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Abstract     Distributed real-time applications such as medical 
imaging, traffic control, and video conferencing demand hard 
guarantees on the message delivery latency and the recovery 
delay from component failures. In order to meet these 
requirements there exist number of schemes by reserving 
additional resources a priori along a backup channel which is 
disjoint with the primary path. A new method has been 
proposed for computing segmented backup for recovering 
from node and link failures in real-time IP communications. 
This paper compares the performance of proposed scheme 
with the schemes available in the literature for mesh and other 
topologies. It has been demonstrated that the proposed scheme 
gives better results on parameters like number of backup 
segments, percentage reuse of primary path and average hop 
count for failure notification. 

II. RELATED WORK 

 
Index Terms   IP Networks, Fault Tolerance, Segmented 

Backup, Resilient Routing Layer, QoS with restoration. 

 
In this section, the work done towards finding pre-

computed backup paths for achieving routing resilience is 
reviewed. This section discusses the two significant schemes 
related to fault tolerance for the internet traffic. They are 
segmented backup [1] which is particular to real-time 
applications and resilient routing layers [2] which is for 
general IP traffic. In this section, we also discuss another 
scheme studied in this context i.e. QoS paths with 
restoration [5]. 

 
A. Overview of Segmented Backup 
 

In the reactive schemes for fault tolerance there are two 
different approaches for the computation of backup paths. 
First approach is end-to-end backup [6] in which backup 
paths are disjoint with respect to the primary path where 
primary path is the best path with respect to the criteria of 
the application. The data is transmitted on this path when no 
fault has occurred. In the second approach, the primary path 
is divided into many overlapping sub-paths. Alternate path 
computation is done by computing backups for these sub-
paths. Thus, recovery from faults in this scheme is confined 
to switching to the backup for the part of the primary path 
where the failure has occurred. Whenever there is a fault, 
the corresponding alternate path is activated to re-route the 
data. This approach is called local detouring [7]. Segmented 
backup [1] is a kind of a local detouring scheme in which 
multiple backup paths exist, each protecting a portion of the 
primary path. 

 

I. INTRODUCTION 
 
   IP networks were initially built to handle traffic in a best-
effort manner. Best-effort delivery means that IP does its 
best to transmit packets from source to destination but does 
not provide any guarantees. But, newly emerging 
applications demand performance requirements like less 
delay, high throughput, etc. Quality-of-Service (QoS) in 
internet is provision of these performance guarantees to the 
applications. However, failure of a node or link along the 
transmission path can disrupt the data flow. QoS cannot be 
achieved in such circumstances. Ensuring seamless flow of 
data even when failures occur in the network is called as 
reliability. To achieve reliability, various fault tolerant 
schemes are used, which are primarily based on computing 
alternate paths. These backup paths are activated whenever 
there is a fault. The proposed scheme handles the failure 
recovery in real time applications by meeting the strict delay 
constraints. 

 

A.1 Illustration of Segmented Backup 
 
 

         Backup Segments 
 

    The rest of this paper is organized as follows: Section 2 
presents the literature review of various fault tolerant 
schemes for real-time IP applications. Section 3 describes 
the proposed scheme. Performance evaluation/ comparison 
of  the  proposed  scheme  and  other  existing schemes have 
been done in section 4.  Section 5 presents the conclusions 
and future enhancements.  
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Fig 1. Illustration of a primary path with a segmented   
backup. 

 
In segmented backup, backups are computed for portions 

of the primary path. These portions are called as segments. 
A backup path is found for each segment, which is called as 
backup segment.  All  such  computed  backup segments  are  
collectively referred to as segmented backup. Fig.1 shows 
an illustration of a primary path with intermediate nodes N1 
to N8 and links 1-9 and its segmented backup. The backup 
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B. Resilient Routing Layers (RRL) links are shown as A–K. The primary path has three 
segments, each with its own backup segment. The segments 
span links 1-3, 3-6 and 6-9, while their corresponding 
backup segments span links A-C, D-G, and H-K, 
respectively. These three backup segments together 
constitute the segmented backup for this primary path. Note 
that successive segments of a primary path overlap on at- 
least one link. This is to ensure that there is no single point 
of failure and recovery is possible for any node failures. 

