
A Comparative Study of Box-assisted and

Kd-tree Approaches for the False Nearest

Neighbors Method

Julio J. Águilaa,c, Ismael Maŕınb, Enrique Ariasa,

Maŕıa del Mar Artigaob, Juan J. Mirallesb∗

Abstract—In different fields of science and engineer-
ing (medicine, economics, oceanography, biological
systems, etc.) the False Nearest Neighbors (FNN)
method has a special relevance. In some of these ap-
plications, it is important to provide the results in
a reasonable time scale, thus the execution time of
the FNN method has to be reduced. To achieve this
goal, a multidisciplinary group formed by computer
scientists and physicists are collaborative working on
developing High Performance Computing implemen-
tations of one of the most popular algorithms that
implement the FNN method: based on box-assisted
algorithm and based on kd-tree data structure. In
this paper, a comparative study of the distributed
memory architecture implementations carried out in
the framework of this collaboration, is presented. As
a result, two parallel implementations for box-assisted
algorithm and one parallel implementation for the
kd-tree structure are compared in terms of execution
time, speed-up and efficiency. In terms of execution
time, the approaches presented here are from 2 to 16
times faster than the sequential implementation, and
the kd-tree approach is from 3 to 7 times faster than
the box-assisted approaches.

Keywords: Nonlinear Time Series Analysis, False

Nearest Neighbors method, box-assisted algorithm,

kd-tree data structure, Message Passing Interface

1 Introduction

In nonlinear time series analysis the False Nearest Neigh-
bors (FNN) method is crucial to the success of the sub-
sequent analysis. Many fields of science and engineering
use the results obtained with this method. But the com-
plexity and size of the time series increases day to day
and it is important to provide the results in a reasonable
time scale. For example, in the case of electrocardiogram
study (ECG), this method have to achieve real-time per-
formance in order to take some prevention actions. With

∗Albacete Research Institute of Informaticsa and Applied
Physics Dept.b, University of Castilla-La Mancha, Avda. España
s/n, 02071-Albacete, Spain. Depto. Ingenieŕıa en Computación c,
Universidad de Magallanes, Avda. Bulnes 01855, Punta Arenas,
Chile. Email for correspondence: juliojose.aguila@alu.uclm.es.

the development of the parallel computing, large amounts
of processing power and memory capacity are available to
solve the gap between size and time.

We have applied the paradigm of parallel computing to
implement three approaches directed towards distributed
memory architectures, in order to make a comparative
study between the method based on the box-assisted
algorithm and the method based on the kd-tree data
structure. The results are presented in terms of per-
formance metrics for parallel systems, that is, execution
time, speed-up and efficiency. Two case studies have been
considered to carried out this comparative study. A theo-
retical case study which consists on a Lorenz model, and
a real case study which consists on a time series belonging
to electrocardiography.

The paper is organized as follow. After this introduction,
a description of the FNN method is presented in Section 2
and the approaches considered are introduced on Section
3. On section 4, the experimental results are presented.
Finally, on Section 5 some conclusions and future work
are outlined.

2 The FNN Method

Dynamical systems are studied from two different points
of view. One is from a previously known model which
explains its behavior while the other is from a time series
carried out by means of successive data acquisition per
constant time periods. This methodology becomes the
basis of nonlinear time series analysis and is based on the
reconstruction of the phase space in a dynamical system
from the Takens embedding theorem [3].

There are many situations in which only one of the rel-
evant dynamical variables can be measured. For this
reason, time series data should be converted into phase
space vectors. This procedure is known as phase space
reconstruction, which is based on Takens’ theorem. Let
X = {x(i) : 0 ≤ i < n} a time series, the phase space
reconstruction can be performed using the method of de-
lays as is shown in Eq. (1):

IAENG International Journal of Computer Science, 37:4, IJCS_37_4_09

(Advance online publication: 23 November 2010)

__

y(i) = [x(i), x(i + τ), . . . , x(i+ (d− 1)τ)] (1)

where τ is the embedding delay and d is the embedding
dimension (Fraser and Swinney [2]). The number of delay
vectors in delay coordinates that we can obtain, given
a number n of time series data, is n − (d − 1)τ . The
Takens’ theorem states that for a large enough embedding
dimension d ≥ m0, the delay vectors yield a phase space
that has exactly the same properties as the one formed
by the original variables of the system.

