
 
 

 

 
Abstract—The goal of an ensemble construction with 

multiple neural networks (NNs) is to achieve better 
generalization ability in comparison with a single network. 
Proper diversity among component networks is considered to 
be an important aspect of neural network ensemble (NNE) 
construction, in that a failure of one network may be 
compensated for by other networks. Conventional methods first 
produce a multiplicity of diverse networks and then combine 
their decisions for the overall decision of the ensemble. In 
general, they do not check whether each network is essential for 
the ensemble, or whether a subset of the networks might 
perform better. If a particular network performs poorly, it may 
not be possible for the remaining networks to compensate 
effectively, resulting in a poorly performing NNE. Although a 
number of techniques have been investigated in the last few 
years, no single technique has been discovered that performs 
well on all possible problems. While a certain solution may 
outperform alternatives for a subset of problems, the method 
may perform worse on other problems. This paper discusses 
Ensembles Fusing Multiple Popular Methods (EMPM), which 
demonstrate a relatively good performance on all possible 
problems. EMPM first produces a network pool using several 
popular methods, and then it selects networks for an ensemble 
using a proposed forward selection scheme. EMPM has shown 
better performance with a compact ensemble over conventional 
methods when tested on a suite of 25 benchmark problems. 
Experimental analyses have revealed that a heterogeneous 
network pool of EMPM (using multiple popular methods) is 
more effective than a pool of any individual conventional 
method for NN selection. Forward selection has also been found 
to be a more effective method with a variety of benefits when 
compared to conventional genetic algorithm-based selection. 
 

Index Terms — diversity, generalization ability, neural 
network ensemble, network selection.  

I. INTRODUCTION 

The goal of an ensemble construction with multiple 
neural networks (NNs) is to achieve better generalization 
ability in comparison with a single neural network. The 
inspiration for building an ensemble is the same as that for 
establishing a committee of people: Each member of the 
committee should be as competent as possible, but the 
members should be complementary to one another. If the 
members are not complementary, that is, if they always 
agree, then the committee is unnecessary, since any one 
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member could perform the task of the entire committee. On 
the other hand, if the members are complementary, there is a 
high probability that the remaining members may be able to 
correct a potential error caused by one or a few members. 
Thus, for neural network ensemble (NNE) construction, 
proper diversity among component networks is considered to 
be an important aspect, in that a failure of one network may 
be compensated for by other networks [1], [2].  

There are a variety of ways of constructing an NNE 
composed of diverse NNs, such as by using different training 
sets, architectures and learning methods. Since the 
functionality of an NN depends on its training data, data 
sampling (i.e., NNs training using different data) has been 
shown to be more effective for achieving diversity than other 
approaches [3]-[5]. A number of techniques employing data 
sampling have been investigated for creating diverse NNs. 
However, no single technique has been found to be ideal for 
all possible problems [3], [4]. While a certain approach may 
outperform alternatives for a subset of problems, the method 
may perform worse on other problems. One possible reason 
for this phenomenon might be the wide variety of attributes 
of real world problems (i.e., complexity, number of 
examples, number of input attributes, output classes, etc.) [5]; 
any technique that adheres to a single method fails to 
maintain sufficient diversity for all possible problems. 
Nevertheless, bagging, AdaBoost, and negative correlation 
learning are popular ensemble methods based on data 
sampling which show better overall performance in 
comparison with other methods such as DECORATE, class 
label switching, random subspace methods and smearing [4].  

Since no single NNE method has been found to be 
effective for all possible problems, in this study we aim to 
construct an NNE that can either outperform or perform 
comparably well relative to the existing optimal solution for 
any given problem. Here, we consider a method of fusing of 
multiple popular NNE methods to achieve this goal. The 
proposed method works in two different phases. First, it 
creates a pool of networks using several popular methods 
(called “fusion”), and second, it selects a subset of NNs from 
the pool for constructing an NNE. We believe that an 
appropriate selection process is likely to result in a good 
selection of NNs, and that an NNE combining this selection 
may outperform or perform comparably relative to the best 
alternative used.  

The remainder of this paper is organized as follows. 
Section II outlines existing conventional ensemble methods. 
Section III details a proposed ensemble construction fusing 
multiple popular NNE methods. Section IV presents 
experimental results of the new method, and compares 
performance with conventional methods. Finally, Section V 
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concludes the paper with a brief summary and some future 
possible directions for research following this study. 

II. CONVENTIONAL POPULAR NNE CONSTRUCTION 

METHODS  
The step of creating diverse networks is commonly 

followed by ensemble methods for achieving better 
performance. Among existing alternatives, data sampling, 
that is, using different training data for different NNs, is 
commonly considered to be most effective for achieving 
diversity. The three most popular algorithms that explicitly or 
implicitly use different training sets for different NNs in an 
ensemble are bagging [7], AdaBoost [8] and Negative 
Correlation Learning (NCL) [9].  

The bagging algorithm [7] explicitly creates different 
training sets for different NNs to achieve diversity. It creates 
a particular training set for a given NN by forming bootstrap 
replicates of the original training set. Given an original 
training set T consisting of m patterns, a new training set T is 
constructed by drawing m patterns uniformly from T, and 
replacing the patterns with bootstrap replicates. Due to 
random selection, on average, each training set contains only 
approximately 63.2% unique patterns from T [11]. As a result, 
some patterns appear multiple times, while others are left out. 
For an overall NNE decision, a voting process in which all 
the trained NNs are considered in a final NNE decision where 
the outputs of the NNs are given equal voting strength is 
used. 