 RRL [2] is a network resilience scheme meant for 
handling of general IP traffic. We first describe the 
terminology associated with this scheme and followed by 
recovery mechanism. 
 

B.1 Terminology: RRL is based on computing redundant 
subsets of the network topology which are called layers. Let 
G=(V,E) be the graph representing the network topology, 
where V is the set of vertices representing nodes and E is the 
set of edges representing links. A layer is defined as graph 
G'=(V,E') where E' is a subset of E and G' is a connected 
graph, i.e. a layer has only a subset of links in the network 
but contains all the nodes. A node is said to be safe in a 
layer if only one of its links is contained in that layer. The 
term safe layer for a node is used to denote a layer in which 
the node is safe. Many nodes can be safe in a single layer, 
where all such nodes are called safe nodes of that layer. 

 Consider for example that link 4 has failed. Restoration of 
connection is done by bypassing the segment 3–6 by using 
its corresponding backup segment D–G. Rest of the primary 
path is used as it is. Here the recovery is done locally and 
also there is as much reuse of the allocated resources along 
the primary path as possible. Local recovery and reuse of the 
primary path are the fundamental advantages of segmented 
backup over an end-to-end backup. 
 

A.2 Min_SegBak Algorithm:  Fig. 3(a) shows an example network with eight nodes and 
fourteen links and it has no articulation points. Two example 
layers where all the nodes of the graph are safe are shown in 
Fig. 3(b) and 3(c). 

Min_SegBak algorithm [1] is used to compute segmented 
backup. The steps involved in the algorithm are illustrated 
through an example in the Fig 2. Given a graph G=(V,E), 
construct a directed auxiliary graph G'(V,E') using the 
following rules. 

 

 
• Auxiliary graph construction. 
For every link l=(u,v), where l does not belong to primary 
path P, add two directed links (v,u) and (u,v) to G' . The cost 
and the delay of these directed links remains the same as 
those of the original link as shown in Fig. 2(a). Replace 
every link l=(u,v) where l belongs to the primary path P  
with l=(v,u) in G' and assign it zero cost. The links 
belonging to the primary path are now reversed as shown in 
Fig. 2(b). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Illustration of Min_SegBak algorithm. (a) Graph G 
with Primary path  S to D. (b) Modified Graph G' with 
shortest path S to D. (c) Primary path with backup segments. 
 

For every link l=(u,v) where v belongs to primary path P, 
replace it with link (u,w) where ‘w’ is immediate 
predecessor of ‘v’ in P as shown in Fig. 2(b). 
• Least delay path in the auxiliary graph: Find shortest path 

P' from source (S) to destination (D) in the auxiliary graph 
G' shown in Fig. 2(b). 

• Construction of segmented backup: Using the primary 
path and the shortest path in the auxiliary graph the 
segmented backup is computed vide Fig. 2(c). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Illustration of layers. (a) An Example Network with 
8 nodes and 14 links. (b) Layer 1 generated based on (a). (c) 
Layer 2 generated based on (a). 
 
B.2 Recovery Mechanism: In order to use an RRL as a 
complete method for recovery, layers are to be generated in 
such a way that all nodes that are not articulation points are 
safe in at least one layer. The layers are used as input to 
routing algorithms and a routing table is calculated for each 
layer. Tables containing routing information for each layer 
must be kept in every node.      

When any node fails, all the traffic which is passing 
through the failed node is transmitted along the safe layer of  
that node. Only the traffic sourced by or destined for the 
failed node will be lost. Each packet is marked according to 
what layer is currently valid so that other nodes can keep 
forwarding in the same layer. All the packets not affected by 
fault are routed based on the full topology. The most 
important requirement for this scheme to work is detection 
and propagation of failure of a node so that the intermediate 
node can move the traffic to another layer.   
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C. Algorithms for computing QoS paths with restoration 
 

This paper [5] gives algorithms for finding restoration 
topologies for QoS paths. A restoration topology is a set of 
bridges, each bridge protecting a portion of the primary QoS 
path. The authors claim that this approach is guaranteed to 
find a restoration topology with low cost when one exists. 
To choose a set of protective bridges that have minimum 
cost is a NP-hard problem. Hence this scheme has pseudo-
polynomial time complexity. 