The FNN method was introduced by Kennel et al. [1]
and supposes that the minimal embedding dimension for
a given time series is m0. In this way, the reconstructed
system in a m0-dimensional delay space is a one-to-one
image of the system in the original phase space. Thus,
the neighbors of a given point are mapped onto neighbors
in the delay space. If a d-dimensional space (d < m0) is
considered, then the topological structures are not pre-
served and the points are projected into neighborhoods
of other points to which they would not belong in higher
dimensions. In this case, these points are called false
neighbors.

The idea of the FNN method is to measure the distances
between a point y(i) and its nearest neighbor y(j); as
this dimension increases, this distance should not change
if the points are really nearest neighbors. If we define the
distance between a point and its nearest neighbor using
Euclidean distance, we can evaluate the change in dis-
tance by adding one more dimension and then we can
look at the relative change in the distance as a way to see
if our points were not really close together but a projec-
tion from a higher phase space. The criterion for falseness
is thus:

|x(i + dτ) − x(j + dτ)|

||y(i)− y(j)||
> Rtr (2)

where Rtr is a given threshold. Eq. (2) has to be cal-
culated for the whole time series and for several dimen-
sions d = {1, 2, . . . ,m} until the fraction of points, which
must be lower than Rtr, is zero, or at least sufficiently
small (in practice, lower than 1%). Working in any di-
mension larger than the minimum m0 leads to excessive
computation when investigating any subsequent question
(Lyapunov exponents, prediction, etc.).

While greater is the value of n (length of the time series),
the task to find the nearest neighbor for each point is
more computationally expensive. A review of methods
to find nearest neighbors, which are particularly useful
for the study of time series data, can be found in [4].
We focused in two approaches: based on the box-assisted
algorithm, optimized in the context of time series anal-
ysis by Grassberger [5]; and the based in a kd-tree data

structure [6, 7] developed in the context of computational
geometry.

3 Parallel Approaches

According to Schreiber [4], for time series that have a
low dimension of embedding (e.g. up to the 10’s), the
box-assisted algorithm is particularly efficient. This al-
gorithm can offer a lower complexity of O(n) under cer-
tain conditions. By the other hand, accordingly with the
literature if the dimension of embedding is moderate an
effective method for nearest neighbors searching consists
in using a kd-tree data structure [6, 7]. From the compu-
tational theory point of view, the kd-tree-based algorithm
has the advantage of providing an asymptotic number of
operations proportional to O(n log n) for a set of n points,
which is the best possible performance for arbitrary dis-
tribution of elements.

We selected two programs to start this work: the
false nearest program based on the box-assisted algo-
rithm [8, 9]; and the fnn program based on a kd-tree data
structure [10].

We employ the paradigm Single-Program, Multiple Data
(SPMD) [11] to design the three parallel approaches. A
coarse-grained decomposition [12] has been considered,
i.e. we have a small number of tasks in parallel with
a large amount of computations. The approaches are
directed towards distributed memory architectures using
the Message Passing Interface (MPI [13]) standard for
communication purpose. Two approaches are based on
the box-assisted algorithm and the another approach is
based on the kd-tree data structure.

3.1 Approaches Based on Box-assisted Al-
gorithm

The box-assisted algorithm [5] considers a set of n points
y(i) in k dimensions. For each y(i) the algorithm deter-
mines all neighbors closer than ǫ, i.e. the set of indices
shown in Eq. (3).

