


Abstract—The goal of an ensemble construction with

multiple neural networks (NNs) is to achieve better
generalization ability in comparison with a single network.
Proper diversity among component networks is considered to
be an important aspect of neural network ensemble (NNE)
construction, in that a failure of one network may be
compensated for by other networks. Conventional methods first
produce a multiplicity of diverse networks and then combine
their decisions for the overall decision of the ensemble. In
general, they do not check whether each network is essential for
the ensemble, or whether a subset of the networks might
perform better. If a particular network performs poorly, it may
not be possible for the remaining networks to compensate
effectively, resulting in a poorly performing NNE. Although a
number of techniques have been investigated in the last few
years, no single technique has been discovered that performs
well on all possible problems. While a certain solution may
outperform alternatives for a subset of problems, the method
may perform worse on other problems. This paper discusses
Ensembles Fusing Multiple Popular Methods (EMPM), which
demonstrate a relatively good performance on all possible
problems. EMPM first produces a network pool using several
popular methods, and then it selects networks for an ensemble
using a proposed forward selection scheme. EMPM has shown
better performance with a compact ensemble over conventional
methods when tested on a suite of 25 benchmark problems.
Experimental analyses have revealed that a heterogeneous
network pool of EMPM (using multiple popular methods) is
more effective than a pool of any individual conventional
method for NN selection. Forward selection has also been found
to be a more effective method with a variety of benefits when
compared to conventional genetic algorithm-based selection.

Index Terms — diversity, generalization ability, neural
network ensemble, network selection.

I. INTRODUCTION

The goal of an ensemble construction with multiple
neural networks (NNs) is to achieve better generalization
ability in comparison with a single neural network. The
inspiration for building an ensemble is the same as that for
establishing a committee of people: Each member of the
committee should be as competent as possible, but the
members should be complementary to one another. If the
members are not complementary, that is, if they always
agree, then the committee is unnecessary, since any one

Manuscript received April 14, 2010.
M.A.H. Akhand is with the Dept. of Computer Science and Engineering

(CSE), Khulna University of Engineering & Technology (KUET),
Khulna-9203, Bangladesh (phone: +880-41-774318; fax: +880-41-774403;
e-mail: akhand@cse.kuet.ac.bd; website: www.kuet.ac.bd/cse/akhand).

K. Murase is with the Dept. of Human and Artificial Intelligence
Systems, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
(e-mail: murase@synapse.his.fukui-u.ac.jp).

member could perform the task of the entire committee. On
the other hand, if the members are complementary, there is a
high probability that the remaining members may be able to
correct a potential error caused by one or a few members.
Thus, for neural network ensemble (NNE) construction,
proper diversity among component networks is considered to
be an important aspect, in that a failure of one network may
be compensated for by other networks [1], [2].

There are a variety of ways of constructing an NNE
composed of diverse NNs, such as by using different training
sets, architectures and learning methods. Since the
functionality of an NN depends on its training data, data
sampling (i.e., NNs training using different data) has been
shown to be more effective for achieving diversity than other
approaches [3]-[5]. A number of techniques employing data
sampling have been investigated for creating diverse NNs.
However, no single technique has been found to be ideal for
all possible problems [3], [4]. While a certain approach may
outperform alternatives for a subset of problems, the method
may perform worse on other problems. One possible reason
for this phenomenon might be the wide variety of attributes
of real world problems (i.e., complexity, number of
examples, number of input attributes, output classes, etc.) [5];
any technique that adheres to a single method fails to
maintain sufficient diversity for all possible problems.
Nevertheless, bagging, AdaBoost, and negative correlation
learning are popular ensemble methods based on data
sampling which show better overall performance in
comparison with other methods such as DECORATE, class
label switching, random subspace methods and smearing [4].

Since no single NNE method has been found to be
effective for all possible problems, in this study we aim to
construct an NNE that can either outperform or perform
comparably well relative to the existing optimal solution for
any given problem. Here, we consider a method of fusing of
multiple popular NNE methods to achieve this goal. The
proposed method works in two different phases. First, it
creates a pool of networks using several popular methods
(called “fusion”), and second, it selects a subset of NNs from
the pool for constructing an NNE. We believe that an
appropriate selection process is likely to result in a good
selection of NNs, and that an NNE combining this selection
may outperform or perform comparably relative to the best
alternative used.

The remainder of this paper is organized as follows.
Section II outlines existing conventional ensemble methods.
Section III details a proposed ensemble construction fusing
multiple popular NNE methods. Section IV presents
experimental results of the new method, and compares
performance with conventional methods. Finally, Section V

M. A. H. Akhand and K. Murase

Neural Network Ensemble Construction Fusing
Multiple Popular Methods

IAENG International Journal of Computer Science, 37:4, IJCS_37_4_01

(Advance online publication: 23 November 2010)

__

concludes the paper with a brief summary and some future
possible directions for research following this study.

II. CONVENTIONAL POPULAR NNE CONSTRUCTION

METHODS
The step of creating diverse networks is commonly

followed by ensemble methods for achieving better
performance. Among existing alternatives, data sampling,
that is, using different training data for different NNs, is
commonly considered to be most effective for achieving
diversity. The three most popular algorithms that explicitly or
implicitly use different training sets for different NNs in an
ensemble are bagging [7], AdaBoost [8] and Negative
Correlation Learning (NCL) [9].

The bagging algorithm [7] explicitly creates different
training sets for different NNs to achieve diversity. It creates
a particular training set for a given NN by forming bootstrap
replicates of the original training set. Given an original
training set T consisting of m patterns, a new training set T is
constructed by drawing m patterns uniformly from T, and
replacing the patterns with bootstrap replicates. Due to
random selection, on average, each training set contains only
approximately 63.2% unique patterns from T [11]. As a result,
some patterns appear multiple times, while others are left out.
For an overall NNE decision, a voting process in which all
the trained NNs are considered in a final NNE decision where
the outputs of the NNs are given equal voting strength is
used.