The network has a source S that communicates with a 
destination D and has certain QoS requirements. The 
available bandwidth and delay on every link is known. It is 
assumed that the network does not contain any parallel links 
(i.e. two or more links that connect the same nodes). Only 
single failures of nodes or links are considered. Here the 
problem is to find a minimum cost restoration topology R 
for a given primary QoS path P. 

The general approach is to construct an auxiliary graph 
which is a modified form of the original graph. Then the 
concepts like adjusted delay and feasible walk are used in 
the algorithms to construct restoration topology.  

 
III. PROPOSED MODEL 

 
It is understood that having larger number of backup 

segments enables one to capture the properties like faster 
recovery and better reuse of resources reserved along the 
primary path. Towards this end, the attention has been 
focused on improving the number of backup segments in the 
computed segmented backup. 

The observation is that the numbers of backup segments 
computed by the Min_SegBak algorithm are less and in most 
of the cases it is an end-to-end backup even though there are 
possible backup segments. It has been demonstrated that 
proposed scheme produces more number of backup 
segments than Min_SegBak algorithm. A more detailed 
explanation of how the proposed scheme works is given in 
the following sections. 

 
A.  Overview  
 

 In the proposed scheme the idea is to divide the primary 
path into segments of equal size. Then construct auxiliary 
graph for each segment in such a way that the components 
of each segment are protected and the shortest path from 
source to destination in the graph has maximum overlap 
with the primary path. By making use of shortest path, the 
backup segment for the corresponding segment is 
segmented. Let ‘s’ be the size of the segment. First, we 
choose a value for s to partition the primary path into 
segments in such a way that adjacent segments overlap with 
one link. This overlap ensures that recovery from node 
failures is guaranteed. For each segment a backup segment 
is produced by performing the following steps. 
• Generate an auxiliary graph by removing the links that are 

incident on the intermediate nodes of the segment and 
make the remaining links along the primary path to have 
weight as zero. 

• Find the shortest path P' from source to destination in the 
modified graph. 

• Using primary path and P', compute the backup segment 
for that segment. 
 A smaller value for the segment size produces more 

backup segments which are shorter in length. Shorter 

backup segments take less time for failure notification and 
backup activation. In other words failure recovery is handled 
more locally. On the other hand larger values of segment 
sizes produce less number of backup segments which are 
longer in length. In case of long backup segments, time 
taken for failure notification and backup activation is 
relatively more. 

The inference is that segment size is directly proportional 
to recovery time. However a smaller value for segment size 
incurs computational overhead. In our scheme, there is a 
flexibility of choosing the value of the segment size 
appropriately according to the delay requirement of the real-
time application. In the next subsection the detailed 
illustration of the proposed scheme is given. 

 
B. Illustration with Example 

 
The section illustrates how the proposed method computes 

the segmented backup. Fig 4(a) shows the initial topology 
along with the primary path from source (S) to destination 
(D). In this example the segment size is assumed as three. 
Then partition the primary path into segments of size three 
with one link overlap as shown in Fig. 4(b) and compute 
auxiliary  graph  for  the  first segment  by  removing the  
links  that   are  incident  on  the  intermediate  nodes  of  the 
segment and assign zero weight to rest of the links along the 
primary path as shown in Fig. 4(c). 

 
 

   2          3         4    5          6          7 
    S          D 

                   
                (a) 

 
   2          3         4    5          6          7 

    S          D 
 
 

                  
                (b) 

 
 

                             0          0           0         0  
  

    S                        D 
                                               (c)   

 

       
   2          3         4    5          6         7 

    S          D 
 
 

                 (d)  
 

Fig. 4. Illustration with Example. (a) Initial topology with 
primary path from S to D. (b) Primary segments after 
segmentation of primary path. (c) Shortest path from S to D 
in the auxiliary graph of first segment. (d) Segmented 
backup consisting three backup segments. 
 
