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Abstract— Predicting implantation outcomes of in-
vitro fertilization (IVF) embryos is critical for the
success of the treatment. We have applied the Naive
Bayes classifier to an original IVF dataset in order
to discriminate embryos according to the implanta-
tion potentials. The dataset we analyzed represents
an imbalanced distribution of positive and negative
instances. In order to deal with the problem of im-
balance, we examined the effects of oversampling the
minority class, undersampling the majority class and
the adjustment of the decision threshold on the clas-
sification performance. We have used features of Re-
ceiver Operating Characteristics (ROC) curves in the
evaluation of experiments. Our results revealed that
it is possible to obtain optimum True Positive and
False Positive Rates simply by adjusting the decision
threshold. Under-sampling experiments show that we
can achieve the same prediction performance with less
data as well as 736 embryo samples.

Keywords: Implantation prediction, in-vitro fertiliza-

tion, imbalance problem, Naive Bayes.

1 Introduction

Many real-world machine learning applications repre-
sent an imbalanced distribution of positive and negative
classes where the number of instances in one class dom-
inates the number of instances in the other class(es). In
such cases, it is necessary to overcome any possible bias
towards the majority class in the learning and prediction
tasks. Consequently, learning from imbalanced datasets
has been an important research interest in the last decade
[1] [2]. Various sampling strategies have been proposed
as a pre-processing stage in order to overcome the prob-
lem of imbalance [3] [4] [5]. On the other hand, it is
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also possible to adjust the decision threshold of classifiers
in imbalanced datasets. Recent studies show that both
approaches produce similar results [6] [7].

In this study, we focus on a specific area of medical di-
agnosis, i.e. in-vitro fertilization (IVF), to estimate the
implantation potentials of embryos. When constructing
predictive models in the IVF domain, the input data con-
sist of a set of prognostic factors obtained from retrospec-
tive clinical databases and generally contain fewer sam-
ples with positive outcomes. Any classifier built on these
datasets has much more information to identify unsuc-
cessful IVF treatments in comparison to successful ones.
Therefore, the implantation prediction is handled as a
typical case of learning from imbalanced data problems.
We analyzed the effects of resampling the training data
and decision threshold optimization on imbalanced IVF
dataset using the Naive Bayes classifier. Our results show
that 0.3 is the best threshold for classifying the implan-
tation outcomes of embryos.

We have also considered another research problem, which
consists of the determination of the smallest amount
of training data required to build an effective predictor
model. Data collection is a costly and time-consuming
process in medical applications. The analysis of under-
sampling experiments led us to define the sufficient size
of embryo samples for implantation prediction that would
reduce the effort spent for data collection in the IVF do-
main. This paper is an extended version of the work
presented in [8].

The rest of the paper is organized as follows: Section 2
describes the IVF domain with an emphasis on the im-
plantation prediction and the characteristics of the IVF
dataset. Brief definitions of the Naive Bayes classifier,
ROC curves and sampling strategies are given in Sec-
tion 3. Section 4 represents the experiments and the re-
sults. Finally, we conclude in Section 5 with a discussion
on the results.

2 In-Vitro Fertilization

Infertility is defined as a couple’s biological inability to
conceive after at least 12 months of regular, well-timed
sexual intercourse without any birth control. It is re-
ported that almost 10% of couples cannot have a baby

IAENG International Journal of Computer Science, 37:2, IJCS_37_2_06

(Advance online publication: 13 May 2010)

 
______________________________________________________________________________________ 



Figure 1: Human germ cells, Intra-Cytoplasmic Sperm Injection (ICSI)(ICSI is a method during which a single sperm cell is
injected into the cytoplasm of the oocyte) and embryo growth day by day

spontaneously. Once the infertility factor of a couple is
determined, an appropriate assisted reproduction treat-
ment is applied in order to conceive a successful preg-
nancy.

IVF [1] is a common infertility treatment method dur-
ing which female germ cells (oocytes) are inseminated
by sperm under laboratory conditions. The fertilized
oocytes are cultured between 2-6 days in special medi-
cal equipments, and embryonic growth is observed and
recorded by embryologists. Finally, the selected em-
bryo(s) are transferred into the woman’s womb. Figure
1 represents images emphasizing the IVF procedure and
the embryo morphology observed day by day in IVF lab-
oratories.

