
 
 

 

  
Abstract— A simple two-neuron model of a discrete Hopfield 

neural network is considered. The local stability is analyzed 
with the associated characteristic model. In order to study the 
dynamic behavior, the Fold bifurcation is examined. In the case 
of two neurons, one necessary condition for yielding the Fold 
bifurcation is found. In addition, the stability and direction of 
the fold bifurcation are determined by applying the normal form 
theory and the center manifold theorem.  

 
 
Index Terms— Nonlinear System, Neural Networks, Fold 

Bifurcation, Fixed Points. 
 

I. INTRODUCTION 

The purpose of this paper is to present some results on the 
analysis of the dynamics of a discrete recurrent neural 
network. The particular network in which we are interested is 
the Hopfield network, also known as a Discrete Hopfield 
Neural Network in [1]. Its state evolution equation is 
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where 
 

)(kxi
 is the ith neuron output. 

)(kum
 is the mth input of the network. 

imin ww ',  are the weight factors of the neuron outputs, 

network inputs and 
iw ''  is a bias weight. 

N is the neuron number. 
M is the input number. 
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)(⋅f  is a continuous, bounded, monotonically increasing 

function, such as the hyperbolic tangent. 
 
This model has the same dynamic behavior as the 

Williams-Zipser neural network. The relationship between 
the Williams-Zipser states and Hopfield states is 

 
ZWh WXX −=  

where 
 

hX  are Hopfield states. 

ZWX − are the Williams-Zipser states. 

W  is the weight matrix without the bias and input weight 
factor. 

We will consider the Williams-Zipser model in order to 
simplify the mathematical calculations. 

The neural network presents different classes of equivalent 
dynamics. A system will be equivalent to another if its 
trajectories exhibit the same qualitative behavior. This is 
made mathematically precise in the definition of topological 
equivalence [2]. The simplest trajectories are those that are 
equilibrium or fixed points that do not change in time. Their 
character or stability is given by the local behavior of nearby 
trajectories. A fixed point can attract (sink), repel (source) or 
have directions of attraction and repulsion (saddle) of close 
trajectories [3]. Next in complexity are periodic trajectories, 
quasi-periodic trajectories or even chaotic sets, each with its 
own stability characterization. All of these features are similar 
in a class of topologically equivalent systems. When a system 
parameter is varied, the system can reach a critical point at 
which it is no longer equivalent. This is called a bifurcation, 
and the system will exhibit new behavior. The study of how 
these changes can be carried out will be another powerful tool 
in the analysis. 

With respect to discrete recurrent neural networks as 
systems, several results on their dynamics are available in the 
literature. The most general result is derived using the 
Lyapunov stability theorem in [4], and establishes that for a 
symmetric weight matrix, there are only fixed points and 
period two limit cycles, such as stable equilibrium states. It 
also gives the conditions under which only fixed-point 
attractors exist. More recently Cao [5] proposed other, less 
restrictive and more complex, conditions. In [6], chaos is 
found even in a simple two-neuron network in a specific 
weight configuration by demonstrating its equivalence with a 
1-dimension chaotic system (the logistic map). In [7], the 
same author describes another interesting type of trajectory, 
the quasi-periodic orbits. These are closed orbits with 
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irrational periods that appear in complex phenomena, such as 
frequency-locking and synchronization, which are typical of 
biological networks. In the same paper, conditions for the 
stability of these orbits are given. These can be simplified, as 
we shall show below. 

Passeman [8] obtains some experimental results, such as 
the coexisting of the periodic, quasi-periodic and chaotic 
attractors. Additionally, [9] gives the position, number and 
stability types of fixed points of a two-neuron discrete 
recurrent network with nonzero weights. In [17] are given 
some results of the Fold bifurcation in discrete recurrent 
neural networks. 

There are some works that analyze the Hopfield continuous 
neural networks [10, 11], like [12, 13, 14, 15]. These papers 
show the stability of Hopf-bifurcation with two delays. 

Firstly, we analyze the number and stability-type 
characterization of the fixed points. We then continue with an 
analysis of the fold bifurcation. Finally, the simulations are 
shown and conclusions are given.  

II.  DETERMINATION OF FIXED POINTS 

For the sake of simplicity, we studied the two-neuron 
network. This allows for an easy visualization of the problem. 
In this model, we considered zero inputs so as to isolate the 
dynamics from the input action. Secondly, and without loss of 
generality with respect to dynamics, we used zero bias 
weights. The activation function is the hyperbolic tangent. 