 Next find the shortest path P' from S to D in the auxiliary 
graph. By using primary path and P' compute backup 
segment for first segment. Similarly repeat the same 
procedure for all the segments to get a segmented backup as 
shown in Fig. 4(d). 

The significance of the auxiliary graph is that it allows us 
to find a shortest path P' from S to D which will just bypass 
the intermediate nodes and links of the segment and reuse 
rest of the primary path. The zero weights to the links in the 
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modified graph force the backup path P' to reuse the 
primary path. The next section discusses the optimization 
issues of the proposed scheme. 

 
C. Optimization 
 
 Here the scenarios are described, which show the need for 
improvement in the above said scheme. Fig. 5 shows 
instances of primary paths and their corresponding 
segmented backups, computed by our scheme. These 
instances are from a 12x12 mesh topology with random link 
weights ranging from 1 to 5. Fig. 5(a) shows an instance of a 
primary path and its segmented backup computed by our 
scheme. Backup segment (2) protects all the components 
that are being protected by backup segment (3). Hence, 
backup segment (3) is a redundant one. Fig. 5(b) shows 
another instance of primary path and segmented backup 
computed by our scheme. Here, five backup segments are 
constructed. One can observe that the backup segment (4) is 
protecting the nodes that are already protected by backup 
segments (3) and (5), so the backup segment (4) is 
redundant one. 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 

 

 

 

Fig.5 Segmented backups before optimization. (a) Example1 

(b) Example 2. 
 
 

In the process of our work the observation is that this 
redundancy is due to fact that there was no attempt to check 
if two segments share a backup segment leading to 
redundant backup segments. This is due to the reason that 
we partition the primary path a priori into segments of equal 
size. Consequently, the flexibility of choosing segments that 
are not redundant is loosed. 
 The proposed scheme is refined by making a small 
modification. We defer the computation of next segment 
until the current backup segment is computed. Once a 
backup segment is computed, start the next segment from 
the predecessor of the last node of the current backup 
segment. 
 Fig.6 shows how the modified scheme computes 
segmented backup for the same instances that are shown in 
the Fig. 5. Fig. 6(a) shows segmented backup computed by 
refined scheme for the instance shown in the Fig. 5(a). Here 
the segmented backup has only two backup segments and 
the computation of backup segment (3) is eliminated.     

Fig. 6(b) shows segmented backup computed by the refined 
scheme for the instance shown in Fig. 5(b). 
 

 

Table I describes the notation used in the algorithms 
presented in Figures 7 to 9. The network is represented by a 
weighted graph G(V,E), where V is the set of nodes and E is 
the set of links in the network. Edge weights in the graph 

 
 
 
 
 
 
 
 
     
 
 
 
 
 
 
 
 
     
Fig. 6. Segmented backups after optimization. (a)Example 1. 
(b) Example 2. 

 
In the earlier case, there are five backup segments. We 

can observe that the backup segment (4) is redundant since 
it is protecting the nodes that are already protected by 
backup segments (3) and (5). Even the backup segment (4) 
is removed; the segmented backup in the Fig. 5(b) consists 
of four backup segments whereas it is only three for 
segmented backup computed by the optimized scheme as 
shown in the Fig. 6(b). 
 Our optimized scheme works particularly well for 
arbitrary topologies where the backup segments tend to end 
at a node beyond the defined length of the segment.   
 