The training set T for each component NN in AdaBoost [8]
is chosen from the original training set T using a bootstrap
method, similar to the case of bagging, but with adaptation.
Training patterns that were incorrectly classified by previous
component NN(s) are chosen more frequently for creating a
new training set than patterns that were correctly classified.
AdaBoost thus increases focus on the previously
misclassified patterns by increasing their presence in the
training set of future NN(s). For an ensemble decision,
decisions of individual NNs are assigned weights, where the
weight of a decision of a component network in the final
weighted vote depends on its accuracy [3], [11]. Therefore,
combination in AdaBoost [8] seems to be based on implicit
NN selection: A network has no effect when its voting
strength is zero or nearly zero. However, in the final NNE, all
the NNs remain, resulting in a comparatively bulky NNE.

Like bagging and AdaBoost, NCL does not create separate
training sets explicitly for NNs in an ensemble. For diversity,
NCL rather adds a penalty term to the backpropagation (BP)
[17] error function. The error, ei(n), of a network i for the n-th
training pattern in BP is given by the formula

,))()((
2

1
)(2ndnfne ii  (1)

where fi(n) and d(n) are the actual and desired outputs for the
n-th training pattern, respectively. The problem with this
error function is that it returns similar hypotheses for
different NNs when training on the same training data.
Therefore, this outcome results in relatively less diversity
than that of other solutions, and is consequently not suitable
for performance as is in an ensemble [9], [10]. The NCL
algorithm, therefore, introduces a penalty term in the error
function to establish training time interaction among NNs in

the ensemble. The error of the i-th NN in the ensemble for the
n-th training pattern [9] is given by the formula

     ,)()()()()()(
2

1
)(2 




ij

jiii nfnfnfnfndnfne  (2)

where f(n) is the actual output of the ensemble for the n-th
training pattern, and  is a scaling factor that controls the
penalty term. The ensemble output is generally obtained by
averaging the outputs of all the component NNs.

Due to the correlation penalty term in the network error
function, the component NNs can interact with one another
during training, and different NNs are motivated to give
different hypotheses implicitly. Therefore, NCL promotes
diversity even though all component NNs train using the
same original training data. NCL trains a predefined number
of NNs, and considers outputs of all the trained NNs for the
decision of the final NNE.

Since the early 1990s, a number of NNE methods have
been proposed, and the aforementioned three methods have
appeared as the most popular methods. In a comparative
analysis, each of the three methods of this group has
individually outperformed alternative approaches on certain
problems. However, among the three, there is no ideal
method that outperforms all other methods for all possible
problems [4]. Furthermore, a particular popular method may
actually show the worst relative performance on certain
problems. An NNE that either outperforms or at least
performs comparably relative to the best popular methods on
every possible problem would be of interest. For such an
NNE, we consider a fusion of the popular three methods (i.e.,
bagging, AdaBoost and NCL) in this study. The next section
describes the method in detail.

III. AN ENSEMBLE FUSING MULTIPLE POPULAR METHODS

(EMPM)

There is no ideal conventional NNE method that performs
well on all possible problems. One possible reason is the
amazing variety of attributes of real world problems. Any
technique that adheres to a single method fails to maintain
proper diversity for all possible problems. Moreover, existing
NNE methods consider outputs of all produced or trained
NNs for an ensemble without checking whether each one is
essential. If a particular NN performs very poorly, it may not
be possible for the remaining networks to compensate
effectively, resulting in a poorly performing NNE. Finally, it
is important to construct an NNE with appropriately selected
NNs to achieve better generalization ability. Commonly, the
quality of the selected NNs increases in proportion to the
diversity of those available. Accordingly, a pool of diverse
NNs fusing multiple popular methods tends to function well
in an ensemble.

There are two vital factors to keep in mind when
constructing an Ensemble fusing Multiple Popular Methods
(EMPM) for a better-performing NNE: the creation of a
network pool using multiple popular methods, and the
selection of NNs from the pool. For a pool having a total of N
networks, the number of NNs in the final NNE may be less
than or equal to N. The following subsections discuss pool
creation and the selection scheme.

Diversity in the original pool of NNs is important for
selecting appropriate networks for a good NNE. Since any

IAENG International Journal of Computer Science, 37:4, IJCS_37_4_01

(Advance online publication: 23 November 2010)

__

conventional method produces diverse networks, one may
consider any such method for pool creation. However, it is
worth noting that a selection of NNs from a given such pool
may not perform well, and the constructed NNE may not
outperform or perform comparably well relative to others due
to similarity in approaches followed for producing the
network pool. On the other hand, if a pool is produced using a
variety of different methods, an NNE with appropriately
selected NNs will always perform better than or comparably
compared to the best individual method. Since bagging,
AdaBoost and NCL are the most popular methods, diverse
NN pool creation using these methods may result in better
performance. Results show that NCL performs relatively
better for small-sized problems, while bagging and AdaBoost
exhibit superior performance for large-sized problems. For
very large problems, AdaBoost has shown very good results
in some cases [3], [4], [11]. A network pool constructed using
the above three methods seems helpful for compensating for
the limitations of individual methods, and an NNE
constructed with appropriately selected NNs from the
original pool will perform better. Therefore, we have chosen
to investigate bagging, AdaBoost and NCL for creating a
heterogeneous network pool in this study.

The purpose of the selection scheme is to discover the
optimal NN subset in the pool for constructing an NNE that
performs well. For a pool containing m NNs, a total of 2m
subsets may need to be checked to determine the optimal
NNE. Reportedly, a total of 10 to 20 NNs are standard for an
NNE with good generalization [3], [4]. If m=15, then the
number of total subsets that must be checked is 215=32768 for
determining the optimal NNE. This number is relatively
large, and requires significant time for checking. Therefore,
this paper also investigates an efficient network selection
scheme called “forward selection” for reducing the time
required for selecting the NN subset.

The idea of forward selection is simple: Select the best NN
from the pool, and try to minimize its error by the
compensation of other NNs. An NNE shows better
performance when the failure of one component NN is

compensated for by other component NNs. Compensation is
easy when the error produced by an NN is small. Therefore,
NNs in an NNE should be as accurate and diverse as possible
to achieve better performance [4]. Therefore, in obtaining the
overall result, selecting the most accurate NN of the pool and
then trying to compensate any error using other NNs makes
sense, and is likely to result in a good selection of appropriate
NNs for an NNE.