Ui(ǫ) = {j :‖ y(i)− y(j) ‖< ǫ} (3)

The idea of the method is as follow. Divide the phase
space into a grid of boxes of side length ǫ. Each point
y(i) lies into one of these boxes. The nearest neighbors
closer than ǫ there are located in either the same box or
one of the adjacent boxes.

In practice, the grid of boxes is implemented using an
array BOX of s× s elements. Given a time series X , each
x(i) is put in BOX using Eqs. (4, 5), where & is the bitwise
operator. These equations are based on Eq. (1), i.e. these
values represents the point y(i).

IAENG International Journal of Computer Science, 37:4, IJCS_37_4_09

(Advance online publication: 23 November 2010)

__

row =
x(i − (d− 1)τ

ǫ
&(s− 1) (4)

column =
x(i)

ǫ
&(s− 1). (5)

The false nearest program is a sequential implemen-
tation of the FNN method based on this algorithm. By
profiling the false nearest program in order to carry
out the parallel approaches, four tasks were identified.
Let p the number of processes, two parallel implementa-
tions were formed based on these four tasks:

Grid Construction The BOX array is filled. Two ways
of grid construction have been developed: S (Sequen-
tial) and P (Parallel). In a S construction each pro-
cess fills the BOX sequentially, thus each one has
a copy. In a P construction, a range of s

p
rows is

assigned to each process, that is, each one considers
the x(i) values that has its row on the assigned range
according to the Eq. (4).

Domain Decomposition Time series X is distributed
to the processes considering two ways of decomposi-
tion related with the grid construction: Time Series
(TS) and Mesh (M). In a TS data distribution the
time series is split into p uniform parts of length n

p
,

being n the length of the time series. In a M data
distribution, each process considers the values in X

that has its row on the assigned range by the P con-
struction.

Nearest Neighbors Search The nearest neighbors are
searched into the ǫ ratio used in the grid construc-
tion. Each process computes the fraction of false
nearest neighbors as a subproblem given the values
x(i) ∈ X assigned according to the domain decom-
position.

Communication of Results When the nearest neigh-
bors were searched, the processes are synchronized
using the MPI interface. If the ǫ value was not ap-
propriate to find all the nearest neighbors, then all
the processes must be adjust the ǫ value and rebuild
the grid. When the calculus of false nearest neigh-
bors fraction, for a given dimension d, has been com-
pleted, the processes are synchronized to communi-
cate their results to the master process assigned by
programming code.

The approaches were called following the next nomen-
clature: DM-S-TS meaning a Distributed Memory im-
plementation considering that the grid construction is
Sequential and the Time Series is uniformly distributed
to the processes; DM-P-Mmeaning a Distributed Memory
implementation considering that the grid construction is

in Parallel and the time series is distributed according to
the Mesh.

The algorithmic notation for both the DM-S-TS and
DM-P-M approaches are depicted in Algorithms (1, 2). We
have introduced MPI functions into the source codes to
obtain the programs that can be run into a distributed
memory platform. The most important MPI functions
used in these programs are the follows:

• MPI Reduce Combines values provided from a group
of MPI processes and returns the combined value in
the MASTER process.

• MPI Allreduce Same as MPI Reduce except that the
result appears in all the MPI processes.

Algorithm 1: DM-S-TS approach: FNN method based on a
box-assisted algorithm

Program DM-S-TS(m, τ, X)

Input:
m = maximal embedding dimension to compute
τ = embedding delay
X = time series data record of length n
Output:
The fraction of false nearest neighbors fnn for each dimension
d = {1, 2, . . . ,m}.

in parallel do:

begin

/* Let p the total number of MPI processes. Each

process has an identifier q = {0, 1, . . . , p− 1}. The

process q = 0 is treated as MASTER and processes

with q 6= 0 are treated as slaves. */

Computing bounds ini and end to get same number of data
n/p of X;
for d = 1 to m do

