 possible
arrangements of values.

Kakuro puzzle grids vary greatly in terms of the run-
totals that appear, however all grids adhere to the non-
duplication constraint. If the run-total summation con-
straint is temporarily relaxed, a lower bound, L2 on the
number of arrangements of values in a Kakuro puzzle is
derived:

Lemma 4. The number of valid ways of placing val-
ues from the range 1, . . . , 9, into an n ×m grid of white

cells, such that no value is duplicated in any run is lower
bounded by:

L2 ≥
9∏

x=9−n+1

m−1∏
i=0

(x− i) (1)

Proof. L2 depends on the lowest possible number of val-
ues that a cell can validly accept without contradicting
the non-duplication constraint. Cells within the same
horizontal or vertical run must contain distinct values.
However, two cells placed diagonally with respect to one
another, i.e. that are not within the same horizontal or
vertical run, may accept the same value. If cells are con-
sidered from left to right and top to bottom, a cell at the
intersection of a particular horizontal and vertical run
may contain any value (from the standard range) that
is not already present in the horizontal or vertical runs
in which it resides. L2 is derived by letting every adja-
cent cell to the cell in question, from both runs, contain
a distinct value.

The first cell, k1,1, in row 1, to be considered in a square
grid may always contain any of the nine values from
the standard range 1, . . . , 9. Cells below this initial cell,
can therefore accept a consecutively lower value until the
value 9 − n + 1 is reached in the bottom cell. Consider
each row in turn and let the first element in the row be x.
Each cell in the row can then accept a consecutively lower
value than that placed in the left adjacent cell until the
cell in the rightmost column is reached, taking the value
(x− i) where i = (m− 1). The lower bound, L2, on the
number of valid arrangements of values that exists is the
product of the number of values each cell can accept.

The above lower bound applies only to n × m grids of
white cells. Actual Kakuro puzzle grids do not typically
consist of an n×m grid of white cells; they may contain
black cells at the corners or sides of the grid, or may con-
tain internal black cells. The puzzle grid structure can
therefore vary widely between puzzles and so is highly
puzzle specific. However, similar upper and lower bound
for an actual Kakuro puzzle grid, containing black cells,
can be found. For the sample puzzle grid of Fig. 1, a
lower bound similar to L2 is 928574625241 = 2.29× 1012

possible arrangements of values. The number of valid
grids, where validity here ignores the run total con-
straints, was found by the use of an exhaustive counting
program [7]. This algorithm attempts to assign all possi-
ble values to all possible white cells, providing there were
no duplicate values within horizontal and vertical runs.
Each time a “successful” assignment was made, a counter
is incremented. Using this counting program, the grid of
Fig. 1 has 32,917,207,692,096 such arrangements.

The current (trivial) upper bound, U1 does not take
into account any puzzle constraints while the current
lower bound, L2 does not take the run-total summation
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constraints into account; cells within a run must contain
distinct values and values must meet required run-totals.
Therefore, these are very high. When the run-total
constraints are now taken into account, it is expected
that upper bounds can be derived that are much lower,
since the values that may actually be placed in cells
are likely to be far more limited. In general, most
cells cannot contain all values in the standard range
1, . . . , 9, particularly runs that sum to a very high or
very low run-total. The bounds can therefore be greatly
reduced by considering which of the nine available
values can legitimately be placed in each of the white
cells, depending on both runs in which the cell resides.
(For example, if a run of length two had an associated
run-total of six, the value 3 could not be placed in either
cell belonging to this run because it would result in a
duplicated value.) Each white cell within the puzzle grid
belongs to two runs (one horizontal and one vertical),
so a cell, ki,j , can possibly contain values from two
candidate sets: Ci,j,1, corresponding to the horizontal
run and Ci,j,2, corresponding to the vertical run.