The proposed method selects the most accurate NN as the
base of the NNE. First, it sorts all the NNs in descending
order according to their accuracy. Then, it selects the most
accurate NN for an NNE by default. Next, it chooses the
second best NN from the sorted list and adds this NN to the
previously selected best NN. If overall NNE performance
using these two NNs is found to be inferior to that of using
the best NN alone, then discard the second best NN.
Similarly, other NNs are added from those sorted to construct
an NNE with an optimal selection of NNs. Given a pool with
m NNs, forward selection evaluates each NN’s performance
individually, and measures the performance of each of the
m-1 combinations of the NNs.

A forward selection scheme for a pool size of 15 NNs is
shown in Fig. 1. One may consider either diversity among the
NNs in addition to accuracy of the NNE, or simply accuracy
alone, as selection criteria. For simplicity, a simple average
combination of NNs is used for an NNE decision. Because of
the fewer combinations of NNs required for checking, using
forward selection is more efficient than checking
combinations of all NNs.

IV. EXPERIMENTAL STUDIES

First, this section provides a detailed description of
benchmark problems, and presents an experimental
methodology. Then, performance of the proposed EMPM is
compared to that of conventional NNE methods in finding
solutions to benchmark problems. Finally, an experimental
analysis is presented for examining the performance of the
proposed method in detail.

A. Benchmark Problems and General Experimental
Methodology

Twenty-five real world classification problems were
employed in this study. The origin of these problems is the
University of California, Irvine (UCI) machine learning
benchmark repository; detailed descriptions are available at
the UCI website [6]. Table I shows the characteristics of
problems which show considerable variety in the number of
examples, input features and classes. Thus, these problems
provide a suitable experimental test bed.

UCI contains raw data and requires preprocessing for use
in NNs. We have followed benchmark methodology [13] for
preprocessing data of the problems. The number of output
nodes was equal to the number of classes for a given problem.
Continuous input feature values were rescaled between 0 and
1 with a linear function. For discrete features, the number of
inputs was selected as the number of distinct values in
general.

The structure of an individual NN in the NNE was the
standard three-layered network having one hidden layer. We
chose the number of hidden units based on the number of Fig. 1: Forward selection of networks.

NN5

NN7

NN12

NN13

NN1

NN11

NN2

NN8

NN9

NN15

NN6

NN3

NN4

NN14

NN10

Sorting

NN1

NN2

NN3

NN4

NN5

NN6

NN7

NN8

NN9

NN10

NN11

NN12

NN13

NN14

NN15

Best network

NNs for
Ensemble

Worst network

Checking

IAENG International Journal of Computer Science, 37:4, IJCS_37_4_01

(Advance online publication: 23 November 2010)

__

input and output units, which was one hidden unit for every
output unit, plus one hidden unit for every 10 input units[3],
[4]. The minimum number of hidden units was set to 5. The
most popular logistic sigmoid function, (y) =1/ (1+exp (-y)),
was used as an activation function for the nodes in the hidden
and output layers. The initial random weights of component
NNs were set to between -0.5 and 0.5. The learning rate of
backpropagation (BP) was set to 0.1, and each network was
trained for 50 equal epochs. The scaling factor () of NCL
was chosen to be between 0.25 and 0.75. The selected
parameter values are not optimal values, but were chosen for
simplicity as well as for fairness in observation.

In order to evaluate the performance of an NNE,
generalization is measured on the testing set that was
reserved from available data and not used by any NN in
training and selection. The testing error rate (TER) is the
common measure of generalization; the lower its value, the
better the generalization is. Note that the aim of any NNE

method is to minimize the TER.

B. Experimental Results of EMPM and Comparison with
Conventional Methods

This section evaluates the performance of the proposed
EMPM on the benchmark problems. The EMPM fuses three
data sampling-based NNE methods (bagging, AdaBoost and
NCL); the standard forms of these three methods have been
implemented and their results have been compared to those of
EMPM. For a more comprehensive understanding, the simple
NNE (sNNE) method, where initial weight sets are only
different in different NNs, is also considered. sNNE without
data sampling exhibits less diversity, and is considered as the
baseline point of NNE construction [3], [4].

It can be seen that the TER may vary due to the variation of
the testing set data, even if the size of the data set remains the
same. Therefore, standard 10-fold cross validations have
been used for result presentation. In the cross validation,
initially available training examples were partitioned into ten
equal or nearly equal sets, and for each turn, one set was
reserved as a testing set, while the remaining nine sets were
used for training.

The TER achieved by EMPM was compared to that for
conventional methods over five standard 10-fold cross
validation (i.e., 5*10=50) runs in Table II. In the table, for
each problem, the best TER is indicated in bold among the
five methods. Thirty NNs were trained for an NNE in a
conventional method, since the previous study revealed that
this number was sufficient for better generalization [3], [4].
For fairness of comparison, the pool size of the EMPM was
also set to be 30 NNs, for which each of the bagging,
AdaBoost and NCL methods produced 10 NNs. A
conventional method considered all 30 NNs for the final
NNE, but the set of NNs in the EMPM was
problem-dependent due to selection.

The results presented in Table II reveal the effectiveness of
the proposed EMPM approach clearly. It is found that the
performance of sNNE is worse compared to the other
methods, and that of the EMPM is the best. sNNE exhibits
the best TER for only one problem (i.e., Auto Imports), and is
the worst for 16 out of 25 problems. For Auto Imports, NCL
also achieved the same TER as sNNE, with a value of 0.44.
The reason for sNNE having achieved the worst results is its
training with same original training data for all NNs, where
the initial random weight set variation was the only element
to introduce diversity. The traditional data sampling based
methods bagging, AdaBoost and NCL outperformed sNNE
for 19, 18, and 14 different problems, respectively. Although
AdaBoost was shown to be the best among the conventional
methods based on average TER (i.e., 0.1351), it was worse
than sNNE for five problems. On the other hand, EMPM
outperformed sNNE for 24 problems, which was greater in
number compared to any conventional method.

EMPM constructs an NNE by selecting networks from a
pool in which NNs are trained with different data sampling
methods. Hypothetically, for proper selection, it is
guaranteed that EMPM outperforms sNNE if any
conventional method (that has been employed in pool
creation) outperforms sNNE. For the Zoo problem, the TERs
for sNNE, bagging, AdaBoost and NCL were 0.126, 0.116,

Table I: Characteristics of benchmark datasets.