The training set T for each component NN in AdaBoost [8] 
is chosen from the original training set T using a bootstrap 
method, similar to the case of bagging, but with adaptation. 
Training patterns that were incorrectly classified by previous 
component NN(s) are chosen more frequently for creating a 
new training set than patterns that were correctly classified. 
AdaBoost thus increases focus on the previously 
misclassified patterns by increasing their presence in the 
training set of future NN(s). For an ensemble decision, 
decisions of individual NNs are assigned weights, where the 
weight of a decision of a component network in the final 
weighted vote depends on its accuracy [3], [11]. Therefore, 
combination in AdaBoost [8] seems to be based on implicit 
NN selection: A network has no effect when its voting 
strength is zero or nearly zero. However, in the final NNE, all 
the NNs remain, resulting in a comparatively bulky NNE. 

Like bagging and AdaBoost, NCL does not create separate 
training sets explicitly for NNs in an ensemble. For diversity, 
NCL rather adds a penalty term to the backpropagation (BP) 
[17] error function. The error, ei(n), of a network i for the n-th 
training pattern in BP is given by the formula 
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where fi(n) and d(n) are the actual and desired outputs for the 
n-th training pattern, respectively. The problem with this 
error function is that it returns similar hypotheses for 
different NNs when training on the same training data. 
Therefore, this outcome results in relatively less diversity 
than that of other solutions, and is consequently not suitable 
for performance as is in an ensemble [9], [10]. The NCL 
algorithm, therefore, introduces a penalty term in the error 
function to establish training time interaction among NNs in 

the ensemble. The error of the i-th NN in the ensemble for the 
n-th training pattern [9] is given by the formula  
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where f(n) is the actual output of the ensemble for the n-th 
training pattern, and  is a scaling factor that controls the 
penalty term. The ensemble output is generally obtained by 
averaging the outputs of all the component NNs.  

Due to the correlation penalty term in the network error 
function, the component NNs can interact with one another 
during training, and different NNs are motivated to give 
different hypotheses implicitly. Therefore, NCL promotes 
diversity even though all component NNs train using the 
same original training data. NCL trains a predefined number 
of NNs, and considers outputs of all the trained NNs for the 
decision of the final NNE.  

Since the early 1990s, a number of NNE methods have 
been proposed, and the aforementioned three methods have 
appeared as the most popular methods. In a comparative 
analysis, each of the three methods of this group has 
individually outperformed alternative approaches on certain 
problems. However, among the three, there is no ideal 
method that outperforms all other methods for all possible 
problems [4]. Furthermore, a particular popular method may 
actually show the worst relative performance on certain 
problems. An NNE that either outperforms or at least 
performs comparably relative to the best popular methods on 
every possible problem would be of interest. For such an 
NNE, we consider a fusion of the popular three methods (i.e., 
bagging, AdaBoost and NCL) in this study. The next section 
describes the method in detail.  

III. AN ENSEMBLE FUSING MULTIPLE POPULAR METHODS 

(EMPM)  

There is no ideal conventional NNE method that performs 
well on all possible problems. One possible reason is the 
amazing variety of attributes of real world problems. Any 
technique that adheres to a single method fails to maintain 
proper diversity for all possible problems. Moreover, existing 
NNE methods consider outputs of all produced or trained 
NNs for an ensemble without checking whether each one is 
essential. If a particular NN performs very poorly, it may not 
be possible for the remaining networks to compensate 
effectively, resulting in a poorly performing NNE. Finally, it 
is important to construct an NNE with appropriately selected 
NNs to achieve better generalization ability. Commonly, the 
quality of the selected NNs increases in proportion to the 
diversity of those available. Accordingly, a pool of diverse 
NNs fusing multiple popular methods tends to function well 
in an ensemble. 

There are two vital factors to keep in mind when 
constructing an Ensemble fusing Multiple Popular Methods 
(EMPM) for a better-performing NNE: the creation of a 
network pool using multiple popular methods, and the 
selection of NNs from the pool. For a pool having a total of N 
networks, the number of NNs in the final NNE may be less 
than or equal to N. The following subsections discuss pool 
creation and the selection scheme.  

Diversity in the original pool of NNs is important for 
selecting appropriate networks for a good NNE. Since any 
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conventional method produces diverse networks, one may 
consider any such method for pool creation. However, it is 
worth noting that a selection of NNs from a given such pool 
may not perform well, and the constructed NNE may not 
outperform or perform comparably well relative to others due 
to similarity in approaches followed for producing the 
network pool. On the other hand, if a pool is produced using a 
variety of different methods, an NNE with appropriately 
selected NNs will always perform better than or comparably 
compared to the best individual method. Since bagging, 
AdaBoost and NCL are the most popular methods, diverse 
NN pool creation using these methods may result in better 
performance. Results show that NCL performs relatively 
better for small-sized problems, while bagging and AdaBoost 
exhibit superior performance for large-sized problems. For 
very large problems, AdaBoost has shown very good results 
in some cases [3], [4], [11]. A network pool constructed using 
the above three methods seems helpful for compensating for 
the limitations of individual methods, and an NNE 
constructed with appropriately selected NNs from the 
original pool will perform better. Therefore, we have chosen 
to investigate bagging, AdaBoost and NCL for creating a 
heterogeneous network pool in this study. 