The selection of the embryos with the highest reproduc-
tive potential and the decision concerning the number
of embryos to be transferred are crucial for achieving
successful pregnancy. Predicting implantation potentials
of individual embryos may expedite and enhance expert
judgement for these critical decisions. Implantation is de-
fined as the attachment of the embryo to the inner layer
of the womb, and a positive implantation outcome is de-
fined as the ultrasound visualization of a pregnancy sac
with fetal heart activity at 12 weeks after embryo trans-
fer.

2.1 Implantation Prediction

This study focuses on predicting the implantation out-
comes of IVF embryos. Obtaining multiple embryos at
each cycle of the treatment is possible. Embryologists de-
cide which embryos to transfer and which ones to freeze
or further culture (Figure 2). These decisions are mostly
based on clinical traditions and the personal experience of
embryologists. However, making future predictions about
embryo growth is a challenging process depending on var-
ious embryo and patient related variables.

The accurate prediction of implantation potentials is es-
pecially crucial for determining the number of embryos to
be transferred. Generally, the three highest quality em-
bryos at the most are transferred to a woman’s uterus.
Multiple embryo transfers increase the pregnancy prob-

Figure 2: Critical decisions after day 2 and 3 evaluation of
IVF embryos (Modified from [13])

ability, but they also increase possible complications of
multiple pregnancies for both the mother and fetuses [9]
[10]. In some cases, a multifetal pregnancy reduction may
be necessary in order to decrease the number of fetuses in
multiple pregnancies. This operation is expected to re-
duce the risk of miscarriage and premature birth and to
increase the chance of survival for the remaining fetus(es).
However, reduction may have a negative psychological
impact on the parents. Therefore, the prevention of IVF
multiple pregnancies should be preferred over multifetal
pregnancy reduction.

Elective single embryo transfer (eSET) has been favored
as a solution to the IVF multiple pregnancy problem [11].
However, a recent survey on perceived barriers to eSET
among IVF professionals reported that 47% of IVF pro-
fessionals refuse the use of eSET due to uncertainty about
the technique or lack of prognostic factors and models for
determining eSET candidates [12].

For applicability in clinical practice, physicians need re-
liable eSET criteria depending on two main issues: the
selection of the most viable embryos and the identifica-
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tion of patients suitable for eSET. Therefore, objective
predictor models are required to predict the implanta-
tion potentials of embryos related to the characteristics
of both the embryo and the patient. From the perspec-
tive of machine learning, implantation prediction is con-
sidered as a binary (2-class) classification problem where
the classes represent positive and negative implantation
outcomes.

2.2 Machine Learning in the IVF Domain

IVF treatment is a complex and costly process requiring
continuous observation and critical decisions of embryol-
ogists in certain stages. Contrary to the importance and
emergence of intelligent decision support systems in the
IVF process, the related literature is limited. Existing
studies mostly deal with predicting the pregnancy out-
come of the IVF cycle (that is either multiple pregnancy
or single pregnancy) rather than predicting the implan-
tation outcome of individual embryos.

As shown by preliminary studies, a case-based reasoning
system [14] and neural networks have been constructed
in predicting the outcome of in-vitro fertilization [15].
Later, decision tree models were applied for predicting
the pregnancy outcome from clinical IVF data [16][17].
The most recent study on implantation prediction pro-
poses a Bayesian classification system for embryo selec-
tion [18]. The direct comparison of these studies and the
presented results are not possible due to the diverseness
of research objectives, input feature sets of data, training
and testing strategies, and performance measures.

Most studies presenting predictive models in the IVF do-
main suffer from insufficient results [15][19][20][18]. One
of the reasons for poor prediction performance may be the
limited number of data samples. Thus, performing ex-
periments on larger datasets may be necessary. However,
the acquisition of complete and reliable medical data is
a challenge for machine learning researchers. Therefore,
it is crucial to determine the minimum number of train-
ing samples in order to prevent much effort from being
wasted during the collection of data.

2.3 Dataset

Certain legislative rules have been defined related to IVF
treatment in every country due to social ethical reasons.
Usually, the restrictions apply to donation, embryo ma-
nipulation, the number of embryos to be transferred in
each cycle etc. In addition to legal procedures, each
IVF clinic implements different technologies and method-
ologies in practice. Because of this variety, IVF clinics
have distinctive databases, and unfortunately there are
no public IVF datasets in the machine learning commu-
nity. In this study, we analyzed the IVF procedure and
the related database of Bahceci Women Healthcare Cen-
tre in Istanbul.