Dataset
Exa-
mple

Class
Input feature NN

input
Hidd.
nodeCont. Disc.

Australian Credit
Card

690 2 6 9 51 10

Auto Imports 205 6 16 8 24 10

Breast Cancer
Wisconsin

699 2 9 - 9 5

Balance 625 3 - 4 20 10

Car 1728 4 - 6 21 10

Diabetes 768 2 8 - 8 5

Echocardiogram 131 2 7 1 8 5

Ecoli 336 7 7 - 7 10

German Credit
Card

1000 2 7 13 63 10

Hepatitis 155 3 6 13 19 5

House Vote 435 2 - 16 16 5

Hypothyroid 7200 3 6 15 21 5

Ionosphere 351 2 34 - 34 10

King+Rook vs
King+Pawn

3196 2 - 36 74 10

Lymphography 148 4 - 18 18 10

Low Resolution
Spectrometer

531 10 101 - 101 20

Page Blocks 5473 5 10 - 10 5

Soybean 683 19 - 35 82 25

Segmentation 2310 7 19 - 19 10

Sonar 208 2 60 - 60 10

Splice Junction
Gene Sequences

3175 3 - 60 60 10

Satellite 6435 6 36 - 36 10

Wine 178 3 13 - 13 5

Waveform 5000 3 21 - 21 10

Zoo 101 7 15 1 16 10

IAENG International Journal of Computer Science, 37:4, IJCS_37_4_01

(Advance online publication: 23 November 2010)

__

0.038 and 0.132, respectively, and the TER achieved by
EMPM was 0.048, which was closest to that of the best
conventional method, AdaBoost. On the other hand, Auto
Imports is a small-sized problem on which the performance
of both bagging and AdaBoost was worse than that of sNNE,
and on which the performance of NCL was equal to that of
sNNE; therefore, for EMPM to achieve a worse TER than
that of sNNE for this problem is acceptable.

EMPM also outperforms the conventional methods used to
produce a heterogeneous NN pool. It is better than bagging,
AdaBoost and NCL for 22, 20 and 21 problems, respectively,

according to Table II. This indicates that EMPM may
construct NNEs with appropriate NNs. Again, due to the
selection scheme, an additional benefit of EMPM is that it
achieves a compact NNE that is smaller than that of the
traditional methods which train a predefined number of NNs
and in which all the networks are considered for NNE. In
some cases, with a smaller NNE, EMPM achieved the best
TERs. As an example, for the Hypothyroid problem, with
4.16 NNs/NNE, the TER for EMPM was 0.0262; on the other
hand, with 30 networks, the TERs for bagging, AdaBoost and
NCL were 0.0589, 0.0328 and 0.0585, respectively.

Table II: Comparison of EMPM with conventional methods over five standard 10-fold cross validation runs.
The bottom of the table contains a summary of the results.

TERs of conventional methods EMPM

Problem
sNNE

(30 NNs/NNE)
Bagging

(30 NNs/NNE)
AdaBoost

(30 NNs/NNE)
NCL

(30 NNs/NNE)
TER NNs/NNE

Australian Card 0.151 0.1406 0.1562 0.1516 0.1469 5.94

Auto Imports 0.44 0.458 0.462 0.44 0.455 5.18

Breast Cancer 0.0333 0.0322 0.0325 0.0276 0.0313 12.82

Balance 0.0842 0.079 0.0165 0.0842 0.0303 15.66

Car 0.1212 0.1158 0.077 0.1207 0.0936 15.96

Diabetes 0.2416 0.2387 0.2387 0.2416 0.2339 4.02

Echocardiogram 0.1308 0.1384 0.1169 0.1308 0.1169 6.46

Ecoli 0.3824 0.2394 0.2497 0.3491 0.2248 6.78

German Card 0.2502 0.244 0.2488 0.247 0.247 14.04

Hepatitis 0.1587 0.1533 0.1813 0.1587 0.148 9.72

House Vote 0.0437 0.0358 0.0428 0.0391 0.041 13.38

Hypothyroid 0.0592 0.0589 0.0328 0.0585 0.0262 4.16

Ionosphere 0.1931 0.1383 0.1137 0.1926 0.1206 7.06

King+Rook 0.1441 0.0237 0.1095 0.1419 0.0224 20.82

Lymphography 0.1571 0.1629 0.1914 0.1571 0.1443 7.94

Low Resolution 0.1143 0.1207 0.1132 0.1158 0.1075 7.56

Page Blocks 0.0789 0.0742 0.0597 0.0786 0.0493 6.78

Soybean 0.0591 0.0573 0.0591 0.0579 0.0559 15.00

Segmentation 0.0913 0.0799 0.0684 0.0912 0.0639 6.58

Sonar 0.225 0.228 0.225 0.225 0.222 10.76

Splice Junction 0.1604 0.1591 0.1531 0.1577 0.151 16.84

Satellite 0.1597 0.1528 0.1461 0.1576 0.1408 8.08

Wine 0.0223 0.0247 0.1141 0.0212 0.0165 19.56

Waveform 0.132 0.1301 0.13 0.132 0.1296 7.70

Zoo 0.126 0.116 0.038 0.132 0.048 8.82

Average 0.1504 0.1361 0.1351 0.1484 0.1227 10.305

Method Best/Worst 1/16 3/3 5/6 2/4 16/0

Pair wise win/draw/loss summary

sNNE Bagging AdaBoost NCL EMPM

sNNE - 19/0/6 18/2/5 14/8/3 24/0/1

Bagging - 13/1/11 9/0/16 22/0/3

AdaBoost - 9/1/15 20/1/4

NCL - 21/1/3

IAENG International Journal of Computer Science, 37:4, IJCS_37_4_01

(Advance online publication: 23 November 2010)

__

C. Experimental Analyses

This section first presents a modified version of EMPM,
where a genetic algorithm is adapted for network selection,
and compares the results with the standard EMPM. An
empirical analysis for several methods of network pool
creation is then analyzed to indicate the performance of the
proposed method.