With these conditions, the network mapping function is 
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where x(k) and y(k) are the neural output of step k. 
The fixed points are solutions of the following equations 
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The point (0, 0) is always a fixed point for every value of 

the weights. The number of fixed points is odd because for 
every fixed point (x1,p, x2,p), (-x1,p,- x2,p) is also a fixed point. 

To graphically determine the configuration of fixed points, 
we redefine the above equations as 
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Depending on the diagonal weights, there are two 

qualitative behavior functions. We are going to determine the 
number of fixed points using the graphical representation of 
the above equations (4). First, we can show that the graph of 
the F function has a maximum and a minimum if wii>1 or, if 
the opposite condition holds, is like the hyperbolic arctangent 
function. 

 

 
Fig. 1. The two possible behaviors of the F function. The 

left figure corresponds to the respective diagonal weight 
lower than unity. The right shows the opposite condition. 

 
The combination of these two possibilities with another 

condition on the ratio of slopes at the origin of the two curves 
(4) gives the number of fixed points. The latter condition can 
be expressed as 

12211 −+= wwW  

 
 where |W| is the weight matrix determinant. 
 
If w11>1, w22>1 and |W|>w11+w22 –1, then there can exist 

nine, seven or five fixed points. When this condition fails, 
there are three fixed points.  

When a  diagonal weight is less than one, there can be three 
or one fixed points. 

III.  LOCAL STABILITY ANALYSIS  

In the process below, a two-neuron neural network is 
considered. It is usual for the activation function to be a 
sigmoid function or a tangent hyperbolic function.  

Considering the fixed point equation (3), the elements of 
the Jacobian matrix at the fixed point (x, y) are 
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The associated characteristic equation of the linearized 

system evaluated at the fixed point is 
 

[ ] 0)()()()( 21222111
2 =′′+′+′− xfxfWxfwxfw λλ      (5) 

 
where w11,w22 and |W| are the diagonal elements and the 

determinant of the matrix weight, respectively. 

We can define new variables  
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The eigenvalues of the characteristic equation (5) are 
defined as 
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The Fold bifurcation appears when two complex conjugate 

eigenvalues reach the unit circle. It is easy to show that this 
limit condition is 

 
 1=λ   
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Fig. 2. The stability regions and the fold bifurcation 

line at the fixed point (0, 0). 
 
The boundaries between the regions shown in Fig. 2 are 

the bifurcations. At these limit zones the fixed point changes 
its character. The fold bifurcation is represented by the line 
|W|=w11+w22-1 in Fig. 2.  

IV.  FOLD BIFURCATION DIRECTION 

In order to determine the direction and stability of the fold 
bifurcation, it is necessary to use the center manifold theory 
[2]. The center manifold theory demonstrates that the mapping 
behavior in the bifurcation is equivalent to the complex 
mapping below: 

 

 )()0()0(~ 432 uOucuauu +++=  (6) 

 
The parameters  a(0) and b(0) are [2] 
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where E is the identity matrix, B and C are the second and 

third derivative terms of the Taylor development, 
respectively, J is the Jacobian matrix, the notation INV  and 
<.,.> represent the inverse matrix and scalar product, 

respectively, and p, q are the eigenvector Jacobian matrix and 
its transpose, respectively. These vectors satisfy the 
normalization condition 

 
 1, =qp  . 

 
The above coefficients are evaluated for the critical 

parameter of the system where the bifurcation takes place. In 
order to simplify the analytical calculation, only the quadratic 
term in equation (6) is considered. For the case where a(0) is 
zero, it is necessary to calculate the parameter c(0) 
associated with the third term of the Taylor development, and 
the Fold bifurcation is known as the Pitchfork bifurcation [2]. 
The a(0) sign determines the bifurcation direction. When a(0) 
is negative, the stable fixed point disappears and is replaced 
by two additional fixed points (saddle and source). In the 
opposite case, a(0) positive, an unstable fixed point 
disappears  and two additional unstable fixed points appear. 
In the neural network mapping, p and q are 
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where 
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x1,0 and x2.0 are the fixed point coordinates where the 

bifurcation appears. 
The Taylor development terms are 
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where δij is the Kronecker delta. 
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In order to determine the parameters a(0) and c(0), it is 

necessary to calculate the second and third derivates of the 
mapping (1) given by equations (11) and (12), respectively. 