Table 1: Selected dataset features for each embryo feature
vector

Dataset Features Data Type

Patient Characteristics

Age of female patient Numerical
Infertility factor Categorical
Treatment protocol Categorical
Follicular stimulating hormone dosage Numerical
Peak Estradiol level Numerical

Embryo Morphological Data

Early cleavage morphology Categorical
Early cleavage time Numerical
Number of cells Numerical
Nucleus characteristics Numerical
Fragmentation rate Numerical
Equality of blastomeres Numerical
Appearance of cytoplasm Categorical

Transfer Data

Transfer day Categorical
Physician performing embryo transfer Categorical
Difficulty of transfer Categorical

Initially, a dataset from an existing IVF database, which
included individual embryo feature vectors, was con-
structed. Each embryo was represented with 15 variables
(Table 1), and a class label was assigned: +1 and -1 in-
dicating that the implantation was successful or not suc-
cessful, respectively. A positive implantation outcome
was defined as fetal cardiac activity at 12 weeks follow-
ing embryo transfer. Dataset features and data types are
given in Table I. The features have been selected depend-
ing on the experiences of senior embryologists in the clinic
and the related studies in the literature [18]. Apart from
the existing studies, we have also considered the influence
of the physician performing the embryo transfer [21] and
the difficulty of the transfer [22] as prognostic factors.

Input data features include both continuous (e.g. age,
hormone levels etc.) and categorical (infertility factor,
treatment protocol etc.) variables. The IVF dataset
includes 2275 fresh, non-donor in-vitro human embryos
transferred in day 2 or day 3 after ICSI. The dataset
used in this study represented an imbalanced nature con-
sisting of 1944 (85.4%) negative and 331 (14.6%) positive
implantation outcomes. Hence, implantation prediction
is handled as a typical case of learning from imbalanced
data problem.

3 Methodology

In a previous study, we have compared various clas-
sifiers for the implantation prediction of IVF embryos
and shown that the Naive Bayes classifier produces a
significantly better predictive performance [23]. There-
fore, we apply the Naive Bayes algorithm to imbalanced
IVF dataset in order to investigate the effect of sampling
strategies and threshold optimization.
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This section briefly describes the Naive Bayes classifier,
performance measures related to ROC analysis and the
problem of learning from imbalanced datasets.

3.1 Naive Bayes Classification

The Bayes theorem given below states that the posterior
probability of a sample P (Ci|x) is related to the prior
distribution P (x|Ci) and the likelihood P (Ci) [24].

P (Ci|x) =
P (x|Ci)P (Ci)

P (x)
(1)

According to Bayes decision theory, a sample x is said to
belong to class Cj with the highest posterior probability
Cj = maxi(P (Ci|x)).

3.2 ROC Analysis and Performance Criteria

In the machine learning community, after the detection
of the weakness of simple error rate as a performance
measure, the use of ROC curves has gained increasing
attention [25]. In this study, we use ROC curves to eval-
uate the discriminative performance of the binary Naive
Bayes classifier where each instance I is mapped to one
of the positive and negative classes labeled as +1 and
-1 respectively. Given a classifier and an instance, the
prediction outcomes depending on actual class labels of
instances can be represented as a 2x2 confusion matrix
as shown in Table 2.

Table 2: Confusion Matrix
Predicted

Actual Case Positive Negative

Positive TP FN
Negative FP TN

Common classifier performance metrics have been de-
rived from the confusion matrix:

• TP rate (TPR) is a measure of accuracy for cor-
rectly detecting the positive instances and is equal to
the ratio of number of true positives (TP) over the
sum of true positives and false negatives (FN). TPR
(also called as Hit Rate) corresponds to sensitivity
in medical diagnosis.

TPR =
TP

TP + FN
(2)

• FP Rate (FPR) represents the number of false
alarms that is the false positives (FP) over the sum
of true negative (TN) and false positives (FP). FPR
corresponds to (1 - specificity) in medical domain.