Setting the initial value of ǫ;
Setting the control variable alldone to FALSE;
while alldone = FALSE and ǫ < threshold do

Building BOX using ǫ, τ, d and X;
foreach i into X(ini : end) do

Searching the nearest neighbor of y(i);
if nearest(i) is found then

Computing if nearest(i) is a false nearest;
end

end

synchronization Calling to
MPI Allreduce(alldone);
/* If alldone = TRUE meaning that all

nearest were founded. */

Updating ǫ;
end

synchronization Calling to MPI Reduce(fnn);
if q = MASTER then

Printing fnn;
end

end

end

3.2 Approach Based on the kd-tree Data
Structure

A kd-tree data structure [6, 7] considers a set of n points
y(i) in k dimensions. This tree is a k-dimensional bi-
nary search tree that represents a set of points in a

IAENG International Journal of Computer Science, 37:4, IJCS_37_4_09

(Advance online publication: 23 November 2010)

__

k-dimensional space. The variant described in Friedman
et al. [7] distinguishes between two kinds of nodes: inter-
nal nodes partition the space by a cut plane defined by
a value of the k dimensions (the one containing a maxi-
mum spread), and external nodes (or buckets) store the
points in the resulting hyperrectangles of the partition.
The root of the tree represents the entire k-dimensional
space.

Algorithm 2: DM-P-M approach: FNN method based on a
box-assisted algorithm

Program DM-P-M(m, τ, X)

Input:
m = maximal embedding dimension to compute
τ = embedding delay
X = time series data record of length n
Output:
The fraction of false nearest neighbors fnn for each dimension
d = {1, 2, . . . ,m}.

in parallel do:

begin

/* Let p the total number of MPI processes. Each

process has an identifier q = {0, 1, . . . , p− 1}. The

process q = 0 is treated as MASTER and processes

with q 6= 0 are treated as slaves. */

Computing bounds first and last to get same number of
rows s/p of BOX;
for d = 1 to m do

Setting the initial value of ǫ;
Setting the control variable alldone to FALSE;
while alldone = FALSE and ǫ < threshold do

Building BOX(first : last) using ǫ, τ, d and X;
foreach y(i) into BOX(first : last) do

Searching the nearest neighbor of y(i);
if nearest(i) is found then

Computing if nearest(i) is a false nearest;
end

end

synchronization Calling to
MPI Allreduce(alldone);
/* If alldone = TRUE meaning that all

nearest were founded. */

Updating ǫ;
end

synchronization Calling to MPI Reduce(fnn);
if q = MASTER then

Printing fnn;
end

end

end

From the point of view of computational theory, the num-
ber of operations required to build a kd-tree with n points
in k dimensions is proportional to O(kn logn). The ex-
pected value to find a nearest neighbor is O(log n), and
the number of operations required to find all the neigh-
bors is proportional to O(n logn).

The fnn program is a sequential implementation of the
FNN method based on this structure. fnn program has
been also analyzed by means of a profile tool before mak-
ing the parallel implementation, identifying five main
tasks. Thus, let X a time series, n the length of the time
series, Y a set of points constructed according to Eq. (1),
KDTREE a data structure that implements the kd-tree,

p the number of processes, and q = {0, 1, . . . , p − 1}
a process identifier. For convenience we assume that p

is a power of two. The parallel implementation called
KD-TREE-P was formed based on these five tasks:

Global kd-tree building The first log p levels of
KDTREE are built. All processors perform the same
task, thus each one has a copy of the global tree.
The restriction n ≥ p2 is imposed to ensure that the
first log p levels of the tree correspond to nonterminal
nodes instead of buckets.

Local kd-tree building The local KDTREE is built. In
the level log p of the global tree are p nonterminal
nodes. Each processor q builds a local kd-tree using
the (q + 1)th-node like root. The first log p levels are
destroyed and KDTREE is pointed to local tree.