C.1. Forward Selection versus the Genetic Algorithm for NN
Selection

The Genetic Algorithm (GA) is a search and optimization
algorithm that works based on the process of natural selection
[12]. GA has also been used for NN selection for NNEs in
previous studies [14], [15], [19]. GASEN [14], [15] applied
GA on a bootstrap sampling-based network pool for an
ensemble with selected NNs. Selection on same bootstrap
based NN (i.e., bagging) might not be effective for all cases,
as discussed earlier. SNCL [19] also employed GA on an
NCL-based network pool. In contrast, due to offline
selection, it is possible to utilize any other method or
combination of several methods to create the NN pool that is
used in the proposed EMPM. This section investigates the
utilization of GA instead of forward selection in the NN
selection phase of EMPM. This new approach is called
“GA-based EMPM.”

A bit string encoding scheme is used in GA-based
selection. The gene size was defined as the number of the
total NNs in the pool. Each gene is indicated as an NNE with
NNs having corresponding bits in the gene represented in
binary as 1s. The fitness function was defined with the
accuracy of the classification of the training set. The
population size was set to 20 based on a number of trial runs;
the crossover and mutation rates were 1 and 0.2, respectively.
Initially some bits of each gene were randomly initialized to
1. If the overall fitness value of the population did not
improve after several generations, an NNE was constructed
based on the best-fitted gene.

GA evaluates NN subsets independently of the pool size to
find a better subset. GA needs to check P*G subsets of NNs
from the pool, where the population size is P and the total
number of generations is G. Although discovery of the best
subset of NNs by GA is not guaranteed, it is cost-effective
compared to checking all possible NNs subsets, that is, 2m for
m NNs, in the pool.

A gene bank is considered in GA to overcome the
recalculation of fitness value if a similar gene has already
appeared. It is observed that the fitness value (i.e., an NNE’s
performance based on a gene) calculation requires much
more time relative to other operations. For the fitness value of
a gene, the gene bank is searched, and the fitness value is
retrieved if a similar gene exists; otherwise, the fitness value
is calculated and is stored in the gene bank for later use. This
process improves the running time of the GA-based selection
scheme. However, checking P*G subsets and other
operations in GA require more time than the operations in
forward selection.

Table III shows the average result of the standard EMPM
and GA-based EMPM over five standard 10-fold cross
validation (i.e., 5*10=50) runs. The NN pool was kept the
same in both cases for fair observation. For the pool of 30

NNs, each of the bagging, AdaBoost and NCL methods
produced 10 NNs. The TERs for the NNE with all 30 NNs are
presented under the heading of ‘Before selection’. A simple
averaging technique was followed to obtain the output of the
NNE from the output of individual NNs.

The selection of one scheme (i.e., forward selection or GA)
improves the overall TER, as can be seen from Table III. In
some cases, the improvement was impressive, such as for the
Balance, Page Blocks, and Zoo problems. For the Page
Blocks problem, the TER before selection was 0.0701; after
selection, the TERs were 0.0537 and 0.0493 for GA and
forward selection, respectively. Between the selection
schemes, on the basis of the average TER for all 25 problems,
forward selection was shown to be better than GA, although
in some cases (e.g., the Australian Card and Waveform
problems), GA achieved lower TERs. The average TERs for
GA and forward selection were 0.1278 and 0.1227,
respectively. In addition, the average number of selected NNs

Table III: Experimental result of EMPM with GA-based
selection and forward selection over five standard 10-fold

cross validation runs.

Problem

Before
selection

GA-based
EMPM

EMPM
(Forw. selec.)

TER
(30 NNs/

NNE)
TER

NNs/
NNE

TER
NNs/
NNE

Australian Card 0.1458 0.1423 12.00 0.1469 5.94

Auto Imports 0.439 0.453 11.98 0.455 5.18

Breast Cancer 0.0331 0.0342 11.82 0.0313 12.82

Balance 0.0787 0.0423 11.68 0.0303 15.66

Car 0.1121 0.0935 11.88 0.0936 15.96

Diabetes 0.24 0.2342 12.06 0.2339 4.02

Echocardiogram 0.1246 0.1169 10.92 0.1169 6.46

Ecoli 0.2757 0.2527 10.86 0.2248 6.78

German Card 0.242 0.2468 11.80 0.247 14.04

Hepatitis 0.1613 0.1547 11.80 0.148 9.72

House Vote 0.0372 0.0396 10.06 0.041 13.38

Hypothyroid 0.0573 0.049 9.58 0.0262 4.16

Ionosphere 0.14 0.1257 12.46 0.1206 7.06

King+Rook 0.0318 0.0229 12.28 0.0224 20.82

Lymphography 0.16 0.1643 11.32 0.1443 7.94

Low Resolution 0.1143 0.1121 11.8 0.1075 7.56

Page Blocks 0.0701 0.0537 10.32 0.0493 6.78

Soybean 0.0529 0.0553 11.96 0.0559 15.00

Segmentation 0.0815 0.0701 12.08 0.0639 6.58

Sonar 0.245 0.229 12.34 0.222 10.76

Splice Junction 0.1551 0.1563 11.56 0.151 16.84

Satellite 0.1487 0.1422 12.14 0.1408 8.08

Wine 0.0153 0.0153 12.08 0.0165 19.56

Waveform 0.1282 0.1286 12.34 0.1296 7.70

Zoo 0.09 0.06 10.98 0.048 8.82

Average 0.1352 0.1278 11.604 0.1227 10.305

IAENG International Journal of Computer Science, 37:4, IJCS_37_4_01

(Advance online publication: 23 November 2010)

__

for forward selection is less than that for GA; the numbers of
selected NNs were 11.604 and 10.305 for GA and forward
selection, respectively.

A remarkable observation that can be made from the
results in Table III is that GA selects a similar number of NNs
for all the problems. The reason for this result is that GA
considers all the NNs in every generation. On the other hand,
forward selection is shown to be more effective in choosing
an NNE size specifically tailored for the problem. An issue
with GA is time complexity, because it always works with a
population of solutions (here, NNEs). The coming section
will describe this issue using empirical results.

C.2. Effects of Different Pool Creation Methods and
Different Pool Sizes

This section investigates various networks pool creation
methods for NNE construction. Pools were created using four

methods: bagging, AdaBoost, NCL and a combination of
these three methods, that is, EMPM. In EMPM, one-third of
the NNs were trained by each of bagging, AdaBoost and NCL
as similar to in experiments in the previous sections. Four
problems were selected for analysis having variation in the
number of available examples, input features and output
classes. For example, Hypothyroid and Zoo contain both
continuous and discrete features; whereas the Ionosphere and
Soybean problems have only continuous and discrete
features, respectively.