The purpose of the selection scheme is to discover the 
optimal NN subset in the pool for constructing an NNE that 
performs well. For a pool containing m NNs, a total of 2m 
subsets may need to be checked to determine the optimal 
NNE. Reportedly, a total of 10 to 20 NNs are standard for an 
NNE with good generalization [3], [4]. If m=15, then the 
number of total subsets that must be checked is 215=32768 for 
determining the optimal NNE. This number is relatively 
large, and requires significant time for checking. Therefore, 
this paper also investigates an efficient network selection 
scheme called “forward selection” for reducing the time 
required for selecting the NN subset.  

The idea of forward selection is simple: Select the best NN 
from the pool, and try to minimize its error by the 
compensation of other NNs. An NNE shows better 
performance when the failure of one component NN is 

compensated for by other component NNs. Compensation is 
easy when the error produced by an NN is small. Therefore, 
NNs in an NNE should be as accurate and diverse as possible 
to achieve better performance [4]. Therefore, in obtaining the 
overall result, selecting the most accurate NN of the pool and 
then trying to compensate any error using other NNs makes 
sense, and is likely to result in a good selection of appropriate 
NNs for an NNE.  

The proposed method selects the most accurate NN as the 
base of the NNE. First, it sorts all the NNs in descending 
order according to their accuracy. Then, it selects the most 
accurate NN for an NNE by default. Next, it chooses the 
second best NN from the sorted list and adds this NN to the 
previously selected best NN. If overall NNE performance 
using these two NNs is found to be inferior to that of using 
the best NN alone, then discard the second best NN. 
Similarly, other NNs are added from those sorted to construct 
an NNE with an optimal selection of NNs. Given a pool with 
m NNs, forward selection evaluates each NN’s performance 
individually, and measures the performance of each of the 
m-1 combinations of the NNs.  

A forward selection scheme for a pool size of 15 NNs is 
shown in Fig. 1. One may consider either diversity among the 
NNs in addition to accuracy of the NNE, or simply accuracy 
alone, as selection criteria. For simplicity, a simple average 
combination of NNs is used for an NNE decision. Because of 
the fewer combinations of NNs required for checking, using 
forward selection is more efficient than checking 
combinations of all NNs. 

IV. EXPERIMENTAL STUDIES  

First, this section provides a detailed description of 
benchmark problems, and presents an experimental 
methodology. Then, performance of the proposed EMPM is 
compared to that of conventional NNE methods in finding 
solutions to benchmark problems. Finally, an experimental 
analysis is presented for examining the performance of the 
proposed method in detail. 

 

A. Benchmark Problems and General Experimental 
Methodology 

Twenty-five real world classification problems were 
employed in this study. The origin of these problems is the 
University of California, Irvine (UCI) machine learning 
benchmark repository; detailed descriptions are available at 
the UCI website [6]. Table I shows the characteristics of 
problems which show considerable variety in the number of 
examples, input features and classes. Thus, these problems 
provide a suitable experimental test bed. 

UCI contains raw data and requires preprocessing for use 
in NNs. We have followed benchmark methodology [13] for 
preprocessing data of the problems. The number of output 
nodes was equal to the number of classes for a given problem. 
Continuous input feature values were rescaled between 0 and 
1 with a linear function. For discrete features, the number of 
inputs was selected as the number of distinct values in 
general.  

The structure of an individual NN in the NNE was the 
standard three-layered network having one hidden layer. We 
chose the number of hidden units based on the number of Fig. 1: Forward selection of networks. 
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input and output units, which was one hidden unit for every 
output unit, plus one hidden unit for every 10 input units[3], 
[4]. The minimum number of hidden units was set to 5. The 
most popular logistic sigmoid function, (y) =1/ (1+exp (-y)), 
was used as an activation function for the nodes in the hidden 
and output layers. The initial random weights of component 
NNs were set to between -0.5 and 0.5. The learning rate of 
backpropagation (BP) was set to 0.1, and each network was 
trained for 50 equal epochs. The scaling factor () of NCL 
was chosen to be between 0.25 and 0.75. The selected 
parameter values are not optimal values, but were chosen for 
simplicity as well as for fairness in observation. 

In order to evaluate the performance of an NNE, 
generalization is measured on the testing set that was 
reserved from available data and not used by any NN in 
training and selection. The testing error rate (TER) is the 
common measure of generalization; the lower its value, the 
better the generalization is. Note that the aim of any NNE 

method is to minimize the TER. 
 

B. Experimental Results of EMPM and Comparison with 
Conventional Methods 

This section evaluates the performance of the proposed 
EMPM on the benchmark problems. The EMPM fuses three 
data sampling-based NNE methods (bagging, AdaBoost and 
NCL); the standard forms of these three methods have been 
implemented and their results have been compared to those of 
EMPM. For a more comprehensive understanding, the simple 
NNE (sNNE) method, where initial weight sets are only 
different in different NNs, is also considered. sNNE without 
data sampling exhibits less diversity, and is considered as the 
baseline point of NNE construction [3], [4].   