Lemma 5. Let Ci,j,1 contain the values in the candidate
set belonging to the horizontal run and Ci,j,2 the vertical
run for cell ki,j. The number of valid arrangements of
values in a Kakuro grid is:

U2 ≤
∏

∀ki,j∈W

{| Ci,j,1∩Ci,j,2 |} where Ci,j,1∩Ci,j,2 6= ∅

Proof. Let Ci,j,1 contain the values in the candidate set
belonging to the horizontal run and Ci,j,2 the vertical
run, such that Ci,j,1, Ci,j,2 ⊆ {1, . . . , 9} for each cell ki,j .
Therefore, the actual possibilities for the values that may
be placed into a particular cell, ki,j , are from a set ob-
tained through the intersection of these two candidate
sets: Ci,j,1 ∩ Ci,j,2. U2 then follows by taking the prod-
uct of the sizes of all such intersecting candidate sets.

In the grid of Fig. 1, the white cell k3,2 is a member
of a horizontal run (rl1) with run-total tl1 = 20 and a
vertical run (rl2) with run-total tl2 = 4 . A run-total
of four over two cells can only be obtained by using an
arrangement of {1, 3}, so the cell in question can take any
of the values in the candidate set C3,2,2 = {1, 3} based
on run rl2 . Similarly, a run-total of twenty corresponds
to the candidate set C3,2,1 = {1, . . . , 9} based on run rl1 .
Therefore, since {1, 3} ∩ {1, . . . , 9} = {1, 3}, so only one
of these two values can be added validly to this cell. The
cell would therefore be assigned a “score” of two. When
all cells are considered in this way, an improved upper
bound U2 ≤ 443229 = 1, 179, 648 arrangements can be
calculated for this particular example.

This is an indication of the size of the search space for
some automated solver. Hence, in any method of auto-
mated solution of puzzles, there is a clear need to reduce

the size of search space that must be enumerated in or-
der to locate the solution. The next Section uses this
knowledge of likely search space size to establish as sensi-
ble choice of search technique, and Section 4 investigates
how puzzle domain knowledge can be used to reduce the
size of search space that must be enumerated.

3 Selecting a Search Approach

A Kakuro puzzle has a form suitable for a state represen-
tation. Any problem that can potentially be solved using
a formal search-based approach must have [9]:

• A state representation, including an initial state (or
initial position of the problem), a goal state (or
states) and intermediary states;

• A goal test, that indicates when a solution has been
reached;

• A set of operators that map one state to another so
as to produce successor states.

A state may be represented by using an incomplete state
formulation, in which a state is a partial solution to the
problem that is to be completed, or by using a complete
state formulation, in which a state is filled with a set of
values that may be thought of as an ‘incorrect’ solution
to be improved. Both formulations lead to a clearly de-
fined search space [9], a tree of states or nodes, as the
set of either all possible partially-filled or filled grid ar-
rangements. The root of the tree is the initial state, and
the goal, or goals, reside in one or more positions further
down the tree. Each link between states represents one
legal application of an operator, i.e. a move.

The most basic approaches to state-based search are ex-
haustive, or uninformed, search methods, such as breadth-
first search and depth-first search [9, 10]. These are con-
trol strategies that dictate the order in which states are
explored, i.e. added to the search space. Implementa-
tions of the depth-first search approach are generally ef-
ficient because only the states in the currently explored
branch need to be stored. If it can be determined, though
the use of problem domain knowledge, that a solution
cannot lie further down a branch, that fruitless branch
can be pruned - meaning that no further states along
that branch are explored. This pruning is most com-
monly implemented through backtracking, i.e. returning
to a parent node, which is usually the previously-explored
state. For a Kakuro puzzle, the number of occurrences
of each value is not known a priori, complicating the it-
erative alteration of a complete state formulation. An
incomplete state formulation is more straightforward; po-
tentially valid assignments to cells are made at each stage,
the depth of the tree is equal to the number of cells within
the puzzle and the solution must lie on the deepest level.
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The goal test determines whether the puzzle has been
solved, or whether it is necessary to backtrack. There-
fore, an exhaustive control strategy may potentially fully
enumerate the search space in order to locate the solu-
tion. Since Kakuro puzzles should be well-formed (and
so possess a unique solution), the algorithm will gener-
ally terminate prior to full enumeration. However, full
enumeration would be necessary to ensure uniqueness of
solution. For grids having large numbers of cells, ex-
haustive methods will inevitably be inefficient and time
consuming due to the number of states that would need
to be considered. However, the placement of many values
will lead to violations of the puzzle constraints, making
domain information potentially useful for pruning tech-
niques to speed solution.

