
An Efficient Recovery Scheme for Node and Link
Failures in Real-Time IP Communications

B Purushotham, Ch D V Subba Rao, Member, IAENG, and N Padmaja

Abstract Distributed real-time applications such as medical
imaging, traffic control, and video conferencing demand hard
guarantees on the message delivery latency and the recovery
delay from component failures. In order to meet these
requirements there exist number of schemes by reserving
additional resources a priori along a backup channel which is
disjoint with the primary path. A new method has been
proposed for computing segmented backup for recovering
from node and link failures in real-time IP communications.
This paper compares the performance of proposed scheme
with the schemes available in the literature for mesh and other
topologies. It has been demonstrated that the proposed scheme
gives better results on parameters like number of backup
segments, percentage reuse of primary path and average hop
count for failure notification.

II. RELATED WORK

Index Terms IP Networks, Fault Tolerance, Segmented

Backup, Resilient Routing Layer, QoS with restoration.

In this section, the work done towards finding pre-

computed backup paths for achieving routing resilience is
reviewed. This section discusses the two significant schemes
related to fault tolerance for the internet traffic. They are
segmented backup [1] which is particular to real-time
applications and resilient routing layers [2] which is for
general IP traffic. In this section, we also discuss another
scheme studied in this context i.e. QoS paths with
restoration [5].

A. Overview of Segmented Backup

In the reactive schemes for fault tolerance there are two
different approaches for the computation of backup paths.
First approach is end-to-end backup [6] in which backup
paths are disjoint with respect to the primary path where
primary path is the best path with respect to the criteria of
the application. The data is transmitted on this path when no
fault has occurred. In the second approach, the primary path
is divided into many overlapping sub-paths. Alternate path
computation is done by computing backups for these sub-
paths. Thus, recovery from faults in this scheme is confined
to switching to the backup for the part of the primary path
where the failure has occurred. Whenever there is a fault,
the corresponding alternate path is activated to re-route the
data. This approach is called local detouring [7]. Segmented
backup [1] is a kind of a local detouring scheme in which
multiple backup paths exist, each protecting a portion of the
primary path.

I. INTRODUCTION

 IP networks were initially built to handle traffic in a best-
effort manner. Best-effort delivery means that IP does its
best to transmit packets from source to destination but does
not provide any guarantees. But, newly emerging
applications demand performance requirements like less
delay, high throughput, etc. Quality-of-Service (QoS) in
internet is provision of these performance guarantees to the
applications. However, failure of a node or link along the
transmission path can disrupt the data flow. QoS cannot be
achieved in such circumstances. Ensuring seamless flow of
data even when failures occur in the network is called as
reliability. To achieve reliability, various fault tolerant
schemes are used, which are primarily based on computing
alternate paths. These backup paths are activated whenever
there is a fault. The proposed scheme handles the failure
recovery in real time applications by meeting the strict delay
constraints.

A.1 Illustration of Segmented Backup

 Backup Segments

 The rest of this paper is organized as follows: Section 2
presents the literature review of various fault tolerant
schemes for real-time IP applications. Section 3 describes
the proposed scheme. Performance evaluation/ comparison
of the proposed scheme and other existing schemes have
been done in section 4. Section 5 presents the conclusions
and future enhancements.

 Manuscript received April, 2009.

 Mr B Purushotham is with Dept. of Computer Science and Engg, C R
Engineering College, Renigunta Road, Tirupati – 517 501, India. (phone:
+919912211341, e-mail: bpurush_mtech@yahoo.co.in)
 Dr Ch D V Subba Rao is with Dept. of Computer Science and Engg., S V
University College of Engineering, Tirupati – 517 502, India. (e-mail:
subbarao_chdv@hotmail.com)
 Mrs N Padmaja is with Dept. of Electronics and Communication Engg., C
R Engineering College, Renigunta Road, Tirupati – 517 501, India. (e-mail:
padnaja2000@yahoo.co.in)

Fig 1. Illustration of a primary path with a segmented
backup.