It can be seen that the TER may vary due to the variation of 
the testing set data, even if the size of the data set remains the 
same. Therefore, standard 10-fold cross validations have 
been used for result presentation. In the cross validation, 
initially available training examples were partitioned into ten 
equal or nearly equal sets, and for each turn, one set was 
reserved as a testing set, while the remaining nine sets were 
used for training.  

The TER achieved by EMPM was compared to that for 
conventional methods over five standard 10-fold cross 
validation (i.e., 5*10=50) runs in Table II. In the table, for 
each problem, the best TER is indicated in bold among the 
five methods. Thirty NNs were trained for an NNE in a 
conventional method, since the previous study revealed that 
this number was sufficient for better generalization [3], [4]. 
For fairness of comparison, the pool size of the EMPM was 
also set to be 30 NNs, for which each of the bagging, 
AdaBoost and NCL methods produced 10 NNs. A 
conventional method considered all 30 NNs for the final 
NNE, but the set of NNs in the EMPM was 
problem-dependent due to selection.  

The results presented in Table II reveal the effectiveness of 
the proposed EMPM approach clearly. It is found that the 
performance of sNNE is worse compared to the other 
methods, and that of the EMPM is the best. sNNE exhibits 
the best TER for only one problem (i.e., Auto Imports), and is 
the worst for 16 out of 25 problems. For Auto Imports, NCL 
also achieved the same TER as sNNE, with a value of 0.44. 
The reason for sNNE having achieved the worst results is its 
training with same original training data for all NNs, where 
the initial random weight set variation was the only element 
to introduce diversity. The traditional data sampling based 
methods bagging, AdaBoost and NCL outperformed sNNE 
for 19, 18, and 14 different problems, respectively. Although 
AdaBoost was shown to be the best among the conventional 
methods based on average TER (i.e., 0.1351), it was worse 
than sNNE for five problems. On the other hand, EMPM 
outperformed sNNE for 24 problems, which was greater in 
number compared to any conventional method. 

EMPM constructs an NNE by selecting networks from a 
pool in which NNs are trained with different data sampling 
methods. Hypothetically, for proper selection, it is 
guaranteed that EMPM outperforms sNNE if any 
conventional method (that has been employed in pool 
creation) outperforms sNNE. For the Zoo problem, the TERs 
for sNNE, bagging, AdaBoost and NCL were 0.126, 0.116, 

Table I: Characteristics of benchmark datasets. 
 

Dataset 
Exa-
mple 

Class 
Input feature NN 

input
Hidd. 
nodeCont. Disc. 

Australian Credit 
Card 

690 2 6 9 51 10 

Auto Imports 205 6 16 8 24 10 

Breast Cancer 
Wisconsin 

699 2 9 - 9 5 

Balance 625 3 - 4 20 10 

Car 1728 4 - 6 21 10 

Diabetes 768 2 8 - 8 5 

Echocardiogram 131 2 7 1 8 5 

Ecoli 336 7 7 - 7 10 

German Credit 
Card 

1000 2 7 13 63 10 

Hepatitis 155 3 6 13 19 5 

House Vote 435 2 - 16 16 5 

Hypothyroid 7200 3 6 15 21 5 

Ionosphere 351 2 34 - 34 10 

King+Rook vs 
King+Pawn 

3196 2 - 36 74 10 

Lymphography 148 4 - 18 18 10 

Low Resolution 
Spectrometer  

531 10 101 - 101 20 

Page Blocks 5473 5 10 - 10 5 

Soybean 683 19 - 35 82 25 

Segmentation 2310 7 19 - 19 10 

Sonar 208 2 60 - 60 10 

Splice Junction 
Gene Sequences 

3175 3 - 60 60 10 

Satellite 6435 6 36 - 36 10 

Wine 178 3 13 - 13 5 

Waveform 5000 3 21 - 21 10 

Zoo 101 7 15 1 16 10 
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0.038 and 0.132, respectively, and the TER achieved by 
EMPM was 0.048, which was closest to that of the best 
conventional method, AdaBoost. On the other hand, Auto 
Imports is a small-sized problem on which the performance 
of both bagging and AdaBoost was worse than that of sNNE, 
and on which the performance of NCL was equal to that of 
sNNE; therefore, for EMPM to achieve a worse TER than 
that of sNNE for this problem is acceptable.   

EMPM also outperforms the conventional methods used to 
produce a heterogeneous NN pool. It is better than bagging, 
AdaBoost and NCL for 22, 20 and 21 problems, respectively, 

according to Table II. This indicates that EMPM may 
construct NNEs with appropriate NNs. Again, due to the 
selection scheme, an additional benefit of EMPM is that it 
achieves a compact NNE that is smaller than that of the 
traditional methods which train a predefined number of NNs 
and in which all the networks are considered for NNE. In 
some cases, with a smaller NNE, EMPM achieved the best 
TERs. As an example, for the Hypothyroid problem, with 
4.16 NNs/NNE, the TER for EMPM was 0.0262; on the other 
hand, with 30 networks, the TERs for bagging, AdaBoost and 
NCL were 0.0589, 0.0328 and 0.0585, respectively. 