In a local search approach, the local neighbourhood of a
state is found by applying all valid operators to the cur-
rent state to derive successor states. The merit, or score,
of each successor is evaluated using an objective function,
and the best successor state is selected for further ex-
pansion [10]. For Kakuro, the success of this approach
depends on determining an objective function that can
reliably move towards a goal state. Empty cells will com-
plicate the scoring of the state; it would be unclear how
a scoring mechanism should distinguish adequately be-
tween two states both having most cells empty, for ex-
ample. An incomplete state formulation is therefore not
ideally suited to a local search approach. By compari-
son, it seems more intuitive to distinguish between two
completely filled grids, which may be thought of as repre-
senting ‘poor’ or incorrect solutions. However, the limited
amount of information that can usefully be incorporated
into an effective objective function is detrimental to the
effectiveness of such a function. A local search approach
would become trapped in local optima and in plateaus
in the search space [10, 9], the latter arising from many
adjacent successor states being assigned the same score.
A similar difficulty has been reported for Sudoku [1].

Metaheuristics are used to solve various computational
problems by adding a high-level algorithmic approach
that guides existing control strategies and heuristics in
a search for feasible solutions. Specifically, metaheuristic
approaches might be employed to overcome the limita-
tions of the objective function. Due to the numeric na-
ture of Kakuro puzzles, a genetic algorithm [10] approach
may be effective in automating their solution. Each puz-
zle state (chromosome) may be represented by a bit string
where some mapping function exists to map each bit
string to the familiar grid structure. The length of the
bit string relates to the number of white cells within the
grid, and is therefore constant. Crossover and mutation
operations preserve desirable characteristics of ‘fit’ ‘par-
ent’ genes to ‘breed’ new genes, while also injecting some
new information through random mutations. However, as
with an objective function in a local search techniques,

a fitness function may not be effective since there is lit-
tle puzzle domain information to utilize. Many chromo-
somes, representing solutions of differing “quality”, would
therefore receive the same fitness score. Metaheuristic
approaches generally involve high processing overheads.
Such elaborate and often inefficient schemes are probably
not justified for puzzles in which a solution is both easy
to define and relatively easy to locate within its search
space.

Local search and metaheuristic approaches are not
deemed suitable for Kakuro puzzles. Exhaustive ap-
proaches will always, eventually, locate a solution, and
take direct advantage of the problem complexity char-
acteristics of Kakuro puzzles, notably the permutations
of the values that may legitimately be assigned to runs.
However, to ensure efficiency of solution, particularly for
larger or complex puzzles, the addition of effective prun-
ing is required. It is expected that the use of pruning
within a depth-first backtracker will lead to an efficient
approach to the automated solution of Kakuro puzzles
and will enable puzzle properties to be highlighted. This
is implemented and tested in Section 4.

4 The Solver

4.1 The Basic Recursive Approach

A backtracking algorithm, employing a depth-first ap-
proach to examining the search space, is a form of ex-
haustive search. Pruning conditions that exploit features
of the problem domain may be used to reduce time spent
examining the search space [9]. The initial exhaustive
backtracker is explained first, and effective pruning con-
ditions that reduce the number of states that must be
investigated within the search space are incorporated in
Section 4.2.