In segmented backup, backups are computed for portions

of the primary path. These portions are called as segments.
A backup path is found for each segment, which is called as
backup segment. All such computed backup segments are
collectively referred to as segmented backup. Fig.1 shows
an illustration of a primary path with intermediate nodes N1
to N8 and links 1-9 and its segmented backup. The backup

 B E F I J

 A C D Fault G H K

 S 1 2 3 4 5 6 7 8 9 D

N1 N2 N3 N4 N5 N6 N7 N8

Primary Path Segmented Backup Backup path

IAENG International Journal of Computer Science, 37:2, IJCS_37_2_05

(Advance online publication: 13 May 2010)

__

mailto:bpurush_mtech@yahoo.co.in
mailto:subbarao_chdv@hotmail.com

B. Resilient Routing Layers (RRL) links are shown as A–K. The primary path has three
segments, each with its own backup segment. The segments
span links 1-3, 3-6 and 6-9, while their corresponding
backup segments span links A-C, D-G, and H-K,
respectively. These three backup segments together
constitute the segmented backup for this primary path. Note
that successive segments of a primary path overlap on at-
least one link. This is to ensure that there is no single point
of failure and recovery is possible for any node failures.

 RRL [2] is a network resilience scheme meant for
handling of general IP traffic. We first describe the
terminology associated with this scheme and followed by
recovery mechanism.

B.1 Terminology: RRL is based on computing redundant
subsets of the network topology which are called layers. Let
G=(V,E) be the graph representing the network topology,
where V is the set of vertices representing nodes and E is the
set of edges representing links. A layer is defined as graph
G'=(V,E') where E' is a subset of E and G' is a connected
graph, i.e. a layer has only a subset of links in the network
but contains all the nodes. A node is said to be safe in a
layer if only one of its links is contained in that layer. The
term safe layer for a node is used to denote a layer in which
the node is safe. Many nodes can be safe in a single layer,
where all such nodes are called safe nodes of that layer.

 Consider for example that link 4 has failed. Restoration of
connection is done by bypassing the segment 3–6 by using
its corresponding backup segment D–G. Rest of the primary
path is used as it is. Here the recovery is done locally and
also there is as much reuse of the allocated resources along
the primary path as possible. Local recovery and reuse of the
primary path are the fundamental advantages of segmented
backup over an end-to-end backup.

A.2 Min_SegBak Algorithm: Fig. 3(a) shows an example network with eight nodes and
fourteen links and it has no articulation points. Two example
layers where all the nodes of the graph are safe are shown in
Fig. 3(b) and 3(c).

Min_SegBak algorithm [1] is used to compute segmented
backup. The steps involved in the algorithm are illustrated
through an example in the Fig 2. Given a graph G=(V,E),
construct a directed auxiliary graph G'(V,E') using the
following rules.

• Auxiliary graph construction.
For every link l=(u,v), where l does not belong to primary
path P, add two directed links (v,u) and (u,v) to G' . The cost
and the delay of these directed links remains the same as
those of the original link as shown in Fig. 2(a). Replace
every link l=(u,v) where l belongs to the primary path P
with l=(v,u) in G' and assign it zero cost. The links
belonging to the primary path are now reversed as shown in
Fig. 2(b).

Fig. 2. Illustration of Min_SegBak algorithm. (a) Graph G
with Primary path S to D. (b) Modified Graph G' with
shortest path S to D. (c) Primary path with backup segments.

For every link l=(u,v) where v belongs to primary path P,
replace it with link (u,w) where ‘w’ is immediate
predecessor of ‘v’ in P as shown in Fig. 2(b).
• Least delay path in the auxiliary graph: Find shortest path

P' from source (S) to destination (D) in the auxiliary graph
G' shown in Fig. 2(b).

• Construction of segmented backup: Using the primary
path and the shortest path in the auxiliary graph the
segmented backup is computed vide Fig. 2(c).

Fig. 3. Illustration of layers. (a) An Example Network with
8 nodes and 14 links. (b) Layer 1 generated based on (a). (c)
Layer 2 generated based on (a).

B.2 Recovery Mechanism: In order to use an RRL as a
complete method for recovery, layers are to be generated in
such a way that all nodes that are not articulation points are
safe in at least one layer. The layers are used as input to
routing algorithms and a routing table is calculated for each
layer. Tables containing routing information for each layer
must be kept in every node.