In the experiment, one-third of the available examples
were reserved as a testing set for measuring TER and
diversity. The remaining two-thirds of the examples were
used to train NNs for the pool, and to check status in the
selection process. The pool size varied from 9 to 90 NNs for
each method. TER, diversity, number of selected NNs in the
final NNE, and required time for network pool creation plus
the selection process were measured for analysis. Figs. 2–5

 (a) Hypothyroid

 (b) Ionosphere

 (c) Soybean

 (d) Zoo

Fig. 2: Effect of pool size on TER.

0.02

0.03

0.04

0.05

0.06

0 20 40 60 80 100

0.1

0.15

0.2

0.25

0.3

0 20 40 60 80 100

0.06

0.07

0.08

0.09

0 20 40 60 80 100

0.04

0.09

0.14

0.19

0 20 40 60 80 100

Pool size Pool size

T
E

R

T

E
R

T

E
R

T
E

R

Pool size Pool size

Pool Creation: Bagging AdaBoost NCL EMPM

Selection: No GA Forward

IAENG International Journal of Computer Science, 37:4, IJCS_37_4_01

(Advance online publication: 23 November 2010)

__

present a summary of measures; the presented results are the
average over ten independent runs.

The diversity indicates how predictions differ among
component NNs on the testing set. To measure diversity, we
employed the most commonly used pairwise plain
disagreement measure technique [16]. For two NNs i and j,
the plain disagreement is equal to the proportion of the
examples on which the NNs make different predictions as
given in the following formula:





N

k
kjkiji xCxCDiff

N
div

1
.)),(),((

1 (3)

where N is the number of examples in the testing set, Ci(xk)is
the class assigned by network i to example k, and Diff(a,b) =
0, if a=b; otherwise Diff(a,b) = 1. The diversity in the plain
disagreement method varies from 0 to 1. This measure is
equal to 0 when the NNs return the same classes for each

example, and to 1 when the predictions are always different.
The total NNE diversity is the average of all NN pairs in the
NNE.

Figure 2 shows the effect of pool size on TER for both
selection schemes. Bagging, AdaBoost or NCL without any
selection represent the corresponding standard method.
Performance due to selection on these methods is found to be
problem-dependent. Selection on the pool created by bagging
and NCL is found to achieve better (i.e., lower) TER for the
Soybean and Zoo problems; however, the TERs for both
selection schemes were almost identical to those for standard
bagging and NCL for the Hypothyroid problem.

It is also observable from Fig. 2 that the performance of an
NNE of selected NNs depends on the NN pool on which the
selection applies. NCL showed a worse TER than other
methods for the Ionosphere problem (Fig. 2(b)), and
continued to exhibit a worse TER after selection, although

 (a) Hypothyroid

 (b) Ionosphere

 (c) Soybean

 (d) Zoo

Fig. 3: Effect of pool size on diversity.

0

0.06

0.12

0.18

0 20 40 60 80 100

0

0.1

0.2

0.3

0.4

0 20 40 60 80 100

0.1

0.2

0.3

0.4

0.5

0 20 40 60 80 100

0.12

0.18

0.24

0.3

0.36

0 20 40 60 80 100

 Pool size Pool size

D

iv
er

si
ty

D
iv

er
si

ty

D
iv

er
si

ty

D
iv

er
si

ty

Pool size Pool size

Pool Creation: Bagging AdaBoost NCL EMPM

Selection: No GA Forward

IAENG International Journal of Computer Science, 37:4, IJCS_37_4_01

(Advance online publication: 23 November 2010)

__

the TER improved due to selection. Similar observations for
other cases lead to the conclusion that selection on a standard
method having worse TER normally fails to achieve a better
TER than a standard method having a good TER. Similarly,
AdaBoost achieved the lowest TERs for the Hypothyroid
(Fig. 2(a)) and Zoo (Fig. 2(d)) problems, and remained with
the best TER after selection. Another observation for
AdaBoost is that the TER increased after selection in some
cases of the Ionosphere and Soybean problems. Each NN in
AdaBoost was trained on a different training set based on
error-based distribution of the original training data, and each
NN took part in a weighted voting combination for a better
NNE decision. Since selection schemes did not consider the
weight of an NN, the performance degradation makes sense
in some cases when the selection process left only one or a
small number of important NN(s).

Although selection on the pool of a standard method (i.e.,

bagging, AdaBoost or NCL) does not result in a better TER in
every case, selection on the pool of EMPM is effective. The
pool of an EMPM contains heterogonous NNs produced by
bagging, AdaBoost and NCL, and selection is shown to
achieve a lower TER than the TER for the entire pool for any
problem, as seen in Fig. 2. For the Hypothyroid problem, the
TERs for the entire pool were 0.0565, 0.0565, and 0.0566 for
pool sizes of 45, 60 and 90 NNs, respectively; on the other
hand, TERs with selected NNs using forward selection were
0.0243, 0.0276, and 0.0227, respectively. It is worth
mentioning here that for the same Hypothyroid problem,
AdaBoost was the best among the standard methods (Fig.
2(a)), and that the TERs of EMPM with forward selection
were close to those of AdaBoost. We can see that EMPM
with forward selection used mostly AdaBoost trained NNs
for this problem. A similar observation can also be made for
the Zoo problem. The better TER of EMPM makes sense,

 (a) Hypothyroid

 (b) Ionosphere

 (c) Soybean

 (d) Zoo

Fig. 4: Effect of pool size on selected networks for final ensemble.

0

10

20

30

40

0 20 40 60 80 100

0

10

20

30

40

0 20 40 60 80 100

0

15

30

45

60

0 20 40 60 80 100

0

20

40

60

80

0 20 40 60 80 100

Pool size Pool size

S
el

ec
te

d
ne

tw
or

ks

S
el

ec
te

d
ne

tw
or

ks

S
el

ec
te

d
ne

tw
or

ks

S
el

ec
te

d
ne

tw
or

ks

 Pool size Pool size

Pool Creation: Bagging AdaBoost NCL EMPM

Selection: GA Forward

IAENG International Journal of Computer Science, 37:4, IJCS_37_4_01

(Advance online publication: 23 November 2010)

__

because the pool contained a large variety of NNs in which it
was easy to find the best suited NNs for an NNE.