Algorithm 1 Recursive Backtracking Algorithm:
Main()

Initialise puzzle information, global Iteration Count
and Solution Stack.
Current State becomes the initial state.
Current Cell is set to be the first available white cell.
if Solve(Current State, Current Cell) is TRUE then

Print Solution-Stack.
else

Print “No Solutions”.
end if

Algorithm 1 calls the boolean Algorithm 2, passing as pa-
rameters the initial (empty) grid and a reference to the
(first) white cell to be considered. This call is the ini-
tial call. Algorithm 2 then iteratively attempts to assign
values to the white cell passed as a parameter, beginning
with the lowest numerical value. An apparently success-
ful assignment of a value to a cell (one which does not
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violate puzzle constraints) will result in a recursive call
to itself, passing as parameters the current partially-filled
grid and a reference to the white cell to be considered
next. Violations of the puzzle constraints - a duplicate
value in a run, an exceeded run-total or an under-target
run-total where all possible values have been considered
for the final cell of a run - will result in the algorithm
returning “False” to the parent. If a solution is reached
when the last cell has been considered, the solution is
added to the solution stack and “True” is passed to each
parent, up to and including that which made the initial
call, prompting the solution stack to be output. Other-
wise, if the largest possible value has been unsuccessfully
attempted, “False” is passed to each parent, up to and
including that which made the initial call, prompting a
“No Solutions” message. This approach may be adapted
to find all solutions to a puzzle grid, which is useful to
determine whether a given puzzle is well-formed. In such
a case, when a solution is found and added to the solution
stack, the algorithm continues instead of passing “True”
to the parent. An iteration count can be added which
is incremented each time an attempt is made to assign
a value to a cell; this is used as a measure of algorithm
performance in Section 5.

Algorithm 2 Recursive Backtracking Algorithm:
Solve(Current State, Current Cell)

for Current Value from 1 to 9 do
Increment Iteration Count.
Determine runs in which Current Cell resides, and
corresponding run-totals.
Place Current Value into Current Cell within Cur-
rent State.
Check resulting Current State for puzzle violations.
if [no duplicates in runs] and ([run-total(s) not ex-
ceeded] or [run(s) completed correctly]) then

if No White Cells remain then
Add Current State to Solution Stack.
Return TRUE.

else
Current Cell becomes next available white cell.
if Solve(Current State, Current Cell) is TRUE
then

Return TRUE.
end if

end if
else

Return FALSE.
end if

end for

While this approach is ideal for smaller puzzles, the algo-
rithm may be required to perform a great deal of back-
tracking in larger puzzles. The algorithm may even reach
the final cell before a violation is detected. The addi-
tion of further components is desirable, and additional
pruning conditions are proposed below.

4.2 Incorporating Puzzle Domain Informa-
tion

Reducing the number of puzzle states that must be con-
sidered may reduce the overall time taken to find a solu-
tion. However, the introduction of heuristics and pruning
techniques to enable this will come at a cost in processing
time. Two approaches to achieving such a reduction are
considered here, and evaluated in Section 5.

4.2.1 Projected Run Pruning

The Recursive Backtracking Algorithm 2 of Section 4.1
checks for invalid assignments to a run on the completion
of that run. This will still allow poor choices of values to
be placed at the beginning of a run, such that the run-
total can not be met with legitimate value assignments
in the remaining cells. (As an example, consider a run of
5 cells having the run-total 35; a placement of 1 in the
initial cell will make the run impossible to complete.) In
such a case, considerable processing time would be wasted
until the Backtracking Algorithm eventually places a suf-
ficiently large value in the initial cell.

Validity checks, termed Projected Run Pruning, are
added to the Recursive Backtracking Algorithm 2. On
assigning a value to a cell in a run that still possesses
unassigned cells, a calculation is performed of the sum
of the largest possible values that may still legitimately
be added to the remaining cells of that run. If this sum
yields a run-total at least matching the specified run-
total for that cell, the backtracker continues, otherwise
this fruitless branch of the search space is pruned and
backtracking occurs.

Additionally, if only one cell remains unfilled within a
run, a check is performed to calculate the difference be-
tween the run-totals of both corresponding runs and their
current totals. If this difference cannot be met without
assigning a value to the remaining cell that is already
present in either the horizontal or vertical run in which
the cell resides (hence causing a duplication violation),
then this fruitless branch of the search space is pruned
and backtracking occurs. If a single required value can
be placed successfully, it is placed in the cell.