D. Algorithms 

 
Table   I 

NOTATION USED IN THE ALGORITHMS 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
G(V,E)  A graph that represents a network topology 
 
 V       Set of nodes of G 
 
 E                           Set of links of G 
 
 S       Source 
 
 D       Destination 
 
 P = (S,v1,v2,v3,.....,D)      Sequence of vertices denoting the primary  
                                           path in G 
 
 PS = (ps1,ps2,.....psk)      Sequence of segments of P 
 
 Gi

' (V,Ei
')      Auxiliary graph for segment psi

 
 Pi

'                                     Sequence of vertices denoting the shortest  
                                           path  between S and D in Gi

' 

 
 BS = (bs1,bs2.....bsk)       Sequence of backup segments 
 
 s       Size of segment 
 

S

 

(2) D

(1) 

    Primary Path  
   Segmented Backup 

D 
(2) 

(3) 

(1)S

(a) 

(b) 

S 

(3) 

  (2) D

(1) 

   Primary Path 
 

 Segmented Backup 

(3) 
D

(5) 

(4) 

(2) 

(1) S

(a) 

(b) 

IAENG International Journal of Computer Science, 37:2, IJCS_37_2_05

(Advance online publication: 13 May 2010)

 
______________________________________________________________________________________ 



represent propagation delay of links in the network 
topology. Let S and D represent source and destination 
nodes respectively. The notation used is shown in Table I. In 
the notation, s represents number of links that a segment 
spans and bsi represents the backup segment of the segment 
psi for 1 ≤ i ≤ k.Where k is the number of backup segments 
in the segmented backup. The pseudo code of 
Eff_SegBak(G,S,D,P,s) is given in Figure 7.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7. Efficient segmented backup algorithm 
 

The module StPath(Gi
',S,D) is any shortest path algorithm 

which finds shortest path between S(source) and 
D(destination) in the graph Gi

'. In our implementation 
Dijkstra’s algorithm is used for finding the shortest path. 
The module CAGraph(G,S,D,P,s,start_node) is used for 
construction of the auxiliary graph where start node 
represents the starting node of the segment for which the 
auxiliary graph is constructed and the algorithm is given in 
Figure 8. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8. Auxiliary graph construction algorithm  

First make a copy of the original graph G as Gi
'. Then 

modify the graph Gi
' to get the auxiliary graph of the 

segment psi. In the first while loop, make all links along the 
primary path P in the graph G to have weight as zero. In the 
second while loop; set weights of all links incident on the 
intermediate nodes of the segment to ∞. 

 

 The module CBSegment(P,Gi
',S,D) computes the backup 

segment for segment psi. Here P is the primary path in the 
graph G and Gi

' is the shortest path from S to D in the 
auxiliary graph Gi

' and the algorithm for the same is given in 
Figure 9. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 Fig. 9. Backup segment computation algorithm 

 

IV. EXPERIMENTAL RESULTS 
 

 This section evaluates the algorithms Min_SegBack and 
Eff_SegBak and explains the topologies that are used for 
testing and other implementation choices made by us. Later 
how these two schemes work with respect to the evaluation 
parameters is discussed.  

A.  Experimental Topologies 

In our implementation the objective is to see how the 
algorithms Eff_SegBak and Min_SegBak compute backup 
segments. The behavior of the two algorithms tested on 
regular mesh topologies like 5 x 5, 7 x 7, 9 x 9 and 12 x 12. 
and other synthetic topologies generated by a tool called 
BRITE [3]. Two variants of BRITE generated topologies are 
used. The first is Router Waxman [3] and the second is 
Router Barabasi Albert [3]. 

The random delays for links in the topologies are ranging 
from 1 to 5. A delay constraint [5] is also imposed in our 
implementation according to which, if the total backup path 
length of a backup segment is greater than the predefined 
delay, that backup segment is not considered. The segment 
size chosen is three. The choice of segment size has greater 
impact on number of backup segments produced in 
Eff_SegBak and consequently affects the recovery delay. In 
the implementation, our primary concern is to see which of 
these two algorithms is better in producing larger number of 
backup segments. The implementation of our scheme is 
done in C++. Five hundred source-destination pairs are 
randomly generated for the above said topologies and 
computed these four parameters for each of such pairs using 
both the schemes and averaged the outputs of these five 
hundred trials. 

