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Analysis of Saddle-Node Bifurcation in a Small
Discrete Hopfield Neural Network

R. Marichal, J.D. Pifieiro, E. Gonzalez and J. Torres

f()) is a continuous, bounded, monotonically increasing
Abstract— A s_imple tvyo-neuron model of a d_is_cre_te Hopfield function, such as the hyperbolic tangent.
neural network is considered. The local stability is analyzed
with th_e assom_ated characte_rlstlc mod_el. In or_der to study the This model has the same dynamic behavior as the
dynamic behavior, the Fold bifurcation is examined. In the case . ) . .
of two neurons, one necessary condition for yielding the Fold W|II|ar_n_s-Z|pse_r neural network. Th_e relat'ons_h'p between
bifurcation is found. In addition, the stability and direction of the Williams-Zipser states and Hopfield states is
the fold bifurcation are determined by applying the normal form
theory and the center manifold theorem. xq :WXN_Z

where

Index Terms— Nonlinear System, Neural Networks, Fold .
Bifurcation, Fixed Points. X, are Hopfield states.

X,,., are the Williams-Zipser states.

W is the weight matrix without the bias and input weight
factor.
The purpose of this paper is to present some results on thgye will consider the Williams-Zipser model in order to
analysis of the dynamics of a discrete recurrent neurginplify the mathematical calculations.
network. The particular network in which we are interested is The neural network presents different classes of equivalent
the Hopfield network, also known as a Discrete Hopfieldynamics. A system will be equivalent to another if its
Neural Network in [1]. Its state evolution equation is trajectories exhibit the same qualitative behavior. This is
N M made mathematically precise in the definition of topological
- ' ; equivalence [2]. The simplest trajectories are those that are
?( k1) nZ:l: W i )'(( k))+; qu“(k) W 1) equilibrium or fixed points that do not change in time. Their
character or stability is given by the local behavior of nearby
trajectories. A fixed point can attract (sink), repel (source) or
have directions of attraction and repulsion (saddle) of close
trajectories [3]. Next in complexity are periodic trajectories,
guasi-periodic trajectories or even chaotic sets, each with its
own stability characterization. All of these features are similar
u,,(k) is themth input of the network. in a class of topologically equivalent systems. When a system
w,,w, are the weight factors of the neuron outputgarameter is varied, the.system can .reach a cr|t|F:aI point at
network inputs andy" is a bias weight. which it is no Iong_er eql_Jl\_/aIent. This is called a bifurcation,
i and the system will exhibit new behavior. The study of how
N is the neuron number. these changes can be carried out will be another powerful tool
M is the input number. in the ana|ysisl
With respect to discrete recurrent neural networks as
systems, several results on their dynamics are available in the
literature. The most general result is derived using the
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|I. INTRODUCTION

where

x (k) is theith neuron output.
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irrational periods that appear in complex phenomena, such as
frequency-locking and synchronization, which are typical of A A
biological networks. In the same paper, conditions for the
stability of these orbits are given. These can be simplified, as
we shall show below.

Passeman [8] obtains some experimental results, such as >
the coexisting of the periodic, quasi-periodic and chaotic

v

attractors. Additionally, [9] gives the position, number and
stability types of fixed points of a two-neuron discrete

recurrent network with nonzero weights. In [17] are given Fig. 1. The two possible behaviors of tRefunction. The

some results of the Fold bifurcation in discrete recurreﬂ;]ct figure corresponds to the respective diagonal weight

neural networks. . : . "
) . _lower than unity. The right shows the opposite condition
There are some works that analyze the Hopfield continuous 4 ¢ PP

neural networks [10, 11], like [12, 13, 14, 15]. These papers

show the stability of Hopf-bifurcation with two delays. condition on the ratio of slopes at the origin of the two curves

Firstly, _we analyze_ the _number and st_ablllty-_typ 4) gives the number of fixed points. The latter condition can
characterization of the fixed points. We then continue with expressed as

analysis of the fold bifurcation. Finally, the simulations are _
shown and conclusions are given. |VV| =Wy twy, -1

The combination of these two possibilities with another

Il. DETERMINATION OF FIXED POINTS where W is the weight matrix determinant.

For the sake of simplicity, we studied the two-neuron
network. This allows for an easy visualization of the problem. If Wi>1, Wo>>1 and W>w;;+W2, 1, then there can exist
In this model, we considered zero inputs so as to isolate thige, seven or five fixed points. When this condition fails,
dynamics from the input action. Secondly, and without loss #i€ere are three fixed points.
generality with respect to dynamics, we used zero biasWhen a diagonal weight is less than one, there can be three
weights. The activation function is the hyperbolic tangent. ©F one fixed points.
With these conditions, the network mapping function is
I1l.  LOCAL STABILITY ANALYSIS
X &+ D=tanh(w, %(K) + w,X,(K)) In the process below, a two-neuron neural network is
_ considered. It is usual for the activation function to be a
X, &+ D)= tanh(w, x(K + w,X (k)) sigmoid function or a tangent hyperbolic function.
Considering the fixed point equation (3), the elements of

wherex(k) andy(k) are the neural output of stkp the Jacobian matrix at the fixed poirt §) are
The fixed points are solutions of the following equations
f' w,, '
X, , = tanh(w,,x,, +Wp,X, ) - J= { W, '( X) W, ’(&)}
Wy F(%) Wy, (%)

Xop = tanh(w21xl,p + szxzvp)

The point 0, 0) is always a fixed point for every value of The associated characteristic equation of the linearized

the weights. The number of fixed points is odd because f3ystem evaluated at the fixed point is
every fixed pointXyp, %,p), (X1,p- X%,p) is also a fixed point.