Table II: Comparison of EMPM with conventional methods over five standard 10-fold cross validation runs.  
The bottom of the table contains a summary of the results.  

 

TERs of conventional methods EMPM 

Problem 
sNNE 

(30 NNs/NNE) 
Bagging 

(30 NNs/NNE) 
AdaBoost 

(30 NNs/NNE)
NCL 

(30 NNs/NNE) 
TER NNs/NNE 

Australian Card 0.151 0.1406 0.1562 0.1516 0.1469 5.94 

Auto Imports 0.44 0.458 0.462 0.44 0.455 5.18 

Breast Cancer 0.0333 0.0322 0.0325 0.0276 0.0313 12.82 

Balance 0.0842 0.079 0.0165 0.0842 0.0303 15.66 

Car 0.1212 0.1158 0.077 0.1207 0.0936 15.96 

Diabetes 0.2416 0.2387 0.2387 0.2416 0.2339 4.02 

Echocardiogram 0.1308 0.1384 0.1169 0.1308 0.1169 6.46 

Ecoli 0.3824 0.2394 0.2497 0.3491 0.2248 6.78 

German Card 0.2502 0.244 0.2488 0.247 0.247 14.04 

Hepatitis 0.1587 0.1533 0.1813 0.1587 0.148 9.72 

House Vote 0.0437 0.0358 0.0428 0.0391 0.041 13.38 

Hypothyroid 0.0592 0.0589 0.0328 0.0585 0.0262 4.16 

Ionosphere 0.1931 0.1383 0.1137 0.1926 0.1206 7.06 

King+Rook 0.1441 0.0237 0.1095 0.1419 0.0224 20.82 

Lymphography 0.1571 0.1629 0.1914 0.1571 0.1443 7.94 

Low Resolution 0.1143 0.1207 0.1132 0.1158 0.1075 7.56 

Page Blocks 0.0789 0.0742 0.0597 0.0786 0.0493 6.78 

Soybean 0.0591 0.0573 0.0591 0.0579 0.0559 15.00 

Segmentation 0.0913 0.0799 0.0684 0.0912 0.0639 6.58 

Sonar 0.225 0.228 0.225 0.225 0.222 10.76 

Splice Junction 0.1604 0.1591 0.1531 0.1577 0.151 16.84 

Satellite 0.1597 0.1528 0.1461 0.1576 0.1408 8.08 

Wine 0.0223 0.0247 0.1141 0.0212 0.0165 19.56 

Waveform 0.132 0.1301 0.13 0.132 0.1296 7.70 

Zoo 0.126 0.116 0.038 0.132 0.048 8.82 

Average 0.1504 0.1361 0.1351 0.1484 0.1227 10.305 

Method Best/Worst 1/16 3/3 5/6 2/4 16/0  

Pair wise win/draw/loss summary  

sNNE Bagging AdaBoost NCL EMPM  

sNNE - 19/0/6 18/2/5 14/8/3 24/0/1  

Bagging - 13/1/11 9/0/16 22/0/3  

AdaBoost - 9/1/15 20/1/4  

NCL - 21/1/3  
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C. Experimental Analyses 

This section first presents a modified version of EMPM, 
where a genetic algorithm is adapted for network selection, 
and compares the results with the standard EMPM. An 
empirical analysis for several methods of network pool 
creation is then analyzed to indicate the performance of the 
proposed method. 

 

C.1. Forward Selection versus the Genetic Algorithm for NN 
Selection  

The Genetic Algorithm (GA) is a search and optimization 
algorithm that works based on the process of natural selection 
[12]. GA has also been used for NN selection for NNEs in 
previous studies [14], [15], [19]. GASEN [14], [15] applied 
GA on a bootstrap sampling-based network pool for an 
ensemble with selected NNs. Selection on same bootstrap 
based NN (i.e., bagging) might not be effective for all cases, 
as discussed earlier. SNCL [19] also employed GA on an 
NCL-based network pool. In contrast, due to offline 
selection, it is possible to utilize any other method or 
combination of several methods to create the NN pool that is 
used in the proposed EMPM. This section investigates the 
utilization of GA instead of forward selection in the NN 
selection phase of EMPM. This new approach is called 
“GA-based EMPM.” 

A bit string encoding scheme is used in GA-based 
selection. The gene size was defined as the number of the 
total NNs in the pool. Each gene is indicated as an NNE with 
NNs having corresponding bits in the gene represented in 
binary as 1s. The fitness function was defined with the 
accuracy of the classification of the training set. The 
population size was set to 20 based on a number of trial runs; 
the crossover and mutation rates were 1 and 0.2, respectively. 
Initially some bits of each gene were randomly initialized to 
1. If the overall fitness value of the population did not 
improve after several generations, an NNE was constructed 
based on the best-fitted gene.  

GA evaluates NN subsets independently of the pool size to 
find a better subset. GA needs to check P*G subsets of NNs 
from the pool, where the population size is P and the total 
number of generations is G. Although discovery of the best 
subset of NNs by GA is not guaranteed, it is cost-effective 
compared to checking all possible NNs subsets, that is, 2m for 
m NNs, in the pool.  