When any node fails, all the traffic which is passing
through the failed node is transmitted along the safe layer of
that node. Only the traffic sourced by or destined for the
failed node will be lost. Each packet is marked according to
what layer is currently valid so that other nodes can keep
forwarding in the same layer. All the packets not affected by
fault are routed based on the full topology. The most
important requirement for this scheme to work is detection
and propagation of failure of a node so that the intermediate
node can move the traffic to another layer.

2 3

54

876

1 1 2 3

4 5

6 7 8

2 3

54

876

1

(a) (b)

Primary Path

Shortest Path

Segmented Backup

0

0

0

0

0

1 2

 4 5 6

 7 8 9

S 11 12

1 2

 4 5 6

 7 8 9

S 11 12

D

S

D D

(a) (b) (c)

(c)

IAENG International Journal of Computer Science, 37:2, IJCS_37_2_05

(Advance online publication: 13 May 2010)

__

C. Algorithms for computing QoS paths with restoration

This paper [5] gives algorithms for finding restoration
topologies for QoS paths. A restoration topology is a set of
bridges, each bridge protecting a portion of the primary QoS
path. The authors claim that this approach is guaranteed to
find a restoration topology with low cost when one exists.
To choose a set of protective bridges that have minimum
cost is a NP-hard problem. Hence this scheme has pseudo-
polynomial time complexity.

The network has a source S that communicates with a
destination D and has certain QoS requirements. The
available bandwidth and delay on every link is known. It is
assumed that the network does not contain any parallel links
(i.e. two or more links that connect the same nodes). Only
single failures of nodes or links are considered. Here the
problem is to find a minimum cost restoration topology R
for a given primary QoS path P.

The general approach is to construct an auxiliary graph
which is a modified form of the original graph. Then the
concepts like adjusted delay and feasible walk are used in
the algorithms to construct restoration topology.

III. PROPOSED MODEL

It is understood that having larger number of backup

segments enables one to capture the properties like faster
recovery and better reuse of resources reserved along the
primary path. Towards this end, the attention has been
focused on improving the number of backup segments in the
computed segmented backup.

The observation is that the numbers of backup segments
computed by the Min_SegBak algorithm are less and in most
of the cases it is an end-to-end backup even though there are
possible backup segments. It has been demonstrated that
proposed scheme produces more number of backup
segments than Min_SegBak algorithm. A more detailed
explanation of how the proposed scheme works is given in
the following sections.

A. Overview

 In the proposed scheme the idea is to divide the primary
path into segments of equal size. Then construct auxiliary
graph for each segment in such a way that the components
of each segment are protected and the shortest path from
source to destination in the graph has maximum overlap
with the primary path. By making use of shortest path, the
backup segment for the corresponding segment is
segmented. Let ‘s’ be the size of the segment. First, we
choose a value for s to partition the primary path into
segments in such a way that adjacent segments overlap with
one link. This overlap ensures that recovery from node
failures is guaranteed. For each segment a backup segment
is produced by performing the following steps.
• Generate an auxiliary graph by removing the links that are

incident on the intermediate nodes of the segment and
make the remaining links along the primary path to have
weight as zero.

• Find the shortest path P' from source to destination in the
modified graph.

• Using primary path and P', compute the backup segment
for that segment.
 A smaller value for the segment size produces more

backup segments which are shorter in length. Shorter

backup segments take less time for failure notification and
backup activation. In other words failure recovery is handled
more locally. On the other hand larger values of segment
sizes produce less number of backup segments which are
longer in length. In case of long backup segments, time
taken for failure notification and backup activation is
relatively more.

The inference is that segment size is directly proportional
to recovery time. However a smaller value for segment size
incurs computational overhead. In our scheme, there is a
flexibility of choosing the value of the segment size
appropriately according to the delay requirement of the real-
time application. In the next subsection the detailed
illustration of the proposed scheme is given.

B. Illustration with Example

The section illustrates how the proposed method computes

the segmented backup. Fig 4(a) shows the initial topology
along with the primary path from source (S) to destination
(D). In this example the segment size is assumed as three.
Then partition the primary path into segments of size three
with one link overlap as shown in Fig. 4(b) and compute
auxiliary graph for the first segment by removing the
links that are incident on the intermediate nodes of the
segment and assign zero weight to rest of the links along the
primary path as shown in Fig. 4(c).