It is also remarkable for the Ionosphere and Soybean
problems (Fig. 2(b) and Fig. 2(c)) that EMPM without
selection performed better, and that selection also improved
the TER in most cases. For the Soybean problem with a pool
size of 90 NNs, the TER of the NNE with the entire pool was
0.0665, and TERs for the forward selection and GA-based
selection were 0.0635 and 0.0657, respectively; these three
values of EMPM were the best values for this problem. The
reason for the better results of EMPM may be understood
better by measuring diversity.

Figure 3 shows the diversity of corresponding results
presented in Fig. 2. From the figure, we can see that
AdaBoost showed the best diversity for the Hypothyroid and
Zoo problems. AdaBoost also showed the best TERs for both
problems (Fig. 2). The diversity of EMPM for the
Hypothyroid and Zoo problems was also found to be
competitive to that of AdaBoost; therefore, the TERs for
these problems were close to those of AdaBoost. The
diversity of EMPM for the Ionosphere and Soybean problems
for any pool size was better than that for others, and selection
also maintained a better diversity. Thus, EMPM achieved the
best TERs in most of the cases for the Ionosphere and
Soybean problems, as can be seen in Fig. 2.

Figure 4 presents the number of NNs selected for the
results shown in Figs. 2 and 3 for the four selected problems
(i.e., the Hypothyroid, Ionosphere, Soybean and Zoo
problems). The number of selected NNs increased with pool
size; selection found more NNs that met criteria when the
pool contained more NNs. For a pool size of 60 NNs, the
selected number of NNs by GA for all four problems was
about 20, and for a pool size of 90, the selected number of
NNs was approximately 40. It is worth noting here that at a
particular pool size, the GA selected, on average, the same
number of NNs for different problems. The reason for this
might be random initialization of genes and consideration of
all NNs for each generation. On the other hand, forward
selection was found to return a problem-dependent NNE size
after selecting appropriate NNs from the pool. It selected
13.3, 2.8 and 51.5 NNs for the Hypothyroid, Ionosphere and
Soybean problems, respectively, when the pool size was 90
NNs, using NCL.

The number of selected NNs using forward selection was
far fewer than that using the GA based selection for some
cases, as can be seen in Fig. 4. Also, in some cases, the GA
had higher TERs than forward selection even with a larger
number of NNs, and the TER difference also increased when
the pool size increased. As an example, for the Hypothyroid
problem (Fig. 4(a)), the EMPM-selected NNs in the cases of
GA and forward selection were 35.7 and 7.9, respectively,
with a pool size of 90 NNs, and the corresponding TERs were
0.0544 and 0.0227. These results clearly indicate the
effectiveness of the proposed forward selection in
comparison with GA. However, in some cases, such as the
Soybean and Zoo problems, forward selection considered
more NNs than GA. Requiring more NNs for problems
having more classes, such as Soybean (19 classes) and Zoo (7
classes), and fewer NNs for problems having fewer classes,
such as Hypothyroid (3 classes) and Ionosphere (2 classes),
makes sense for forward selection.

Although forward selection returned more NNs than GA in
some cases, it does not mean that forward selection took more
time in those cases. Selection time mostly depends on the
pool size, not on the number of selected NNs. To illustrate the
time requirements, Fig. 5 presents an overview of the average
time requirements in training NNs for pools and in selection
schemes for the Hypothyroid and Soybean problems.
Hypothyroid is a large-sized problem having 7200 examples;
Soybean has large number of inputs (83) and output classes
(19). Actual training time for any method depends on several
factors, such as the machine and the environment. For
consistency and to ensure fair comparison, all experiments
were conducted on the same machine: a Dell OptiPlex 745
(CPU: Intel Core2 Duo 1.8 GHz; RAM: 2 GB).

The time required to train NNs for a pool is much greater
than the time required for any selection scheme, as can be
seen in Fig. 5. However, forward selection took less time

 (a) Hypothyroid

 (b) Soybean

 Fig.5: Effect of pool size on training and selection time.

0

35

70

105

140

0 20 40 60 80 100

0

40

80

120

160

0 20 40 60 80 100

 Time: Training GA sel. Forw. sel.
Pool Creation: Bagging AdaBoost NCL EMPM

Pool size

T
im

e
(S

ec
on

ds
)

Pool size

T
im

e
(S

ec
on

ds
)

IAENG International Journal of Computer Science, 37:4, IJCS_37_4_01

(Advance online publication: 23 November 2010)

__

compared to GA-based selection for all cases. For the
Hypothyroid problem with an EMPM pool size of 90 NNs,
the required NNs training time for the pool was 133 seconds;
on the other hand, the selection times were 75 seconds and 27
seconds for GA and forward selection, respectively. The
reason for faster operation of forward selection has already
been explained in Section III. It is worth noting here, as can
be seen in Fig. 5, that the time requirement for the EMPM
pool creation (i.e., combination of several methods) is the
same as that for any standard method for the same pool size.
An EMPM pool is only a set of heterogeneous NNs that are
trained using different standard NNE methods. Finally,
EMPM with forward selection seems to be the most effective
for NNE construction.

V. CONCLUSIONS

The purpose of building an ensemble with multiple neural
networks is to achieve better performance for any given
problem. Conventional ensemble methods train a
predetermined number of networks, of which all are
generally involved in ensemble decision. Since individual
networks are the main task-handing elements in an ensemble,
it is important to construct an ensemble with appropriate
networks. Therefore, in order to get better performance, this
study has presented an ensemble that employs selected
networks.

There are two vital factors in constructing an ensemble
with selected networks: the creation of a network pool, and
the selection of networks. Considering both factors together,
this paper proposes Ensembles fusing Multiple Popular
Methods (EMPM) as an ensemble method for achieving
better performance. Bagging, AdaBoost and NCL methods
were also considered in relation to heterogeneous network
pool creation for the EMPM, and a simple technique, called
forward selection, was used to select appropriate networks
for the ensemble.