Domain Decomposition Time series X is distributed
to the processes. The building strategy imposes a
distribution over the time series. Thus, the time se-
ries is split according to the kd-tree algorithm and
the expected value of items contained in each local
tree is approximately n

p
.

Nearest Neighbors Search Each process solves their
subproblems. Each process searches the nearest
neighbors for all points in Y that are in the local
KDTREE.

Communication of Results Processes use MPI to
communicate theirs partial results at the end of
whole dimensions. The master process collects all
partial results and reduces them.

Algorithm 3 depicts the algorithmic notation for the
KD-TREE-P approach.

4 Experimental results

In order to test the performance of the parallel implemen-
tations, we have considered two case studies: the Lorenz
time series generated by the equations system described
in 1963 by E.Lorenz [14]; the electrocardiogram (ECG)
signal generated by a dynamical model introduced in 2003
by McSharry et al. [15]. The Lorenz system is a bench-
mark problem in nonlinear time series analysis and the
ECG model is used for biomedical science and engineer-
ing [16].

The parallel implementations have been run in a super-
computer called GALGO, which belongs to the Albacete
Research Institute of Informatics [17]. The parallel plat-
form consists in a cluster of 64 machines. Each machine
has two processors Intel Xeon E5450 3.0 GHz and 32 GB
of RAM memory. Each processor has 4 cores with 6144
KB of cache memory. The machines are running RedHat

IAENG International Journal of Computer Science, 37:4, IJCS_37_4_09

(Advance online publication: 23 November 2010)

__

Algorithm 3: KD-TREE-P approach: FNN method based on a
kd-tree data structure

Program KD-TREE-P(m, τ, X)

Input:
m = maximal embedding dimension to compute
τ = embedding delay
X = time series data record of length n
Output:
The fraction of false nearest neighbors fnn for each dimension
d = {1, 2, . . . ,m}.

in parallel do:

begin

/* Let p the total number of MPI processes. Each

process has an identifier q = {0, 1, . . . , p− 1}. The

process q = 0 is treated as MASTER and processes

with q 6= 0 are treated as slaves. */

for d = 1 to m do
Building delay vectors Y using X and τ ;
Building first log(p) levels of KDTREE;
Building (q + 1)th-node of KDTREE on level log(p);
/* The (q + 1)th-node is the new root for

KDTREE. */

foreach y(i) into KDTREE do
Searching the nearest neighbor of y(i);
Computing if nearest(i) is a false nearest;

end

synchronization Calling to MPI Reduce(fnn);
if q = MASTER then

Printing fnn;
end

end

end

Enterprise version 5 and using an Infiniband intercon-
nection network. The cluster is presented as a unique
resource which is accessed through a front-end node.

The results are presented in terms of performance met-
rics for parallel systems described in Grama et al. [12]:
execution time Tp, speed-up S and efficiency E. These
metrics are defined as follows:

• Execution Time: The serial runtime of a program
is the time elapsed between the beginning and the
end of its execution on a sequential computer. The
parallel runtime is the time that elapses from the
moment that a parallel computation starts to the
moment that the last processing element finishes its
execution. We denote the serial runtime by Ts and
the parallel runtime by Tp.

• Speed-up is a measure that captures the relative
benefit of solving a problem in parallel. It is defined
as the ratio of the time taken to solve a problem in
a single processing to the time required to solve the
same problem on a parallel computer with p identi-
cal processing elements. We denote speed-up by the
symbol S.

• Efficiency is a measure of the fraction of time for
which a processing element is usefully employed; it
is defined as the ratio of speed-up to the number

of processing elements. We denote efficiency by the
symbol E. Mathematically, it is given by E = S

p
.

Let p the number of processors, the execution time of the
approaches have been tested for p = {1, 2, 4, 8, 16, 32},
where p = 1 corresponds to the sequential version of the
approaches. We used one million records of the time se-
ries to calculate the ten first embedding dimensions. We
have obtained that the optimal time delay for Lorenz time
series is τ = 7 and for ECG signal is τ = 5 using the mu-
tual information method.