 2 3 4 5 6 7
 S D

 (a)

 2 3 4 5 6 7

 S D

 (b)

 0 0 0 0

 S D
 (c)

 2 3 4 5 6 7

 S D

 (d)

Fig. 4. Illustration with Example. (a) Initial topology with
primary path from S to D. (b) Primary segments after
segmentation of primary path. (c) Shortest path from S to D
in the auxiliary graph of first segment. (d) Segmented
backup consisting three backup segments.

 Next find the shortest path P' from S to D in the auxiliary
graph. By using primary path and P' compute backup
segment for first segment. Similarly repeat the same
procedure for all the segments to get a segmented backup as
shown in Fig. 4(d).

The significance of the auxiliary graph is that it allows us
to find a shortest path P' from S to D which will just bypass
the intermediate nodes and links of the segment and reuse
rest of the primary path. The zero weights to the links in the

IAENG International Journal of Computer Science, 37:2, IJCS_37_2_05

(Advance online publication: 13 May 2010)

__

modified graph force the backup path P' to reuse the
primary path. The next section discusses the optimization
issues of the proposed scheme.

C. Optimization

 Here the scenarios are described, which show the need for
improvement in the above said scheme. Fig. 5 shows
instances of primary paths and their corresponding
segmented backups, computed by our scheme. These
instances are from a 12x12 mesh topology with random link
weights ranging from 1 to 5. Fig. 5(a) shows an instance of a
primary path and its segmented backup computed by our
scheme. Backup segment (2) protects all the components
that are being protected by backup segment (3). Hence,
backup segment (3) is a redundant one. Fig. 5(b) shows
another instance of primary path and segmented backup
computed by our scheme. Here, five backup segments are
constructed. One can observe that the backup segment (4) is
protecting the nodes that are already protected by backup
segments (3) and (5), so the backup segment (4) is
redundant one.

Fig.5 Segmented backups before optimization. (a) Example1

(b) Example 2.

In the process of our work the observation is that this
redundancy is due to fact that there was no attempt to check
if two segments share a backup segment leading to
redundant backup segments. This is due to the reason that
we partition the primary path a priori into segments of equal
size. Consequently, the flexibility of choosing segments that
are not redundant is loosed.
 The proposed scheme is refined by making a small
modification. We defer the computation of next segment
until the current backup segment is computed. Once a
backup segment is computed, start the next segment from
the predecessor of the last node of the current backup
segment.
 Fig.6 shows how the modified scheme computes
segmented backup for the same instances that are shown in
the Fig. 5. Fig. 6(a) shows segmented backup computed by
refined scheme for the instance shown in the Fig. 5(a). Here
the segmented backup has only two backup segments and
the computation of backup segment (3) is eliminated.

Fig. 6(b) shows segmented backup computed by the refined
scheme for the instance shown in Fig. 5(b).

Table I describes the notation used in the algorithms
presented in Figures 7 to 9. The network is represented by a
weighted graph G(V,E), where V is the set of nodes and E is
the set of links in the network. Edge weights in the graph

Fig. 6. Segmented backups after optimization. (a)Example 1.
(b) Example 2.

In the earlier case, there are five backup segments. We

can observe that the backup segment (4) is redundant since
it is protecting the nodes that are already protected by
backup segments (3) and (5). Even the backup segment (4)
is removed; the segmented backup in the Fig. 5(b) consists
of four backup segments whereas it is only three for
segmented backup computed by the optimized scheme as
shown in the Fig. 6(b).
 Our optimized scheme works particularly well for
arbitrary topologies where the backup segments tend to end
at a node beyond the defined length of the segment.

D. Algorithms

Table I

NOTATION USED IN THE ALGORITHMS

G(V,E) A graph that represents a network topology

 V Set of nodes of G

 E Set of links of G

 S Source

 D Destination

 P = (S,v1,v2,v3,.....,D) Sequence of vertices denoting the primary
 path in G

 PS = (ps1,ps2,.....psk) Sequence of segments of P

 Gi

' (V,Ei
') Auxiliary graph for segment psi

 Pi

' Sequence of vertices denoting the shortest
 path between S and D in Gi

'

 BS = (bs1,bs2.....bsk) Sequence of backup segments

 s Size of segment

S

(2) D

(1)

 Primary Path
 Segmented Backup

D
(2)

(3)

(1)S

(a)

(b)

S

(3)

 (2) D

(1)

 Primary Path

 Segmented Backup

(3)
D

(5)

(4)

(2)

(1) S

(a)

(b)

IAENG International Journal of Computer Science, 37:2, IJCS_37_2_05

(Advance online publication: 13 May 2010)

__

represent propagation delay of links in the network
topology. Let S and D represent source and destination
nodes respectively. The notation used is shown in Table I. In
the notation, s represents number of links that a segment
spans and bsi represents the backup segment of the segment
psi for 1 ≤ i ≤ k.Where k is the number of backup segments
in the segmented backup. The pseudo code of
Eff_SegBak(G,S,D,P,s) is given in Figure 7.