4.2.2 Candidate Set Elimination

In Section 2, each run within a puzzle was assigned a can-
didate set; this is a set containing all values that can be
used to satisfy the given run-total over the given number
of cells. Since each cell is a member of two runs, a cell
can only contain the values present in the intersection of
the two candidate sets that correspond to the two runs in
which it belongs. (For example, a run-total of 14 over two
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cells can be filled using specific pairs of values from the
set {5,6,8,9}, and an intersecting two-cell run with run-
total 6 has a candidate set {1,2,4,5}; the intersection of
these two candidate sets contains only a unique element,
5, that may be placed in the intersecting cell.)

In a Candidate Set Elimination cell ordering approach,
the checks for Projected Run Pruning are extended so
that the “Current Value” is not assigned to the “Cur-
rent Cell” unless it is a member of the intersection of the
candidate sets of the two runs in which “Current Cell”
resides. The “Current Value” is increased until a valid
value is reached or the “Current Value” becomes 9. Also,
if a cell has only one value in the intersection of its can-
didate sets, “Current Value” now automatically “jumps”
to the required value. Hence, many fruitless branches of
the search space are pruned due to the absence of certain
values in that intersection.

It is expected that Candidate Set Elimination, in combi-
nation with Projected Run Pruning will further decrease
the number of iterations required to find a solution and
hence, the overall solution time required. However, the
processing overheads of Candidate Set elimination must
not have a detrimental effect on the overall algorithm
speed; such overheads may negate any beneficial effects
of iteration count reductions.

5 Results and Evaluation

All tests were performed on a Viglen Intel Core 2 Duo
processor 2.66GHz, with 2GB RAM. Programs were de-
veloped in Java (using Oracle Jdeveloper 10.1.3.3.0) and
executed in the J2SE runtime environment. All times are
given in milliseconds.

5.1 The Initial Test Set

Results are shown here for the Recursive Backtracker of
Algorithm 2 alone, with Projected Run Pruning (P.R.P.),
and with both P.R.P. and Candidate Set Elimination
(C.S.E.) added. Few puzzles of small size were avail-
able for testing, but a small initial test set was deemed
sufficient to examine the methods and to demonstrate
both the puzzle-specific nature of Kakuro and the effec-
tiveness of the heuristics. For ten puzzles of each grid
size between 2 × 2 and 10 × 10 inclusive, the minimum,
maximum, median and average solution times, and the
median and average numbers of iterations (explained in
Section 4.1 required are shown.

The use of P.R.P., and P.R.P. and C.S.E. together, both
greatly reduce the iteration count and solution time,
demonstrating their effectiveness. As expected, the it-
eration count when adding C.S.E. always decreases in
comparison with P.R.P. alone; impossible assignments to
a cell are avoided by examining the contents of the in-
tersected candidate sets that belong to the two runs in

Table 1: Comparative minimum solution times [ms]
Approach Used

Recursive
Back-
tracker

P.R.P.
added

P.R.P and
C.S.E.
added

G
ri

d
S
iz

e

2× 2 0.96 0.21 4.58
4× 3 1.22 0.55 2.18
4× 4 1.51 0.72 5.88
5× 5 7.67 3.61 7.07
6× 6 5.85 1.51 5.40
7× 7 8.48 3.08 8.72
8× 8 13.43 8.05 12.91
9× 9 216.57 28.21 20.28
10× 10 104.95 24.38 45.14

Table 2: Comparative maximum solution times [ms]
Approach Used

Recursive
Back-
tracker

P.R.P.
added

P.R.P and
C.S.E.
added

G
ri

d
S
iz

e
2× 2 2.00 0.53 5.16
4× 3 21.30 9.35 11.64
4× 4 105.98 10.64 12.99
5× 5 911.49 150.68 98.03
6× 6 3,454.16 118.48 74.25
7× 7 899.91 180.20 103.07
8× 8 544.27 100.14 69.99
9× 9 33,417.12 163.73 90.33
10× 10 653.00 290.52 223.35