In order to obtain the best runtime of the approaches
based in a box-assisted algorithm we found the best size
of BOX for each value of p (tables 1 and 2). The size of BOX
defines the number of rows and columns for the grid of
boxes. The values for p = 1 corresponds to the sequential
version of the program false nearest.

Table 1: Size of BOX for each value of p using a Lorenz
time series.

p DM-P-M DM-S-TS

1 8192 8192
2 4096 4096
4 2048 4096
8 2048 4096
16 2048 2048
32 2048 2048

Table 2: Size of BOX for each value of p using a ECG time
series.

p DM-P-M DM-S-TS

1 4096 4096
2 4096 4096
4 4096 4096
8 2048 4096
16 2048 2048
32 2048 2048

We have run 10 tests to obtain the median value of the
execution time Tp. In total 360 tests were performed.
The performance metrics results are shown in Figs.[1-6].

Sequential kd-tree implementation shows a lower exe-
cution time than box-assisted approach, since the grid
construction stage on box-assisted implementation in
TISEAN is very expensive in terms of execution time.

The behavior of the Lorenz case study and the ECG case
study is quite similar. Notice that, according to Fig. 2
and Fig. 5, it is possible to appreciate a super-linear
speed-up for kd-tree implementation when p < 8 and
these performance decreases when p > 8. The super-
linear speed-up is explained due to the fact that the cache
memory is better exploited and that when the tree is split

IAENG International Journal of Computer Science, 37:4, IJCS_37_4_09

(Advance online publication: 23 November 2010)

__

 0

 40

 80

 120

 160

 200

 240

 280

 320

1 2 4 8 16 32

T
p
 (

se
co

nd
s)

p (Number of MPI processes)

DM-P-M
DM-S-TS

KD-TREE-P

Figure 1: Execution Time for Lorenz case study.

 0

 2

 4

 6

 8

 10

 12

 14

1 2 4 8 16 32

S
 =

 T
s

/ T
p

p (Number of MPI processes)

DM-P-M
DM-S-TS

KD-TREE-P

Figure 2: Speed-up for Lorenz case study.

 0

 40

 80

 120

 160

 200

1 2 4 8 16 32

E
 =

 (
S
 /
p
)

×
10

0
(%

)

p (Number of MPI processes)

DM-P-M
DM-S-TS

KD-TREE-P

Figure 3: Efficiency for Lorenz case study.

less searches have to be done at each subtree. With re-
spect to the lost of performance, this situation is pro-
duced due to different causes. The first one is that, ev-
idently, the overhead due to communications increases.
Also, the most important cause is that the sequential part
of our implementation becomes every time more relevant
with respect to the parallel one.

Considering only the box-assisted implementations,
DM-S-TS is the box-assisted approach that provides the
best results for the Lorenz attractor and the ECG sig-

 0

 100

 200

 300

 400

 500

 600

 700

1 2 4 8 16 32

T
p
 (

se
co

nd
s)

p (Number of MPI processes)

DM-P-M
DM-S-TS

KD-TREE-P

Figure 4: Execution Time for ECG case study.

 0

 3

 6

 9

 12

 15

 18

1 2 4 8 16 32

S
 =

 T
s

/ T
p

p (Number of MPI processes)

DM-P-M
DM-S-TS

KD-TREE-P

Figure 5: Speed-up for ECG case study.

 0

 30

 60

 90

 120

 150

 180

1 2 4 8 16 32

E
 =

 (
S
 /
p
)

×
10

0
(%

)

p (Number of MPI processes)

DM-P-M
DM-S-TS

KD-TREE-P

Figure 6: Efficiency for ECG case study.

nal. The reason is the very best data distribution with
regard to DM-P-M. However, the reconstruction of the
mesh is not parallelized in DM-S-TS implementation. So,
the sequential part makes the reduction of execution time
less significant when more CPUs are used. However, as
the execution time of find neighbors is increased (e.g. in
larger times series data), this circumstance becomes very
less important.