A gene bank is considered in GA to overcome the 
recalculation of fitness value if a similar gene has already 
appeared. It is observed that the fitness value (i.e., an NNE’s 
performance based on a gene) calculation requires much 
more time relative to other operations. For the fitness value of 
a gene, the gene bank is searched, and the fitness value is 
retrieved if a similar gene exists; otherwise, the fitness value 
is calculated and is stored in the gene bank for later use. This 
process improves the running time of the GA-based selection 
scheme. However, checking P*G subsets and other 
operations in GA require more time than the operations in 
forward selection. 

Table III shows the average result of the standard EMPM 
and GA-based EMPM over five standard 10-fold cross 
validation (i.e., 5*10=50) runs. The NN pool was kept the 
same in both cases for fair observation. For the pool of 30 

NNs, each of the bagging, AdaBoost and NCL methods 
produced 10 NNs. The TERs for the NNE with all 30 NNs are 
presented under the heading of ‘Before selection’. A simple 
averaging technique was followed to obtain the output of the 
NNE from the output of individual NNs.  

The selection of one scheme (i.e., forward selection or GA) 
improves the overall TER, as can be seen from Table III. In 
some cases, the improvement was impressive, such as for the 
Balance, Page Blocks, and Zoo problems. For the Page 
Blocks problem, the TER before selection was 0.0701; after 
selection, the TERs were 0.0537 and 0.0493 for GA and 
forward selection, respectively. Between the selection 
schemes, on the basis of the average TER for all 25 problems, 
forward selection was shown to be better than GA, although 
in some cases (e.g., the Australian Card and Waveform 
problems), GA achieved lower TERs. The average TERs for 
GA and forward selection were 0.1278 and 0.1227, 
respectively. In addition, the average number of selected NNs 

Table III: Experimental result of EMPM with GA-based 
selection and forward selection over five standard 10-fold 

cross validation runs.  
 

Problem 

Before 
selection

GA-based 
EMPM 

EMPM 
(Forw. selec.) 

TER 
(30 NNs/ 

NNE) 
TER 

NNs/ 
NNE 

TER 
NNs/ 
NNE 

Australian Card 0.1458 0.1423 12.00 0.1469 5.94 

Auto Imports 0.439 0.453 11.98 0.455 5.18 

Breast Cancer 0.0331 0.0342 11.82 0.0313 12.82

Balance 0.0787 0.0423 11.68 0.0303 15.66

Car 0.1121 0.0935 11.88 0.0936 15.96

Diabetes 0.24 0.2342 12.06 0.2339 4.02 

Echocardiogram 0.1246 0.1169 10.92 0.1169 6.46 

Ecoli 0.2757 0.2527 10.86 0.2248 6.78 

German Card 0.242 0.2468 11.80 0.247 14.04

Hepatitis 0.1613 0.1547 11.80 0.148 9.72 

House Vote 0.0372 0.0396 10.06 0.041 13.38

Hypothyroid 0.0573 0.049 9.58 0.0262 4.16 

Ionosphere 0.14 0.1257 12.46 0.1206 7.06 

King+Rook  0.0318 0.0229 12.28 0.0224 20.82

Lymphography 0.16 0.1643 11.32 0.1443 7.94 

Low Resolution 0.1143 0.1121 11.8 0.1075 7.56 

Page Blocks 0.0701 0.0537 10.32 0.0493 6.78 

Soybean 0.0529 0.0553 11.96 0.0559 15.00

Segmentation 0.0815 0.0701 12.08 0.0639 6.58 

Sonar 0.245 0.229 12.34 0.222 10.76

Splice Junction 0.1551 0.1563 11.56 0.151 16.84

Satellite 0.1487 0.1422 12.14 0.1408 8.08 

Wine 0.0153 0.0153 12.08 0.0165 19.56

Waveform 0.1282 0.1286 12.34 0.1296 7.70 

Zoo 0.09 0.06 10.98 0.048 8.82 

Average  0.1352 0.1278 11.604 0.1227 10.305
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for forward selection is less than that for GA; the numbers of 
selected NNs were 11.604 and 10.305 for GA and forward 
selection, respectively.  

A remarkable observation that can be made from the 
results in Table III is that GA selects a similar number of NNs 
for all the problems. The reason for this result is that GA 
considers all the NNs in every generation. On the other hand, 
forward selection is shown to be more effective in choosing 
an NNE size specifically tailored for the problem. An issue 
with GA is time complexity, because it always works with a 
population of solutions (here, NNEs). The coming section 
will describe this issue using empirical results.   

 

C.2. Effects of Different Pool Creation Methods and 
Different Pool Sizes 

This section investigates various networks pool creation 
methods for NNE construction. Pools were created using four 

methods: bagging, AdaBoost, NCL and a combination of 
these three methods, that is, EMPM. In EMPM, one-third of 
the NNs were trained by each of bagging, AdaBoost and NCL 
as similar to in experiments in the previous sections. Four 
problems were selected for analysis having variation in the 
number of available examples, input features and output 
classes. For example, Hypothyroid and Zoo contain both 
continuous and discrete features; whereas the Ionosphere and 
Soybean problems have only continuous and discrete 
features, respectively.  