 

Eff_SegBak(G,S,D,P,s) 

  start_node set to Source S 
  i set to 1 
  loop 
        Call  CAGraph(G,S,D, P, s, start_node) to construct auxiliary 

Graph and set to Gi
'

        Call StPath(Gi
',S,D) to compute shotest path Pi

'

        Call CBSegment(P, Pi
' ,S,D) to compute backupsegment  and set 

to bsi
        Call getLastNode() for backup segment bsi and set to start_node. 
         if start_node is equal to destination D then 
            end of loop 
         end if 
        Get the previous node on the primary path and set to start_node. 
         increment i by one 
  end loop 

 

CAGraph(G,S,D,P,s,start node) 

  Set graph  G to Gi
'

  Set count to one 
  Set curr_node to source S 
       //set the weights of all links along the primary path to zero
  while curr_node is not equal destination D do 
     Get the next node on primary path and set Next_Node 
     set the link delay between curr_node and next_node to zero in     Gi

' 

     Set the curr_node to  next_node 
  end while 
                         //make the segment safe by setting the weights of links 
                        //incident on intermediate nodes of the segment to ∞ 
  Get the next_node on primary path and set to curr_node. 
  while count is less than  segment size s and curr_node is not equal to 

destination D do 
     for every link incident on curr_node set the link delay to ∞ in   Gi

' 

    Get the next node on  primary path and set to curr_node 
     increment count by one. 
  end while 
  return Gi

'. 

CBSegment(P,Pi
',S,D) 

  Set first_found to false 
  Set curr_node to  S 
  while curr_node is not equal to destination  D do 
     Get the next_node in primary path of Auxiliary graph and set 

to Next_Node 
     if next_node belongs to  P and first_found is equal to false 

then 
        Set curr_node to  next_node 
     continue  
     end if 
    Add curr_node at the end of backup segment bsi
    if next_node  doesn’t belongs to P and first_found  is equal to  

false then 
    Set to first_found to  true 
        else if next_node belongs to P and first_found is equal to 

true then 
       Add next_node at the end of backup segment bsi
    out of while loop 
    end if 
    Set curr_node to  next_node 
    end while 
    return backup segment bsi 
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B.  Comparison of Number of Backup Segments 

For a set of five hundred random source and destination 
pairs in a 12x12 mesh topology, number of backup segments 
is averaged by varying the segment size from 2 to 8, the 
result of which is depicted in the Fig. 10. It is clear from the 
graph that number of backup segments is inversely 
proportional to segment size. This is due to the fact that 
shorter segment size divides the primary path into large 

umber of segments resulting in more backup segments. n  
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Fig. 10. Variation in number of backup segments with 
segment size with respect to Eff_SegBack algorithm. 
 

The other factor which affects number of backup 
segments is the length of primary path. The graph in the 
Figure 11 shows the variation in number of backup 
segments with length of primary path.  
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Fig. 11. Variation in number of backup segments with 
primary path Length 
 

From the graph it is clear that the number of backup 
segments increases as the primary path length increases in 
case of Eff_SegBak algorithm, where as it is not the case 
with Min_SegBak algorithm.Since the number of backup 
segments increases with primary path length in case of 
Eff_SegBak algorithm, the length of backup segments is 
constant and the property of local recovery holds even for 
larger primary paths. From Table II the observation is that, 
Eff_SegBak gave more backup segments (ranging from 1.64 
to 2.84) than that of Min_SegBak (ranging from 1.018 to 
1.263) across all the topologies. Another observation is that 
Min_SegBak algorithm very rarely generates backup 
segments more than two. Note that figures shown are 

averaged for 500 samples of random source-destination 
pairs. 

The proportionality of number of backup segments with 
primary path length is captured in our scheme, which is not 
the case with Min_SegBak algorithm. As the number of 
backup segments does not increase with primary path length 
in case of Min_SegBak algorithm, the backup segments tend 
to be larger in length for larger primary paths. Consequently 
the property of local recovery diminishes as the length of the 
primary path increases. 