FPR =
FP

TN + FP
(3)

It is necessary to mention the critical points on the 2D
ROC curve. The lower left point (0,0) represents the as-
signing of all instances to negative class. Hence, there are
no positive predictions yielding TPR and FPR to be 0.
Conversely, the upper right corner (1,1) indicates positive
prediction for all instances. The upper left point (0,1)
represents perfect classification. Therefore, the threshold
value that gives the nearest point to (0,1) is accepted as
the optimum decision threshold (topt).

3.3 The Problem of Imbalanced Datasets

In classification tasks, when the aim of the classification
is to maximize accuracy, imbalanced datasets produce
an unsatisfactory prediction performance. For example,
in the IVF dataset we used, any classifier labeling each
instance with the negative class will achieve 84.6% accu-
racy. However, it will actually produce 0% TPR. In such
cases, the desired solution is to find an acceptable trade-
off between the TPR and the FPR of the classification.

3.3.1 Sampling

A common approach for overcoming the imbalance prob-
lem is to rebalance the datasets artificially. Two main
sampling strategies are oversampling, which replicates in-
stances from the minority class [4] and the undersam-
pling, where some of the instances in the majority class
are removed [3].

The effects of sampling methods in prediction perfor-
mance have been investigated in machine learning based
medical decision-making applications [26] [27] [28]. We
have performed oversampling and undersampling in dif-
ferent scales and examined the classification performance
on the rebalanced IVF data with the default threshold of
0.5.

3.3.2 Threshold Optimization

It is also necessary to investigate the effect of adjusting
the output threshold for a particular classifier. Many
machine learning algorithms (i.e. Naive Bayes) produce
an estimate of the probability of class membership for
a binary classification problem. When using the Naive
Bayes classifier, the TPR and FPR have been calculated
for a single decision threshold (default: 0.5) that maps to
a single point on the ROC curve.

However, Provost clearly defined that applying the stan-
dard machine learning algorithms to imbalanced datasets
without adjusting the decision threshold may be a crit-
ical mistake [7]. Therefore, it is necessary to evaluate
the performance of classification for different thresholds
since it would be sufficient to find the optimum threshold
rather than changing the balance ratio of dataset.
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Table 3: Distribution of classes and prediction results after oversampling the training data.
Dataset No 1 2 3 4 5 6 7 8 9 10

Number of Positive Instances 218 436 654 872 1090 1308 1526 1744 1962 2180

Number of Negative Instances 1295 1295 1295 1295 1295 1295 1295 1295 1295 1295

True Positive Rate 0.508 0.630 0.665 0.692 0.705 0.723 0.741 0.749 0.760 0.768

False Positive Rate 0.180 0.287 0.336 0.372 0.404 0.429 0.449 0.461 0.473 0.488

Table 4: Distribution of classes and prediction results after undersampling the training data.
Dataset No 1 2 3 4 5 6 7 8 9 10

Number of Positive Instances 218 218 218 218 218 218 218 218 218 218

Number of Negative Instances 1295 1165 1036 906 777 647 518 388 259 129

True Positive Rate 0.508 0.542 0.554 0.581 0.611 0.637 0.653 0.682 0.726 0.791

False Positive Rate 0.180 0.202 0.22 0.245 0.262 0.298 0.321 0.360 0.414 0.513

4 Experiments and Results

We have conducted experiments to investigate the effects
of oversampling and undersampling the IVF data and
moving the decision threshold of the Naive Bayes clas-
sifier for the implantation prediction problem. Classifi-
cation experiments were performed using the Weka data
mining tool [29].

4.1 Training and Testing Strategy

Two-thirds of the dataset were randomly selected for es-
tablishing a predictor model and the remaining one-third
was utilized for testing. This initial random splitting was
performed using the stratification principle in order to en-
sure that the proportion of positive and negative classes
remained the same in both the training and the testing
sets as in the original dataset. Then, the distribution of
the training data has been artificially changed.

For oversampling, we constructed ten training sets by
replicating the positive instances while keeping the num-
ber of negative instances constant. For the first oversam-
pling, we created one more copy of positive instances; for
the second we created two copies, and so forth. When
constructing undersampled datasets, we included all of
the positive instances and randomly selected 1/10, 2/10...
of the negative instances for each fold.