Fig. 7. Efficient segmented backup algorithm

The module StPath(Gi
',S,D) is any shortest path algorithm

which finds shortest path between S(source) and
D(destination) in the graph Gi

'. In our implementation
Dijkstra’s algorithm is used for finding the shortest path.
The module CAGraph(G,S,D,P,s,start_node) is used for
construction of the auxiliary graph where start node
represents the starting node of the segment for which the
auxiliary graph is constructed and the algorithm is given in
Figure 8.

Fig. 8. Auxiliary graph construction algorithm

First make a copy of the original graph G as Gi
'. Then

modify the graph Gi
' to get the auxiliary graph of the

segment psi. In the first while loop, make all links along the
primary path P in the graph G to have weight as zero. In the
second while loop; set weights of all links incident on the
intermediate nodes of the segment to ∞.

 The module CBSegment(P,Gi
',S,D) computes the backup

segment for segment psi. Here P is the primary path in the
graph G and Gi

' is the shortest path from S to D in the
auxiliary graph Gi

' and the algorithm for the same is given in
Figure 9.

 Fig. 9. Backup segment computation algorithm

IV. EXPERIMENTAL RESULTS

 This section evaluates the algorithms Min_SegBack and
Eff_SegBak and explains the topologies that are used for
testing and other implementation choices made by us. Later
how these two schemes work with respect to the evaluation
parameters is discussed.

A. Experimental Topologies

In our implementation the objective is to see how the
algorithms Eff_SegBak and Min_SegBak compute backup
segments. The behavior of the two algorithms tested on
regular mesh topologies like 5 x 5, 7 x 7, 9 x 9 and 12 x 12.
and other synthetic topologies generated by a tool called
BRITE [3]. Two variants of BRITE generated topologies are
used. The first is Router Waxman [3] and the second is
Router Barabasi Albert [3].

The random delays for links in the topologies are ranging
from 1 to 5. A delay constraint [5] is also imposed in our
implementation according to which, if the total backup path
length of a backup segment is greater than the predefined
delay, that backup segment is not considered. The segment
size chosen is three. The choice of segment size has greater
impact on number of backup segments produced in
Eff_SegBak and consequently affects the recovery delay. In
the implementation, our primary concern is to see which of
these two algorithms is better in producing larger number of
backup segments. The implementation of our scheme is
done in C++. Five hundred source-destination pairs are
randomly generated for the above said topologies and
computed these four parameters for each of such pairs using
both the schemes and averaged the outputs of these five
hundred trials.

Eff_SegBak(G,S,D,P,s)

 start_node set to Source S
 i set to 1
 loop
 Call CAGraph(G,S,D, P, s, start_node) to construct auxiliary

Graph and set to Gi
'

 Call StPath(Gi
',S,D) to compute shotest path Pi

'

 Call CBSegment(P, Pi
' ,S,D) to compute backupsegment and set

to bsi
 Call getLastNode() for backup segment bsi and set to start_node.
 if start_node is equal to destination D then
 end of loop
 end if
 Get the previous node on the primary path and set to start_node.
 increment i by one
 end loop

CAGraph(G,S,D,P,s,start node)

 Set graph G to Gi
'

 Set count to one
 Set curr_node to source S
 //set the weights of all links along the primary path to zero
 while curr_node is not equal destination D do
 Get the next node on primary path and set Next_Node
 set the link delay between curr_node and next_node to zero in Gi

'

 Set the curr_node to next_node
 end while
 //make the segment safe by setting the weights of links
 //incident on intermediate nodes of the segment to ∞
 Get the next_node on primary path and set to curr_node.
 while count is less than segment size s and curr_node is not equal to

destination D do
 for every link incident on curr_node set the link delay to ∞ in Gi

'

 Get the next node on primary path and set to curr_node
 increment count by one.
 end while
 return Gi

'.