 
Table II 

Number of backup segments for different topologies 
 

Topology 5x5 7x7 9x9 12x12 
 

Router_ Router_ 
Wax BA          

pp_len 4.20 5.43 6.65 7.66 4.71 4.44 

Eff_SegBak 1.64 2.17 2.68 2.84 1.73 1.72 

Min_SegBak 1.23 1.263 1.247 1.261 1.018 1.09 

C. Comparison of Percentage Reuse of Primary Path 
 
Min_SegBak algorithm gives percentage reuse ranging 

from 0.65 to 11.91 as given in Table III across all topologies 
under consideration. In case of Eff_SegBak it is ranging 
from 20.94 to 48.39. Reuse is much less in case of 
Min_SegBak because for most of the cases it gives end-to-
end backup in which case the percentage reuse of primary 
path is zero. 

 
Table III 

Percentage Reuse of Primary Path for different 
Topologies 

 
Topology 5x5 7x7 9x9 12x12 Router_ Router_ 

Wax BA          
Eff_SegBak 20.92 34.05 43.08 48.41 21.31 22.05 

Min_SegBak 8.90 10.43 10.45 11.91 0.65 3.51 

 

D. Average Hop Count for Failure Notification (AHFN) 
 
 From the Table IV the AHFN for Eff_SegBak is ranging 
from 1.60 to 1.84 which is less and consistent across all the 
topologies due to the fact that we are segmenting the 
primary path with a fixed segment size. In case of 
Min_SegBak algorithm, AHFN is more and varies from 1.92 
to 3.43 with primary path length as shown in Fig. 12. This is 
due to the fact that the number of backup segments 
produced by Min_SegBak algorithm is not proportional to 
 

Table IV 

Average Hop count for Failure Notification of different 
Topologies 

 
Topology 7x7 9x9 12x12 5x5    Router_ Router_ 

Wax BA           
pp_len 4.20 5.43 6.65 7.66 4.71 4.44 

Eff_SegBak 1.60 1.69 1.75 1.84 1.84 1.72 

Min_SegBak 1.92 2.47 3.0 3.43 2.34 2.14 
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the primary path length as much as in Eff_SegBak, resulting 
in variation  of  AHFN with  length of primary path. Thus in 

When the delay constraint is relaxed to 30, the results for the 
same instances are shown in the Table VII. By relaxing the 
delay constraint Eff_SegBak could find backup segments 
covering all the components of the primary path. 

case of Min_SegBak local recovery diminishes as 
primarypath length increases. With slighter AHFN the 
algorithm Eff_SegBak contributes significantly to faster 
failure recovery. 

 
Table VII 

Exception cases where delay constraint is relaxed 
 

1

1.5

2

2.5

3

3.5

4

4 5 6 7 8

Primar Path Length

Av
er

ag
e 

H
op

 C
ou

nt
 fo

r F
ai

lu
re

 
N

ot
ific

at
io

n

M in_SegBak

Eff_SegBak

Eff_SegBak Min_SegBak Source Destination    Delay 
Constraint 

109    65     30     4 end-to-end 

80   124     30     3 end-to-end 

86    47    30     4 end-to-end 

 
 

V. CONCLUSIONS AND FUTURE WORK 
 

In this paper, a new method has been presented for 
computing segmented backup for recovering from node and 
link failures in real-time IP communications. Our scheme 
gives more number of backup segments than the existing 
scheme Min_SegBak Algorithm. Consequently, it gives 
better results in terms of faster failure recovery and efficient 
reuse of primary path. Our scheme permits choosing 
appropriate value of segment size to satisfy the delay 
requirement of real-time applications. The proposed scheme 
gives consistent results for both mesh and random 
topologies. The future enhancements of our work include 
testing with more realistic data and optimization on choice 
of segment size versus resource utilization. 

 
Fig. 12. Variation in AHFN with primary path  

E. Comparison of Average Backup Path Length (ABPL) 
 

From the Table V both the schemes are comparable with 
respect to ABPL. In Theorem 2 of [1], it is claimed that the 
segmented backup generated by the Min_SegBak algorithm 
is a minimum cost segmented backup for any chosen 
primary path. Since both the algorithms gave similar results 
with respect to ABPL, segmented backup produced by 
Eff_SegBak does not deviate much from the least cost one. 
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