Table 3: Comparative median solution times [ms]
Approach Used

Recursive
Back-
tracker

P.R.P.
added

P.R.P and
C.S.E.
added

G
ri

d
S
iz

e

2× 2 1.16 0.31 4.89
4× 3 7.51 1.92 6.91
4× 4 7.39 2.09 7.00
5× 5 41.41 10.12 12.44
6× 6 18.22 3.87 10.78
7× 7 29.04 10.63 12.22
8× 8 72.76 36.46 34.07
9× 9 997.16 66.98 51.29
10× 10 352.61 91.35 76.51

Table 4: Comparative Average solution times [ms]
Approach Used

Recursive
Back-
tracker

P.R.P.
added

P.R.P and
C.S.E.
added

G
ri

d
S
iz

e

2× 2 1.22 0.34 4.87
4× 3 8.80 2.90 7.19
4× 4 21.06 3.86 7.47
5× 5 177.56 47.06 28.17
6× 6 407.54 17.59 17.00
7× 7 243.23 33.90 23.67
8× 8 131.7 42.87 34.58
9× 9 7,963.83 82.80 59.23
10× 10 371.03 106.57 97.63
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Table 5: Comparative median iteration counts
Approach Used

Recursive
Back-
tracker

P.R.P.
added

P.R.P and
C.S.E.
added

G
ri

d
S
iz

e

2× 2 56.00 13.00 8.50
4× 3 780.00 62.00 24.50
4× 4 11,051.00 85.50 26.50
5× 5 5,349.00 379.00 224.50
6× 6 2,295.00 126.00 51.50
7× 7 3,547.00 290.50 133.50
8× 8 6,273.00 852.50 573.50
9× 9 75,705.00 1,348.00 521.00
10× 10 24,646.00 1,590.00 1,010.00

Table 6: Comparative average iteration counts
Approach Used

Recursive
Back-
tracker

RP.R.P.
added

P.R.P and
C.S.E.
added

G
ri

d
S
iz

e

2× 2 55.30 11.20 8.40
4× 3 1,325.60 122.30 33.20
4× 4 2,717.50 159.40 59.00
5× 5 21,449.50 1,767.70 751.50
6× 6 56,184.90 577.90 271.70
7× 7 23,014.00 943.80 407.70
8× 8 11,372.60 1,030.20 571.70
9× 9 649,295.30 1,712.70 771.00
10× 10 24,059.70 1,849.30 1,364.90

which the cell resides. However, the average solution time
decreases only for puzzles of larger size, and by much
smaller margins than is evident for iteration count. This
suggests that the processing overheads required for C.S.E.
cause a significant decrease in speed, negating some or
all of the beneficial effects of the redunction in iteration
count. Ultimately, only the overall time taken to obtain
to a solution is of importance. More analysis is therefore
required to determine whether the additional processing
cost of C.S.E. is warranted, when comparing with P.R.P.
alone.

5.2 Expanding the Test Set

Initial testing in Section 5.1 makes clear that the addition
of P.R.P. greatly reduces solution time, but that further
analysis is required to determine whether the addition of
C.S.E. is worthwhile. While few puzzles of small sizes are
available, a larger number of published puzzles exist for
a more “standard” challenge. For an increased test set of
puzzles (200 puzzles of grid size 9 × 9, 50 of each other
grid size 2 × 2 up to 10 × 10), tests were performed on
the most promising methods: Recursion with P.R.P. and
also with the addition of C.S.E. This testing attempts to
determine whether the latter approach produces consis-
tent and significant reductions in solution time as well as
iteration count. Table 8 shows the minimum, maximum,
median and average solution times and iteration counts,
and the average numbers of iterations per millisecond, for

both approaches.