In the experiment, one-third of the available examples 
were reserved as a testing set for measuring TER and 
diversity. The remaining two-thirds of the examples were 
used to train NNs for the pool, and to check status in the 
selection process. The pool size varied from 9 to 90 NNs for 
each method. TER, diversity, number of selected NNs in the 
final NNE, and required time for network pool creation plus 
the selection process were measured for analysis. Figs. 2–5 
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Fig. 2: Effect of pool size on TER. 
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present a summary of measures; the presented results are the 
average over ten independent runs.  

The diversity indicates how predictions differ among 
component NNs on the testing set. To measure diversity, we 
employed the most commonly used pairwise plain 
disagreement measure technique [16]. For two NNs i and j, 
the plain disagreement is equal to the proportion of the 
examples on which the NNs make different predictions as 
given in the following formula: 





N

k
kjkiji xCxCDiff

N
div

1
. )),(),((

1            (3) 

where N is the number of examples in the testing set, Ci(xk)is 
the class assigned by network i to example k, and Diff(a,b) = 
0, if a=b; otherwise Diff(a,b) = 1. The diversity in the plain 
disagreement method varies from 0 to 1. This measure is 
equal to 0 when the NNs return the same classes for each 

example, and to 1 when the predictions are always different. 
The total NNE diversity is the average of all NN pairs in the 
NNE. 

Figure 2 shows the effect of pool size on TER for both 
selection schemes. Bagging, AdaBoost or NCL without any 
selection represent the corresponding standard method. 
Performance due to selection on these methods is found to be 
problem-dependent. Selection on the pool created by bagging 
and NCL is found to achieve better (i.e., lower) TER for the 
Soybean and Zoo problems; however, the TERs for both 
selection schemes were almost identical to those for standard 
bagging and NCL for the Hypothyroid problem.  

It is also observable from Fig. 2 that the performance of an 
NNE of selected NNs depends on the NN pool on which the 
selection applies. NCL showed a worse TER than other 
methods for the Ionosphere problem (Fig. 2(b)), and 
continued to exhibit a worse TER after selection, although 
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Fig. 3: Effect of pool size on diversity. 
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the TER improved due to selection. Similar observations for 
other cases lead to the conclusion that selection on a standard 
method having worse TER normally fails to achieve a better 
TER than a standard method having a good TER. Similarly, 
AdaBoost achieved the lowest TERs for the Hypothyroid 
(Fig. 2(a)) and Zoo (Fig. 2(d)) problems, and remained with 
the best TER after selection. Another observation for 
AdaBoost is that the TER increased after selection in some 
cases of the Ionosphere and Soybean problems. Each NN in 
AdaBoost was trained on a different training set based on 
error-based distribution of the original training data, and each 
NN took part in a weighted voting combination for a better 
NNE decision. Since selection schemes did not consider the 
weight of an NN, the performance degradation makes sense 
in some cases when the selection process left only one or a 
small number of important NN(s). 

Although selection on the pool of a standard method (i.e., 

bagging, AdaBoost or NCL) does not result in a better TER in 
every case, selection on the pool of EMPM is effective. The 
pool of an EMPM contains heterogonous NNs produced by 
bagging, AdaBoost and NCL, and selection is shown to 
achieve a lower TER than the TER for the entire pool for any 
problem, as seen in Fig. 2. For the Hypothyroid problem, the 
TERs for the entire pool were 0.0565, 0.0565, and 0.0566 for 
pool sizes of 45, 60 and 90 NNs, respectively; on the other 
hand, TERs with selected NNs using forward selection were 
0.0243, 0.0276, and 0.0227, respectively. It is worth 
mentioning here that for the same Hypothyroid problem, 
AdaBoost was the best among the standard methods (Fig. 
2(a)), and that the TERs of EMPM with forward selection 
were close to those of AdaBoost. We can see that EMPM 
with forward selection used mostly AdaBoost trained NNs 
for this problem. A similar observation can also be made for 
the Zoo problem. The better TER of EMPM makes sense, 
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Fig. 4: Effect of pool size on selected networks for final ensemble.  
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because the pool contained a large variety of NNs in which it 
was easy to find the best suited NNs for an NNE. 

It is also remarkable for the Ionosphere and Soybean 
problems (Fig. 2(b) and Fig. 2(c)) that EMPM without 
selection performed better, and that selection also improved 
the TER in most cases. For the Soybean problem with a pool 
size of 90 NNs, the TER of the NNE with the entire pool was 
0.0665, and TERs for the forward selection and GA-based 
selection were 0.0635 and 0.0657, respectively; these three 
values of EMPM were the best values for this problem. The 
reason for the better results of EMPM may be understood 
better by measuring diversity. 

Figure 3 shows the diversity of corresponding results 
presented in Fig. 2. From the figure, we can see that 
AdaBoost showed the best diversity for the Hypothyroid and 
Zoo problems. AdaBoost also showed the best TERs for both 
problems (Fig. 2). The diversity of EMPM for the 
Hypothyroid and Zoo problems was also found to be 
competitive to that of AdaBoost; therefore, the TERs for 
these problems were close to those of AdaBoost. The 
diversity of EMPM for the Ionosphere and Soybean problems 
for any pool size was better than that for others, and selection 
also maintained a better diversity. Thus, EMPM achieved the 
best TERs in most of the cases for the Ionosphere and 
Soybean problems, as can be seen in Fig. 2. 