 

 
ilikijii

lkj

i

ikijii
kj

i

wwwxx
xxx

f

wwxx
xx

f

)13)(1(2

)1(2

22

2

−−=
∂∂∂

∂

−−=
∂∂

∂

 
 
The Taylor development terms are then 
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Taking into account the previous equations and the q 

autovector equation (9)  
 

 



















+

+−=

2

2
120,20,2

2

2
120,10,1

)(

)(2q)(q,

de

wXy
de

wXx

B  

 

 



















−

−

=
2

0,2

2
0,2

3

3
12

2
0.10,1

)31(

)13(2

2q)q,(q,

X

x
d

wxX

C  . 

 
In the remainder of the section, we will distinguish between 

the Pitchfork bifurcation, associated with the zero fixed point, 
and Fold bifurcation. 

A. Pitchfork Bifurcation at zero fixed point 

Firstly, it can be shown in equation (3) that the zero is 
always a fixed point. In this case, the B coefficient, given by 
the expression (11), is always zero. The normal form [2] is 
redefined as a Pitchfork bifurcation, that is: 
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Replacing the expressions for C(q,q,q), q and p given by 

equations (12), (9) and (10), respectively, and evaluating 
them at the zero fixed point, the previous c(0) coefficient is 
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The previous expression is not defined for the following 

cases 

a) 11 1w =
 

b) 11 22 2w w+ =
. 

 
In this paper we only consider condition a) since condition 

b) shows the presence of another bifurcation, known as 
Neimark-Sacker and which is analyzed in another paper [16]. 

Taking into account condition a) and the bifurcation 
parameter equation  
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In this particular case, the eigenvalues match with the 

diagonal elements of the weight matrix 
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The new q and p eigenvectors are given by 
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The c(0) coefficient  is 
 

3

1

3

1
),,(,

6

1
)0( 3

11 −=−== wqqqCpc
. 

 
Therefore, in this particular case, the coefficient of the 

normal form c (0) is negative, a stable fixed point becomes a 
saddle fixed point and two additional stable symmetrical fixed 
points appear. 

B. Fold Bifurcation  

In the normal form (6), the fixed point is assumed to be 
zero. In general, the normal form of a fixed point different 
from zero is   
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+
21w  is the parameter where the bifurcation is produced.  

x1,0 and x2,0 are  the coordinates of the fixed point. 
 

In order to determine the direction variation of β, it is 
necessary to calculate the partial derivative given by equation  

 

02112

0

21

0

Xww

xe

w

u
−=

∂
∂

 
 
 
The normal form parameter a(0) given by the equation (7) 

is 
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V. SIMULATIONS 

 
In order to examine the results obtained, two examples 

have been considered. The first simulation shows the 
Pitchfork bifurcation, Fig. 3. The Pitchfork bifurcation is 
produced by the diagonal element weight matrix w11. Fig. 3.a 
shows the dynamic configuration before the bifurcation is 
produced, with only one stable fixed point. Subsequently, 
when the bifurcation is produced, Fig. 3.b, two additional 
stable fixed points appear and the zero fixed point changes its 
stability from stable to unstable (the normal form coefficient 
c is negative). The second simulation, Fig. 4, shows the Fold 
bifurcation, which takes the non-diagonal weight matrix 
element w12 as the bifurcation parameter. Fig. 4.a. shows the 
dynamic configuration before the bifurcation is produced, 
with only one stable fixed point. When the bifurcation is 
produced, Fig. 4.b, four new stable fixed points appear (two 
stable and two saddle) and the zero fixed point disappears 
(the normal form coefficient a is negative). 
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Fig. 3. The dynamic behavior when the Pitchfork 

bifurcation is produced. + and   are the saddle and source 
fixed points, respectively. (a): w11=0.9, w12=0.1, w21=1 and 
w22=0.5 ; (b): w11=1.1, w12=0.1, w21=1 and w22=0.5 . 
 

VI. CONCLUSION 

In this paper we considered the Hopfield discrete 
two-neuron network model. We discussed the number of fixed 
points and the type of stability. We showed the bifurcation 
Fold direction and the dynamical behavior associated with the 
bifurcation. 

The two-neuron networks discussed above are quite simple, 
but they are potentially useful since the complexity found in 
these simple cases might be carried over to larger Hopfield 
discrete neural networks. There exists the possibility of 
generalizing some of these results to higher dimensions and of 
using them to design training algorithms that avoid the 
problems associated with the learning process. 
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Fig. 4. The dynamic behavior when the Fold bifurcation is 

produced. + and   are the saddle and source fixed points, 
respectively. (a): w11=2.5, w12=-1, w21=4 and w22=3 ; (b): 
w11=2.5, w12=-0.7, w21=4 and w22=3 . 
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