CBSegment(P,Pi
',S,D)

 Set first_found to false
 Set curr_node to S
 while curr_node is not equal to destination D do
 Get the next_node in primary path of Auxiliary graph and set

to Next_Node
 if next_node belongs to P and first_found is equal to false

then
 Set curr_node to next_node
 continue
 end if
 Add curr_node at the end of backup segment bsi
 if next_node doesn’t belongs to P and first_found is equal to

false then
 Set to first_found to true
 else if next_node belongs to P and first_found is equal to

true then
 Add next_node at the end of backup segment bsi
 out of while loop
 end if
 Set curr_node to next_node
 end while
 return backup segment bsi

IAENG International Journal of Computer Science, 37:2, IJCS_37_2_05

(Advance online publication: 13 May 2010)

__

B. Comparison of Number of Backup Segments

For a set of five hundred random source and destination
pairs in a 12x12 mesh topology, number of backup segments
is averaged by varying the segment size from 2 to 8, the
result of which is depicted in the Fig. 10. It is clear from the
graph that number of backup segments is inversely
proportional to segment size. This is due to the fact that
shorter segment size divides the primary path into large

umber of segments resulting in more backup segments. n

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8
Segment Size

A
ve

ra
ge

 N
o.

of
 B

ac
ku

p
Se

gm
en

ts

Eff_SegBak segment size

Fig. 10. Variation in number of backup segments with
segment size with respect to Eff_SegBack algorithm.

The other factor which affects number of backup
segments is the length of primary path. The graph in the
Figure 11 shows the variation in number of backup
segments with length of primary path.

1

1.5

2

2.5

3

4 5 6 7 8
Primary Path Length

A
ve

ra
ge

 N
o.

of
 B

ac
ku

p
S

eg
m

en
ts Eff_SegBak

Min_SegBak

Fig. 11. Variation in number of backup segments with
primary path Length

From the graph it is clear that the number of backup
segments increases as the primary path length increases in
case of Eff_SegBak algorithm, where as it is not the case
with Min_SegBak algorithm.Since the number of backup
segments increases with primary path length in case of
Eff_SegBak algorithm, the length of backup segments is
constant and the property of local recovery holds even for
larger primary paths. From Table II the observation is that,
Eff_SegBak gave more backup segments (ranging from 1.64
to 2.84) than that of Min_SegBak (ranging from 1.018 to
1.263) across all the topologies. Another observation is that
Min_SegBak algorithm very rarely generates backup
segments more than two. Note that figures shown are

averaged for 500 samples of random source-destination
pairs.

The proportionality of number of backup segments with
primary path length is captured in our scheme, which is not
the case with Min_SegBak algorithm. As the number of
backup segments does not increase with primary path length
in case of Min_SegBak algorithm, the backup segments tend
to be larger in length for larger primary paths. Consequently
the property of local recovery diminishes as the length of the
primary path increases.

Table II

Number of backup segments for different topologies

Topology 5x5 7x7 9x9 12x12

Router_ Router_
Wax BA

pp_len 4.20 5.43 6.65 7.66 4.71 4.44

Eff_SegBak 1.64 2.17 2.68 2.84 1.73 1.72

Min_SegBak 1.23 1.263 1.247 1.261 1.018 1.09

C. Comparison of Percentage Reuse of Primary Path

Min_SegBak algorithm gives percentage reuse ranging

from 0.65 to 11.91 as given in Table III across all topologies
under consideration. In case of Eff_SegBak it is ranging
from 20.94 to 48.39. Reuse is much less in case of
Min_SegBak because for most of the cases it gives end-to-
end backup in which case the percentage reuse of primary
path is zero.