Despite appearing detrimental to the times taken to solve
puzzles with smaller grids, the combination of Projected
Run Pruning and Candidate Set Elimination is deemed
the most successful approach. When compared to P.R.P.
alone, C.S.E. successfully decreases the iteration counts
for all size groupings of puzzles. The average algorithm
speed, indicated by the average number of iterations that
can be performed in a millisecond, shows a clear decreas-
ing trend as grid size increased for P.R.P. alone. This
trend is with the exception of 2 × 2 grids where puzzle
initialisation occupies a larger percentage of the total so-
lution time. The trend is not as evident when C.S.E.
is added, possibly due to success of the resultant prun-
ing in greatly reducing the numbers of iterations now
required for specific puzzles, and to the additional pro-
cessing overhead of puzzle initialisation due to cell or-
dering. That overhead is less evident when larger puzzle
grids are solved, which typically require a higher itera-
tion count for their solution. The overheads of generat-
ing and intersecting pairs of candidate sets for every cell
is clearly more evident in smaller grids because they are
more likely to require a small number of iterations for
their solution to be found. Table 7 shows how the per-
centage by which both the median and average iteration
counts and solution times for puzzles within this extended
test set changed as a result of adding the pruning based
on C.S.E. (A negative entry denotes an improvement.)

Table 7: Changes as a result of Candidate Set Elimina-
tion (%)

Iteration Count Solution Time

Median Average Median Average
10× 10 -37% -39% -22% -31%
9× 9 -54% -73% -48% -70%
8× 8 -33% -48% -9% -41%
7× 7 -55% -39% +20% -38%
6× 6 -52% -58% +18% -53%
5× 5 -29% -70% +15% -61%
4× 4 -70% -66% +13% +3%
4× 3 -61% -62% +352% +201%
2× 2 -67% -32% +1,666% +1,610%

6 Conclusions and Future Work

An investigation by the authors into the potential appli-
cability of Kakuro to real-world problems required the
development of methods for the efficient automated solu-
tion of Kakuro puzzles. The main aim of this paper was
to establish whether, and to what extent, puzzle domain
information could usefully be employed to speed solution
time.
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The nature of the domain information is not compati-
ble with the construction of objective functions in local
search approaches, nor for the development of, for exam-
ple, a fitness function in a genetic algorithm approach.
The simplicity of defining a puzzle solution, and the rel-
ative ease with which it may be located within its search
space leads to the choice of an exhaustive backtracking
approach, provided that efficient and effective pruning
techniques are suggested by the domain information.

Firstly, Projected Run Pruning was introduced to prune
branches of the search space along which a solution can-
not lie by considering whether a partially completed run
could be validly completed to meet its run totals. Sec-
ondly, the size of the intersection of sets of candidate
values associated with runs was identified in Section 2 as
being important in an understanding of individual puz-
zle complexity. This measure was used as a cell order-
ing heuristic (Candidate Set Elimination). For all puzzle
sizes, both approaches were shown to greatly reduce the
number of iterations required to reach a solution, and
the former also produced a marked and consistent de-
crease in solution time. The processing overheads from
adding Candidate Set Elimation increased solution time
for smaller puzzle grids, but produced significant reduc-
tions for puzzles of sizes that are more typical of those
published. Puzzles with large grids typically require a
larger number of iterations for their solution, meaning
that the benefits of the pruning associated with the can-
didate sets are more evident. Puzzle domain information
has been demonstrated to be useful in significantly re-
ducing solution time.

The effectivess of both heuristics may initially seem to
raise the prospect of their usefulness in the solution of
very large grids, that may be required in any application
of Kakuro to the solution of analagous real-world prob-
lems. However, there was a marked decrease in speed as
the grid sizes increases. This may be attributed to the
fact that larger puzzles typically contain more runs that
can be considered ‘long’, greatly increasing the amount of
backtracking and the time required to perform the prun-
ing checks. The rate of decrease in speed as grid size
increases limits the usefulness of Kakuro in real-world
applications that require a mapping to very large grids.

Further analysis of possible arrangements of values in
larger Kakuro grids, and the determination of whether
all grids of a larger, given size can be fully enumerated,
would add to an understanding of puzzle properties. It
would also assist in the evaluation of how automated
solvers might address the efficient solution of very large
puzzle grids.
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