Figure 4 presents the number of NNs selected for the 
results shown in Figs. 2 and 3 for the four selected problems 
(i.e., the Hypothyroid, Ionosphere, Soybean and Zoo 
problems). The number of selected NNs increased with pool 
size; selection found more NNs that met criteria when the 
pool contained more NNs. For a pool size of 60 NNs, the 
selected number of NNs by GA for all four problems was 
about 20, and for a pool size of 90, the selected number of 
NNs was approximately 40. It is worth noting here that at a 
particular pool size, the GA selected, on average, the same 
number of NNs for different problems. The reason for this 
might be random initialization of genes and consideration of 
all NNs for each generation. On the other hand, forward 
selection was found to return a problem-dependent NNE size 
after selecting appropriate NNs from the pool. It selected 
13.3, 2.8 and 51.5 NNs for the Hypothyroid, Ionosphere and 
Soybean problems, respectively, when the pool size was 90 
NNs, using NCL. 

The number of selected NNs using forward selection was 
far fewer than that using the GA based selection for some 
cases, as can be seen in Fig. 4. Also, in some cases, the GA 
had higher TERs than forward selection even with a larger 
number of NNs, and the TER difference also increased when 
the pool size increased. As an example, for the Hypothyroid 
problem (Fig. 4(a)), the EMPM-selected NNs in the cases of 
GA and forward selection were 35.7 and 7.9, respectively, 
with a pool size of 90 NNs, and the corresponding TERs were 
0.0544 and 0.0227. These results clearly indicate the 
effectiveness of the proposed forward selection in 
comparison with GA. However, in some cases, such as the 
Soybean and Zoo problems, forward selection considered 
more NNs than GA. Requiring more NNs for problems 
having more classes, such as Soybean (19 classes) and Zoo (7 
classes), and fewer NNs for problems having fewer classes, 
such as Hypothyroid (3 classes) and Ionosphere (2 classes), 
makes sense for forward selection. 

Although forward selection returned more NNs than GA in 
some cases, it does not mean that forward selection took more 
time in those cases. Selection time mostly depends on the 
pool size, not on the number of selected NNs. To illustrate the 
time requirements, Fig. 5 presents an overview of the average 
time requirements in training NNs for pools and in selection 
schemes for the Hypothyroid and Soybean problems. 
Hypothyroid is a large-sized problem having 7200 examples; 
Soybean has large number of inputs (83) and output classes 
(19). Actual training time for any method depends on several 
factors, such as the machine and the environment. For 
consistency and to ensure fair comparison, all experiments 
were conducted on the same machine: a Dell OptiPlex 745 
(CPU: Intel Core2 Duo 1.8 GHz; RAM: 2 GB).  

The time required to train NNs for a pool is much greater 
than the time required for any selection scheme, as can be 
seen in Fig. 5. However, forward selection took less time 
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  Fig.5: Effect of pool size on training and selection time. 
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compared to GA-based selection for all cases. For the 
Hypothyroid problem with an EMPM pool size of 90 NNs, 
the required NNs training time for the pool was 133 seconds; 
on the other hand, the selection times were 75 seconds and 27 
seconds for GA and forward selection, respectively. The 
reason for faster operation of forward selection has already 
been explained in Section III. It is worth noting here, as can 
be seen in Fig. 5, that the time requirement for the EMPM 
pool creation (i.e., combination of several methods) is the 
same as that for any standard method for the same pool size. 
An EMPM pool is only a set of heterogeneous NNs that are 
trained using different standard NNE methods. Finally, 
EMPM with forward selection seems to be the most effective 
for NNE construction.  

V. CONCLUSIONS 

The purpose of building an ensemble with multiple neural 
networks is to achieve better performance for any given 
problem. Conventional ensemble methods train a 
predetermined number of networks, of which all are 
generally involved in ensemble decision. Since individual 
networks are the main task-handing elements in an ensemble, 
it is important to construct an ensemble with appropriate 
networks. Therefore, in order to get better performance, this 
study has presented an ensemble that employs selected 
networks.  

There are two vital factors in constructing an ensemble 
with selected networks: the creation of a network pool, and 
the selection of networks. Considering both factors together, 
this paper proposes Ensembles fusing Multiple Popular 
Methods (EMPM) as an ensemble method for achieving 
better performance. Bagging, AdaBoost and NCL methods 
were also considered in relation to heterogeneous network 
pool creation for the EMPM, and a simple technique, called 
forward selection, was used to select appropriate networks 
for the ensemble.  

Bagging, AdaBoost and NCL are the most popular 
ensemble methods; however, among them, no single solution 
has been shown to be better for all possible problems. In 
contrast, the proposed EMPM fusing the methods has been 
found to be better than the conventional methods with a 
compact ensemble when tested on a large number of 
benchmark problems. Forward selection has also been found 
to be an effective method with a variety of benefits when 
compared to GA-based selection.  

Following this study, there are a number of possible 
directions for future research. In this study, a heterogeneous 
pool was created using three data sampling techniques; 
however, investigation into other methods is also necessary. 
For simplicity, only training set classification accuracy was 
only considered as a selection criterion here; nevertheless, 
including diversity in the selection criteria may result in 
better performance, although selection time may increase. 
Furthermore, other selection techniques based on pruning or 
thinning [18] may also prove to be of interest. 
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