Table III

Percentage Reuse of Primary Path for different
Topologies

Topology 5x5 7x7 9x9 12x12 Router_ Router_

Wax BA
Eff_SegBak 20.92 34.05 43.08 48.41 21.31 22.05

Min_SegBak 8.90 10.43 10.45 11.91 0.65 3.51

D. Average Hop Count for Failure Notification (AHFN)

 From the Table IV the AHFN for Eff_SegBak is ranging
from 1.60 to 1.84 which is less and consistent across all the
topologies due to the fact that we are segmenting the
primary path with a fixed segment size. In case of
Min_SegBak algorithm, AHFN is more and varies from 1.92
to 3.43 with primary path length as shown in Fig. 12. This is
due to the fact that the number of backup segments
produced by Min_SegBak algorithm is not proportional to

Table IV

Average Hop count for Failure Notification of different
Topologies

Topology 7x7 9x9 12x12 5x5 Router_ Router_

Wax BA
pp_len 4.20 5.43 6.65 7.66 4.71 4.44

Eff_SegBak 1.60 1.69 1.75 1.84 1.84 1.72

Min_SegBak 1.92 2.47 3.0 3.43 2.34 2.14

IAENG International Journal of Computer Science, 37:2, IJCS_37_2_05

(Advance online publication: 13 May 2010)

__

the primary path length as much as in Eff_SegBak, resulting
in variation of AHFN with length of primary path. Thus in

When the delay constraint is relaxed to 30, the results for the
same instances are shown in the Table VII. By relaxing the
delay constraint Eff_SegBak could find backup segments
covering all the components of the primary path.

case of Min_SegBak local recovery diminishes as
primarypath length increases. With slighter AHFN the
algorithm Eff_SegBak contributes significantly to faster
failure recovery.

Table VII

Exception cases where delay constraint is relaxed

1

1.5

2

2.5

3

3.5

4

4 5 6 7 8

Primar Path Length

Av
er

ag
e

H
op

 C
ou

nt
 fo

r F
ai

lu
re

N

ot
ific

at
io

n

M in_SegBak

Eff_SegBak

Eff_SegBak Min_SegBak Source Destination Delay
Constraint

109 65 30 4 end-to-end

80 124 30 3 end-to-end

86 47 30 4 end-to-end

V. CONCLUSIONS AND FUTURE WORK

In this paper, a new method has been presented for
computing segmented backup for recovering from node and
link failures in real-time IP communications. Our scheme
gives more number of backup segments than the existing
scheme Min_SegBak Algorithm. Consequently, it gives
better results in terms of faster failure recovery and efficient
reuse of primary path. Our scheme permits choosing
appropriate value of segment size to satisfy the delay
requirement of real-time applications. The proposed scheme
gives consistent results for both mesh and random
topologies. The future enhancements of our work include
testing with more realistic data and optimization on choice
of segment size versus resource utilization.

Fig. 12. Variation in AHFN with primary path

E. Comparison of Average Backup Path Length (ABPL)

From the Table V both the schemes are comparable with
respect to ABPL. In Theorem 2 of [1], it is claimed that the
segmented backup generated by the Min_SegBak algorithm
is a minimum cost segmented backup for any chosen
primary path. Since both the algorithms gave similar results
with respect to ABPL, segmented backup produced by
Eff_SegBak does not deviate much from the least cost one.

Table V REFERENCES

Average Backup Path Length for different Topologies
 [1] M. J. P. Krishna Phani Gummadi and C. S. R. Murthy, “An Efficient

Primary-Segmented Backup Scheme for Dependable Real-Time
Communications in Multihop Networks,” IEEE/ACM Transactions on
Networking, vol. 11, pp. 81–94, 2003.

Topology 5x5 7x7 9x9 12x12 Router_ Router_
Wax BA

Eff_SegBak 4.87 6.11 7.28 8.30 5.89 5.39
[2] T. S. G. Audun Fosselie Hansen, Amund Kvalbein and O. Lysne,

“Resilient Routing Layers for Recovery in Packet Networks,” in
International Conference on Dependable Systems and Networks, pp.
238–247, 2005.

Min_SegBak 4.69 5.99 7.34 8.3 5.62 5.2

[3] I. M. Alberto Medina, Anukool Lakhina and J.Byers, “BRITE:
Universal Topology Generation from a Users Perspective,” tech. rep.,
Boston University, 2001.

F. Exception Cases

We have tried to find cases where our scheme fails to give
any backup segments and Min_SegBak gives end-to-end
backup. In this section, such exception cases have found in
the 12x12 mesh topology with random link weights ranging
from 1 to 5 are described. We have labeled the nodes of the
topology from 0 to 143. These cases are found very rarely.