To graphically determine the configuration of fixed points, /]2 _[ W f( 39"' % f( )5)]/] +‘Wf’()ﬂ) f'(Xz) =0 (5)

we redefine the above equations as

ata nh(pr) — WX, wherew;;,w,, and|W| are the diagonal elements and the

= P = F( Xy, W, 1, W) determinant of the matrix weight, respectively.
2,p 1p? "F11 TT12 . .
W, 4) We can define new variables
atanh(x, ) —w,,Xx , ,

Xip = ¥ep) = WarXz = F(Xgp Wop Wyy) g, = W, F10) + W, ()

’ Wy ! 2
Depending on the diagonal weights, there are two _ ' '

pe o g g , =W /(%) f'(x,)

gualitative behavior functions. We are going to determine the

number of fixed points using the graphical representation of

the above equations (4). First, we can show that the graph of The eigenvalues of the characteristic equation (5) are
the F function has a maximum and a minimunwif>1 or, if defined as

the opposite condition holds, is like the hyperbolic arctangent

function.
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-7+ 02 respectively, ang@, q are the eigenvector Jacobian matrix and
A =00 -0, ! . :
+ its transpose, respectively. These vectors satisfy the
normalization condition

The Fold bifurcation appears when two complex conjugate
eigenvalues reach the unit circle. It is easy to show that this < P, Q> =1.
limit condition is
The above coefficients are evaluated for the critical
A=1 parameter of the system where the bifurcation takes place. In
order to simplify the analytical calculation, only the quadratic
term in equation (6) is considered. For the case wai@ds
A s zero, it is necessaryo calculate the paramete0)
associated with the third term of the Taylor development, and
the Fold bifurcation is known as the Pitchfork bifurcation [2].
Thea(0) sign determines the bifurcation direction. Whaéb)
is negative, the stable fixed point disappears and is replaced
by two additional fixed points (saddle and source). In the
opposite case,a(0) positive, an unstable fixed point
disappears and two additional unstable fixed points appear.

SOURCE] ZONE

SINK] ZONE

(<51

> In the neural network mapping.andq are
Fold bifurcation
W]=w 1+ Wj,-1
d e
q= -1 (9)
et+d | W, X,,
SADDLE ZONE SADDLE ZONE '
e
o= {_1} (10)
W12Xl,0
SOURCE] ZONE
where

Fig. 2. The stability regions and the fold bifurcation

. , ) d=w;X,,-1
line at the fixed pointQ, 0). '

e=wy,X,,-1
The boundaries between the regions shown in Fig. 2 are X ,, =1~ x;
the bifurcations. At these limit zones the fixed point changes

its character. The fold bifurcation is represented by the line
[W=wy1+Wo,-1 in Fig. 2.

— 2
=1- X5,

X10 and X, are the fixed point coordinates where the

IV. FOLD BIFURCATION DIRECTION bifurcation appears.

In order to determine the direction and stability of the fold The Taylor development terms are

bifurcation, it is necessary to use the center manifold theory 5
[2]. The center manifold theory demonstrates that the mapping B (d,9) z
behavior in the bifurcation is equivalent to the complex jk 13X axk

mapping below: .,
= £"(0) Z Oy Wy Wy g9

a;4

U= ur 0) ¢ + qO)u +O(u) (6) L
= £"(0)). wa;,
The parameters(0) andb(0) are [2] = (11)
G(g.a.q) = Zzl YT LU
1 110X dx ox
= — 7 jk k |
0) =2 ( P B(G.9)) (7) 12)

£7(0) Y 4 & W W, 0,0
(0)=%< p@ﬂﬂ@-%{ pEA(A B Bqq)) © e

2
f"(0)2, w;afa,
i=1

wherekE is the identity matrixB andC are the second and
third derivative terms of the Taylor development,
respectivelyJ is the Jacobian matrix, the notatitiv and
<..> representthe inverse matrix and scalar product, Whereg;is the Kronecker delta.
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In order to determine the parametef®) andc(0), it is 1 (W, —1) + (W _1)3
necessary to calculate the second and third derivates of the€0) = E< p C(ag.q, Q)> = 3"‘52_ 2 2(p 11_
mapping (1) given by equations (11) and (12), respectively. ( V\h) ( Wiy sz)

of , The previous expression is not defined for the following
Ix 6Ix ==2x (1= x7)w; wy cases
o w, =1
_ 0 ou- ¥)ER - w w, w a -
0 X;0%, 0% % R b) W11+W22:2_
The Taylor development terms are then In this paper we only consider condition a) since condition

b) shows the presence of another bifurcation, known as
2 Neimark-Sacker and which is analyzed in another paper [16].
B (a.b)= _2;_1)?(1_ X)W Wi a,;by Taking into account condition a) and the bifurcation
" , parameter equation
C@bc)= 2_; 1(1_ )f)(g)fz_l)wj W Wi ajbkcl
JH ' |\N|:W11+W22_1