For Lorenz attractor, the DM-S-TS implementation is
around 1.8 faster than the sequential program when it

IAENG International Journal of Computer Science, 37:4, IJCS_37_4_09

(Advance online publication: 23 November 2010)

__

uses 2 CPUs, and around 12 when it uses 32 CPUs. This
means that the efficiency for 2 CPUs is around 92% and
decreases to 37% when using 32 CPUs. For ECG signal,
the best box-assisted parallel implementation achieves a
speed-up of around 16 when it is run on 32 CPUs of
GALGO. Moreover, the time saving is around 93% us-
ing 2 CPUs and 51% using 32 CPUs. Unlike previous
case, the efficiency of best implementation decreases more
slowly.

An optimization of TISEAN has been used. It allows
the best mesh size to be tuned for each case. In case of
use original TISEAN (fixed mesh size), the reduction of
execution time would be more important.

According to the experimental results, kd-tree-based par-
allel implementation obtains the best performance than
the box-assisted-based parallel implementation, almost in
terms of execution time, for both case studies. Due to
the spectacular execution time reduction provided by the
kd-tree-based parallel implementation, the performance
in terms of speed-up and efficiency seems to be worst,
with respect to the other approaches.

5 Conclusions

In this paper, a comparative study between the dis-
tributed memory implementations of two different ways
to compute the False Nearest Neighbors method have
been presented, that is, the based on the box-assisted
algorithm and the based on kd-tree data structure. To
make this comparative study three different implemen-
tations have been developed: two implementations based
on box-assisted algorithm, and one implementation based
on kd-tree data structure.

The most important metric to consider is how well the
resulting implementations accelerate the compute of the
minimal embedding dimension, which is the ultimate goal
of the FNN method. In terms of the execution time, the
parallel approaches are from 2 to 16 times faster than the
sequential implementation, and the kd-tree approach is
from 3 to 7 times faster than the box-assisted algorithm.

With respect to the experimental results, the kd-tree-
based parallel implementation provides the best perfor-
mance in terms of execution time, reducing dramatically
the execution time. As a consequence, the speed-up an
efficiency are far from the ideal. However, it is necessary
to deal with more case studies of special interest for the
authors: wind speed, ozone, air temperature, etc.

About related works, in the context of parallel implemen-
tations to compute FNN method, the work carried out
by the authors could be considered as the first one. The
authors are working also on considering shared memory
implementations (Pthreads [18, 19] or OpenMP [20, 21])
and hybrid (MPI+Pthreads or MPI+OpenMP) parallel

implementations. Also, as a future work, the author are
considering to develop GPU-based parallel implementa-
tion of the algorithms considered in this paper.

To sum-up, we hope that our program will be useful in
applications of nonlinear techniques to analyze real time
series as well as artificial time series. This work represents
the first step of nonlinear time series analysis, that it is
becomes meaningful when considering ulterior stages on
the analysis as prediction, and when for some applications
the time represents a crucial factor. This work is based
on the paper that was presented in the WCE 2010 [22].

Acknowledgement

This work has been supported by National Projects
CGL2007-66440-C04-03 and CGL2008-05688-C02-
01/CLI. A short version was presented in [22]. In this
version, we have introduced the algorithmic notation by
the parallel implementations and more details about the
FNN method and the box-assisted algorithm.

References

[1] Kennel, M.B. and Brown, R. and Abarbanel,
H.D.I. (1992). Determining Embedding Dimension
for Phase Space Reconstruction Using the Method
of False Nearest Neighbors. Physics Review A,
45(6):3403–3411.