For both sampling methods, the trained model was tested
on the separate 1/3 dataset including a total of 762 em-
bryo records with 649 negative and 113 positive implan-
tation outcomes. The random two-thirds to one-third
partitioning of the dataset into training and testing sets
was repeated 10 times in order to overcome sampling
bias. Oversampling and undersampling processes were
repeated for each of the 10 holdout experiments. The
presented results are the mean of these 10 repetitions.

4.2 Results

Table 3 and Table 4 represent the distribution of the
training set and prediction results in terms of TPR and

FPR for oversampling and undersampling respectively.
Results show that both TPR and FPR increase at each
fold of resampling. This can be interpreted as increasing
the number of positive embryo samples or reducing the
number of negative embryo samples raises the number of
positive predictions. The trade-off between the TPR and
the FPR can be adjusted by changing the ratio of classes.

An optimum (TPR, FPR) pair can be obtained as ex-
plained in Section 3.2. These correspond to (66.5%,
33.6%) and (65.3%, 32.1%) for oversampling and under-
sampling, respectively. Undersampling experiments show
that a training set including 218 positive and 518 negative
embryo records is sufficient to characterize the implanta-
tion outcome. This result is important in the sense of
reducing the time and cost of data collection in clinical
practice.

The TPR and FPR values were been calculated by vary-
ing the decision thresholds in the range of [0:0.1:1]. The
resulting set of (TPR, FPR) pairs are given in Table 5.

The results of oversampling, undersampling and thresh-
old variation have been plotted as a single 2D ROC curve
(Figure 3). Both sampling methods and the adjustment
of the decision threshold produce almost the same ROC
curve, demonstrating the similarity of the effects of these
methods on prediction performance.

Classification with the default decision threshold, i.e.
0.5, produces 50.8% TPR and 18.0% FPR, whereas with
topt = 0.3 TPR increased to 64.4% and FPR also in-
creased to 30.6%. Choosing a point on the left hand side
of the topt on the ROC curve reduces the FPR, but often
results in a lower TPR as well. The thresholds on the
right hand side increase both the TPR and the FPR.

4.3 Threats to Validity

In machine learning applications, it is crucial to deal with
possible biases arising from sampling procedure and the
training/testing strategies. In order to overcome sam-
pling bias, we have applied ten repetitions of the random
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Table 5: Prediction results depending on the variation of the decision threshold
Decision Threshold 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

True Positive Rate 1 0.771 0.694 0.644 0.584 0.508 0.413 0.280 0.131 0.036 0

False Positive Rate 1 0.482 0.376 0.306 0.238 0.180 0.131 0.086 0.046 0.006 0

Figure 3: ROC curves demonstrating the effect of sampling
and threshold variation of Naive Bayes based IVF implanta-
tion prediction

train/test set partitioning. In terms of construct validity,
our observations are well translated into measures such
as TPR and FPR measures that are clear and widely ac-
cepted by researchers for imbalanced datasets. The data
come from a single source challenging the external valid-
ity of the results. However, public datasets do not exist
in this domain, and other labs are reluctant to share their
data.

5 Conclusions

Each real-world application of standard machine learn-
ing algorithms requires careful analysis of the input data
and the utilized methods. Selecting the most appropri-
ate pre-processing or post-processing tasks provides bet-
ter prediction performance. This is crucial for providing
reliable decisive support to domain experts especially in
medical decision-making applications.

Most medical datasets represent an imbalanced distribu-
tion of positive and negative samples. This study has
investigated the problem of learning from imbalanced
datasets for the specific IVF domain. We have exam-
ined the effects of sampling and threshold optimization
in Naive Bayes classification and presented a comparative
analysis of these methods for the implantation prediction
of IVF embryos.

Experimental results revealed that both over sampling

the minority class, under sampling the majority class and
varying the decision threshold of Naive Bayes classifier
produce similar prediction performance. Therefore, we
conclude that it is not necessary to artificially rebalance
the distribution of class samples in the IVF dataset.

An easier and more effective way is to find the optimum
decision threshold that produces the required TPR and
FPR values depending on the cost of misclassifications.
Assuming that the the costs of false positive and false neg-
ative errors are equal, the optimum decision threshold is
found to be 0.3 resulting in 64.4% TPR and 30.6% FPR
in the implantation prediction. Furthermore, the analy-
sis of the classification results related to the rebalanced
datasets provided the minimum number of data instances
required to train a predictor model in the implantation
prediction problem.
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