[4] B. M. Smita Rai and D. O. Deshpande, “IP Resilience within an
Autonomous System: Current Approaches, Challenges, and Future
Directions,” IEEE Communications, pp. 142–149, October 2005.

[5] A. O. R. R. Yigal Bejerano, Yuri Breitbart and A. Sprintson,
“Algorithms for Computing QoS Paths with Restoration,” IEEE/ACM
Transactions on Networking, vol. 13, pp. 648–661, 2005.

[6] S. D. J. Anderson, B. Doshi and P. Harshavardhana, “Fast Restoration
of ATM Networks,” IEEE J. Select. Areas Commun, vol. 12, pp. 128
– 139, January 1994. Table VI shows instances of cases where our scheme fails

to give any backup segments and Min_SegBak gives end-to-
end backup that satisfies the delay constraint as shown.

[7] W Grover, “The Self-healing Network: A Fast Distributed Restoration
Technique for Networks Using Digital Crossconnect Machines.,”
IEEE GLOBECOM, pp. 1090 – 1095, 1987.

[8] W. D. Grover and D. Stamatelakis, “Cycle-oriented Distributed
Preconfiguration: Ring-like Speed with Mesh-like capacity for Self-
planning Network Restoration,” vol. 1, pp. 537–543, June 1998.

Table VI

Exception cases with lesser values of delay constraint
 [9] S G F M Medard and R. A. Barry, “Redundant Trees for Preplanned

Recovery in Arbitrary Vertex-redundant or Edge-redundant Graphs,”
IEEE/ACM Transactions on Networking, pp. 641–652, 1999.

Source Destination Delay
Constraint

Eff_SegBak Min_SegBak

109 65 25 0 end-to-end [10] R. Kumar and S. Grace, “Fault-tolerant Model for Deterministic IP
Communication,” tech. rep., University of Hyderabad, 2006.

80 124 20 0 end-to-end [11] A. Barabasi and R. Albert, “Emergence of Scaling in Random
Networks,” Science, pp. 509–512, October 1999.

86 47 15 0 end-to-end

IAENG International Journal of Computer Science, 37:2, IJCS_37_2_05

(Advance online publication: 13 May 2010)

__

Mr B Purushotham received B Tech(CSE) from J N T
University, Hyderabad, India in 2005 and M Tech (CSE) from S V
University College of Engineering, Tirupati in the year 2007.
Currently he is working as Assistant Professor, Dept of Computer
Science and Engg., C R Engineering College, Renigunta Road,
Tiupati, India. His areas of interests are Computer Networks,
Distributed Systems and Software Engineering.

Dr Ch D V Subba Rao received the B Tech (CSE) from S V
University College of Engineering, Tirupati, India in the year 1991,
M.E. (CSE) from M K University, Madurai in 1998 and Ph D
(CSE) from S V University, Tirupati in 2008. He has 17 years of
teaching experience. At present, he is working as Head, Dept of
Computer Science and Engineering, S V University College of
Engineering, Tirupati, India. His areas of interests include
Distributed Systems, Operating Systems, Computer Architecture
and Grid Computing. He is a member of IETE, IAENG, CSI and
ISTE. He chaired and served as reviewer of number of
international conferences viz. IASTED and IAENG. He visited
Austria, Netherlands, Germany, Belgium and Hong-Kong.

Mrs Nimmagadda Padmaja received B E (ECE) from University
of Mumbai, India in 1997 and M Tech (Communication Systems)
from S V University College of Engineering, Tirupati in 2003. She
has been pursuing her Ph.D. (Part-time) from S V University,
Tirupati since 2006. Currently she is working as Associate
Professor, Dept of Electronics and Communication Engg., C R
Engineering College, Renigunta Road, Tiupati, India. Her areas of
interests include Signal Processing, Communication Systems and
Computer Communication Networks.

IAENG International Journal of Computer Science, 37:2, IJCS_37_2_05

(Advance online publication: 13 May 2010)

__

	A. Experimental Topologies
	B. Comparison of Number of Backup Segments
	C. Comparison of Percentage Reuse of Primary Path
	D. Average Hop Count for Failure Notification (AHFN)
	Fig. 12. Variation in AHFN with primary path
	E. Comparison of Average Backup Path Length (ABPL)
	F. Exception Cases