[2] Fraser, A.M. and Swinney, H.L. (1986). Independent
coordinates for strange attractors from mutual infor-
mation. Physical Review A, 33(2):1134–1140.

[3] Takens, F. (1981). Detecting strange attractors in
turbulence. In Rand, D.A. and Young, L.-S. (eds.)
Dynamical Systems and Turbulence, Warwick 1980,
Springer: New York, pp. 366-381.

[4] Schreiber, T. (1995). Efficient neighbor searching in
nonlinear time series analysis. Int. J. Bifurcation and
Chaos, 5:349.

[5] Grassberger, P. (1990). An optimized box-assisted
algorithm for fractal dimensions. Physics Letters A,
148(1-2):63–68.

[6] Bentley, J.L. (1975). Multidimensional binary search
trees used for associative searching.Communications
of the ACM, 18(9):509–517.

[7] Friedman, J.H. and Bentley, J.L. and Finkel, R.A.
(1977). An algorithm for finding best matches in
logarithmic expected time. ACM Transactions on
Mathematical Software (TOMS), 3(3):209–226.

[8] Hegger, R. and Kantz, H. and Schreiber, T. (1999).
Practical implementation of nonlinear time series
methods: The TISEAN package. Chaos, 9(2):413–
435.

IAENG International Journal of Computer Science, 37:4, IJCS_37_4_09

(Advance online publication: 23 November 2010)

__

[9] Hegger, R. and Kantz, H. and Schreiber, T.
(2007). Tisean: Nonlinear time series analysis.
http://www.mpipks-dresden.mpg.de/t̃isean.

[10] Kennel, M.B. (1993). Down-
load page of fnn program.
ftp://lyapunov.ucsd.edu/pub/nonlinear/fns.tgz.

[11] Darema, F. (2001). The spmd model: Past, present
and future. LECTURE NOTES IN COMPUTER
SCIENCE, pages 1–1.

[12] Grama, A. and Gupta, A. and Karypis, G. and Ku-
mar, V. (2003). Introduction to Parallel Computing.
Addison-Wesley New York.

[13] Message Passing Interface.
http://www.mcs.anl.gov/research/projects/mpi/.

[14] Lorenz, E.N. (1963). Deterministic Nonperi-
odic Flow. Journal of the Atmospheric Sciences,
20(2):130–141.

[15] McSharry, P.E. and Clifford, G.D. and Tarassenko,
L. and Smith, L.A. (2003). A dynamical model
for generating synthetic electrocardiogram signals.
IEEE Transactions on Biomedical Engineering,
50(3):289–294.

[16] ECGSYN (2003). Ecgsyn: A re-
alistic ecg waveform generator.
http://www.physionet.org/physiotools/ecgsyn.

[17] Albacete Research Institute of Informatics.
http://www.i3a.uclm.es.

[18] Mueller, F. (1999). Pthreads Library Interface. In-
stitut fur Informatik.

[19] Wagner, T. and Towsley, D. (1995). Getting started
with POSIX threads. Department of Computer Sci-
ence, University of Massachusetts.

[20] Dagum, L. (1997). OpenMP: A Proposed Industry
Standard API for Shared Memory Programming.
OpenMP.org.

[21] Dagum, L. and Menon, R. (1998). OpenMP: An
industry-standard API for shared-memory program-
ming. IEEE Computational Science and Engineer-
ing, 46–55.

[22] Águila, J.J. and Maŕın, I. and Arias, E. and Artigao,
M.M. and Miralles, J.J. (2010). Distributed Mem-
ory Implementation of the False Nearest Neighbors
Method: Kd-tree approach versus Box-assisted ap-
proach. Lecture Notes in Engineering and Computer
Science: Proceedings of The World Congress on En-
gineering 2010, WCE 2010, 30 June - 2 July, 2010,
London, U.K., pp 493-498.

IAENG International Journal of Computer Science, 37:4, IJCS_37_4_09

(Advance online publication: 23 November 2010)

__