Taking into account the previous equations and ghe

autovector equation (9) then
2 w,W,, =0
X10X 10Wi, 127721 :
(e+d)* o . .
B(g,q)=-2 5 In this particular case, the eigenvalues match with the
2,oX2,oW12 diagonal elements of the weight matrix
(e+d)*
Al = Wll
2 3 A, =w
2X 103X — 1wy, 2 2.
3
C(9,9,9) =2 d 2 . The newq andp eigenvectors are given by
(1-3x5,
2
X320 q = {10}

— _ W12
In the remainder of the section, we will distinguish between p= {1' Weo. — 1}
the Pitchfork bifurcation, associated with the zero fixed point, 2

and Fold bifurcation.
Thec(0) coefficient is

A. Pitchfork Bifurcation at zero fixed point

Firstly, it can be shown in equation (3) that the zero is _1 _
always a fixed point. In this case, tBecoefficient, given by Q) = E< pC(aq, q)> -
the expression (11), is always zero. The normal form [2] is
redefined as a Pitchfork bifurcation, that is:

3 — —
Wi =

Wk
Wk

Therefore, in this particular case, the coefficient of the
_ 3 4 normal formc (0) is negative, a stable fixed point becomes a
GkrD= R+ q0) UK + ou(k)) saddle fixed point and two additional stable symmetrical fixed

points appear.

wherec(0) is redefined as ) ]
B. Fold Bifurcation

1 In the normal form (6), the fixed point is assumed to be
c0) =€< p C(q, q, Q)> zero. In general, the normal form of a fixed point different

from zero is
because

B(ab)=0 nk+1=B+[1+ AR+ &0k + o(k)°)

where
Replacing the expressions f6Xq,q,q), g and p given by

equations (12), (9) and (10), respectively, and evaluating
them at the zero fixed point, the previa(8) coefficient is
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ou + 12 \
B(w,) = \a(o)\ P . (v = V\L) + O(‘Wzl_ Wy ) (13) @
W21
1
and A
0.6
—_ —_ 0.4F
Y =( P X) = XyoPr+ Xp0P
A =eigenvalue-1 X, of o
+ -0.2[
War is the parameter where the bifurcation is produced. 04
X1 0and %o are the coordinates of the fixed point. 06
-0.8f
In order to determine the direction variation #fit is 1 o5 0 05 1
necessary to calculate the partial derivative given by equation X
1
ou, __ & (b)
oW, W, W, X ! ‘
0.8 I -
0.6 a1
The normal form parametef0) given by the equation (7) o4f 1
is 0.2 B
X, of N -
02 |
6(0) :1< p B(q q)> = ((f )20 - eV\ﬁle,oxz,o) Z: :
2 ’ 2(e+d)*X,, ol 4 ]
11 05 0 05 1
Xy

V. SIMULATIONS

Fig. 3. The dynamic behavior when the Pitchfork

In order to examine the results obtained, two exampldgifurcation is produced. + anéd  are the saddle and source
have been considered. The first simulation shows th#xed points, respectively. (aju;,=0.9, w;>=0.1, w=1 and
Pitchfork bifurcation, Fig. 3. The Pitchfork bifurcation is W22=0.5 ; (0):wi;=1.1,w;5=0.1,wx=1 andw,,=0.5 .
produced by the diagonal element weight matkix ®ig. 3.a
shows the dynamic configuration before the bifurcation is
produced, with only one stable fixed point. Subsequently, V1. CONCLUSION
when the bifurcation is produced, Fig. 3.b, two additional |n this paper we considered the Hopfield discrete
stable fixed points appear and the zero fixed point changes {{§o-neuron network model. We discussed the number of fixed
stability from stable to unstable (the normal form coefficienpoints and the type of stability. We showed the bifurcation
cis negative). The second simulation, Fig. 4, shows the Foldold direction and the dynamical behavior associated with the
bifurcation, which takes the non-diagonal weight matrixpifurcation.
elementwy,as the bifurcation parameter. Fig. 4.a. shows the The two-neuron networks discussed above are quite simple,
dynamic configuration before the bifurcation is producedput they are potentially useful since the complexity found in
with only one stable fixed point. When the bifurcation isthese simple cases might be carried over to larger Hopfield
produced, Fig. 4.b, four new stable fixed points appear (twgiscrete neural networks. There exists the possibility of
stable and two saddle) and the zero fixed point disappeagéneralizing some of these results to higher dimensions and of
(the normal form coefficierd is negative). using them to design training algorithms that avoid the

problems associated with the learning process.
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Fig. 4. The dynamic behavior when the Fold bifurcation is
produced. + anda are the saddle and source fixed points,
respectively. (a)v;=2.5, wip=-1, w,;=4 andw,,=3 ; (b):
Wi1=2.5,w;,=-0.7,W,=4 andVV22=3 .
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