Bagging, AdaBoost and NCL are the most popular
ensemble methods; however, among them, no single solution
has been shown to be better for all possible problems. In
contrast, the proposed EMPM fusing the methods has been
found to be better than the conventional methods with a
compact ensemble when tested on a large number of
benchmark problems. Forward selection has also been found
to be an effective method with a variety of benefits when
compared to GA-based selection.

Following this study, there are a number of possible
directions for future research. In this study, a heterogeneous
pool was created using three data sampling techniques;
however, investigation into other methods is also necessary.
For simplicity, only training set classification accuracy was
only considered as a selection criterion here; nevertheless,
including diversity in the selection criteria may result in
better performance, although selection time may increase.
Furthermore, other selection techniques based on pruning or
thinning [18] may also prove to be of interest.

REFERENCES
[1] A. J. C. Sharkey, “On combining artificial neural nets,” Connection

Science, vol. 8-3/4, pp. 299-314, 1996.
[2] A. J. C. Sharkey, and N. E. Sharkey, “Combining Diverse Neural

Nets,” Knowledge Engineering Review, vol. 12, no. 3, pp. 299-314,
1997.

[3] D. W. Opitz and R. Maclin, “Popular ensemble methods: An empirical
study,” Journal of Artificial Intelligence Research, vol. 11,
pp.169-198, 1999.

[4] M. A. H. Akhand, Md. Monirul Islam and K. Murase, “A Comparative
Study of Data Sampling Techniques for Constructing Neural Network
Ensembles,” International Journal of Neural Systems, vol. 19, no 2,
pp.67-89, 2009.

[5] G. Brown, J. Wyatt, R. Harris, and X. Yao, “Diversity Creation
Methods: A Survey and Categorization,” Information Fusion, vol. 6,
pp. 99-111, 2005.

[6] D. J. Newman, S. Hettich, C. L. Blake, and C. J. Merz, “UCI
Repository of Machine Learning Databases,” Dept. of Information and
Computer Sciences, University of California, Irvine, 1998. Available:
http://www.ics.uci.edu/~mlearn/

[7] L. Breiman, “Bagging predictors,” Machine Learning, vol. 24, pp.
123-140, 1996.

[8] Y. Freund and R. E. Schapire, “Experiments with a new boosting
algorithm,” Proc. of the 13th International Conference on Machine
Learning, Morgan kaufmann, pp. 148-156, 1996.

[9] Y. Liu and X. Yao, “Ensemble learning via negative correlation,”
Neural Networks, vol. 12, pp. 1399-1404, 1999.

[10] Y. Liu and X. Yao, “Simultaneous Training of Negatively Correlated
Neural Networks in an Ensemble,” IEEE Trans. on Systems, Man, and
Cybernetics, Part B: Cybernetics, vol. 29, no. 6, pp. 716–725, 1999.

[11] E. Bauter and R. Kohavi, “An Empirical Comparison of Voting
Classification Algorithms: Bagging, Boosting, and Variants,” Machine
Learning, vol. 36, pp. 105-142, 1999.

[12] D. E. Goldberg, Genetic Algorithms, Addison-wesley, 1998.
[13] L. Prechelt, “Proben1- A Set of Benchmarks and Benching Rules for

Neural Network Training Algorithms,” Tech. Rep. 21/94, Fakultat fur
Informatik, University of Karlsruhe, Germany, 1994.

[14] Z. Zhou, J. Wu and W. Tang, “Ensembling Neural Networks: Many
Could Be Better Than All,” Artificial Intelligence, vol. 137, pp.
239-263, 2002.

[15] Z. Zhou, J. Wu , W. Tang and Z. Chen, “Selectively Ensembling
Neural Classifiers,” Proc. of the 2002 International Joint Conference
on Neural Networks (IJCNN2002), Honolulu, HI, USA, pp. 1411-1415,
2002.

[16] A. Tsymbal, M. Pechenizkiy and P. Cunningham, “Diversity in search
strategies for ensemble feature selection,” Information Fusion, vol. 6,
pp. 83-98, 2005.

[17] S. Haykin, Neural Networks – A Comprehensive Foundation, Prentice
Hall, 2nd edition, 1999.

[18] R. E. Banfield, L. O. Hall, K. W. Bowyer and W. P. Kegelmeyer,
“Ensemble diversity measures and their application to thinning,”
Information Fusion, vol. 6, pp. 49-62, 2005.

[19] K. Tang, M. Lin, F. L. Minku and X. Yao, “Selective Negative
Correlation Learning Approach to Incremental Learning,”
Neurocomputing, vol. 72, pp. 2796-2805, 2009.

M. A. H. Akhand received a B.E. degree in Electrical and Electronic
Engineering from Khulna University of Engineering and Technology
(KUET), Bangladesh, in 1999, an M.E. degree in Human and Artificial
Intelligence Systems in 2006, and a Doctoral degree in System Design
Engineering in 2009 from the University of Fukui, Japan.

Dr. Akhand joined the Department of Computer Science and Engineering
at KUET as a lecturer in 2001, and is now an Assistant Professor. He is a
member of the Institute of Engineers, Bangladesh (IEB). His research
interests include artificial neural networks and bio-inspired computing
techniques.

K. Murase received an M.E. in Electrical Engineering from Nagoya
University in 1978, and a PhD in Biomedical Engineering from Iowa State
University in 1983.

Dr. Murase has been a Professor of the Department of Human and
Artificial Intelligence Systems, Graduate School of Engineering, University
of Fukui, Fukui, Japan, since 1999. He Joined the Department of Information
Science of Toyohashi University of Technology as a Research Associate in
1984, the Department of Information Science of Fukui University as an
Associate Professor in 1988, and became a professor in 1992.

Dr. Murase is a member of The Institute of Electronics, Information and
Communication Engineers (IEICE), The Japanese Society for Medical and
Biological Engineering (JSMBE), The Japan Neuroscience Society (JSN),
The International Neural Network Society (INNS), and The Society for
Neuroscience (SFN). He serves on the Board of Directors of the Japan
Neural Network Society (JNNS), as a Councilor of the Physiological Society
of Japan (PSJ), and as a Councilor of the Japanese Association for the Study
of Pain (JASP).

IAENG International Journal of Computer Science, 37:4, IJCS_37_4_01

(Advance online publication: 23 November 2010)

__

