
 
 

 

Abstract— Since two decades, and in order to reach higher 
performance, more and more studies look to combine the 
conventional encryption methods and the complex behaviour of 
chaotic signals. To quantify the expected improvement induced 
by such a mix, this paper aims to compare the performance of 
two well known chaotic maps, namely, Logistic and piecewise 
linear chaotic map with their performance when they are 
perturbed by a new technique. These four chaotic maps are 
then used to control three bit permutation methods: Grp, Cross 
and Socek, known to have good inherent cryptographic 
properties. When applied to images, the common measures like 
NPCR, UACI, intra and inter-components correlation 
coefficients, histogram and distribution of two adjacent pixels 
lead to two main results. First, Socek permutation method 
remains better than Grp and Cross whatever the used chaotic 
map. Second, the proposed chaotic permutation methods 
controlled by the perturbed maps present higher performance 
and is more secure and suitable for chaotic image encryption 
schemes.  

Index Terms—Image encryption, Chaotic map, Perturbation 
technique, Random permutation method.  
 

I. INTRODUCTION 
The security of transmitted digital information through a 

channel, against passive or active attacks, becomes more and 
more important. Since 1990s, chaos has been widely studied 
in secure communications. The idea of taking advantage of 
digital chaotic systems to construct cryptosystems has been 
extensively investigated and attracts more and more attention 
[1-3]. Researchers are especially interested in enhancing the 
chaotic generators and the diffusion stage of the 
cryptosystems. In order to be used in every application, 
chaotic sequences must seem absolutely random and have 
good cryptographic properties. Many studies on chaotic maps 
are conducted [4], [5] and [6]. The logistic map, which is 
widely used in the encryption domain, is discussed in [7] and 
[8]. In [9] and [10], we studied and improved the Piece Wise 
Linear Chaotic Map (PWLCM). The improved chaotic maps 
generate chaotic signals with desired statistical properties and 
in compliance with NIST statistical tests.  
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To obtain better properties and to avoid the dynamical 
degradation caused by the digital chaotic system working in a 
finite state, a perturbation technique is used. In this paper, 
chaotic output signals, which present random statistical 
properties, are used for the diffusion operation in a 
cryptosystem.  

Diffusion spreads the redundant information in the plain 
text over the cipher text. As a primary method to achieve 
diffusion, permutation is widely used in cryptographic 
algorithms. Bit level permutations particularly, are the core 
of any encryption algorithm. 

Based on such bit level permutation, several methods have 
been proposed in the literature. Few of them however, have 
performed comparative study between chaos based 
permutations [11]. This paper proposes to extend this 
comparative study by comparing the performance of three 
well attractive bit level permutations when they are 
controlled by four different chaotic signals.  

The first two bit level permutations called Grp and Cross 
are detailed in [12-14]. These permutations are in fact, 
permutation instructions developed to efficiently implement 
arbitrary n-bit permutation in any programmable processors, 
whether they are general purpose microprocessors or 
application-specific cryptography processors. The third one, 
called hereafter Socek permutation, has been developed by 
Socek and al. and is well described in [8]. Proposed to 
enhance a previous algorithm, this permutation uses a 1-D 
piecewise linear chaotic map (PWLCM) instead of the 
original 1-D chaotic Logistic map thereby improving the 
statistical properties of the generated secret bits. 

In what follows, we propose to control theses methods 
with perturbed chaotic generators. In order to be used in all 
applications, chaotic sequences must seem absolutely 
random. To this end, the perturbing orbit technique presented 
in [9] is used. Designed to generate chaotic signals with 
desired statistical properties and verifying NIST statistical 
tests, this technique has already been used in [10] to control a 
cryptographic algorithm.   

Digital images are used to test the proposed approaches. 
Indeed, it is well known that images are different from texts 
in many aspects, such as high redundancy and correlation.  
The main obstacle in designing effective image encryption 
algorithms is that it is rather difficult to diffuse such image 
data. In most of the natural images, the value of any given 
pixel can be reasonably predicted from the values of its 
neighbours. By using measures like the Number of Pixels 
Change Rate (NPCR), the Unified Average Changing 
Intensity (UACI), the correlation coefficients, the distribution 
of two adjacent pixels and the entropy analysis, we prove that 
the proposed chaotic permutation methods can be used in 
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order to dissipate the high correlation among pixels and 
increase the entropy value. 

This paper is organized as follows. Section 2 presents the 
chaotic maps and describes the perturbation technique. 
Section 3 details the chaotic permutation techniques. The 
simulation results are presented in section 4 while section 5 is 
devoted to the conclusion. 

II. CHAOTIC MAPS AND PERTURBATION 
TECHNIQUE  

The first step in designing a block encryption algorithm is 
to choose a chaotic map. Choosing maps for encryption 
algorithms is not an easy task and one should consider only 
maps with good cryptographic properties, like a large cycle 
length and the uniformity distribution. In this section, we 
present two well known chaotic maps: Logistic map and 
PWLCM map. Then, we discuss the perturbation technique 
that enhancing the dynamical degradation of the chaotic map 
in a digital space. 

A. Logistic map 
The Logistic map defines one of the simplest forms of a 

chaotic process. Because of its mathematical simplicity, this 
model continues to be useful test bed for new ideas in chaos 
theory as well as application of chaos in cryptography [15]. It 
is defined by the following equation: 

 
))1(1)(1()(  nxnxnx                        (1) 

 
Where x(n) is a state variable, which lies in the interval 

[0,1] and  is the control parameter and belongs to interval 
(0; 4].   should be greater than the accumulation point 
3.569945672 in order to maintain the highly chaotic state. 
 
B. PWLCM map 

Due to the poor dynamical behavior of the logistic map [8], 
[16] some implementations use the following Zhou’s map 
with better balance property [17]. A piecewise linear chaotic 
map (PWLCM) is a map composed of multiple linear 
segments. 
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where the positive control parameter and the initial condition 
are respectively p є (0; 0.5] and x(i) є [0; 1].  
Compared to the Logistic map situation, we have a wider 
range of control parameter choices when using the PWLCM 
because the Logistic map is ergodic in [0, 1] only when r 
approaches 4. The PWLCM has a better balance property and 
uniform invariant density function. 
 

C. Perturbation technique 
Since digital chaotic iterations are constrained in a discrete 
space with 2N elements, it is obvious that every chaotic orbit 
will eventually be periodic and will finally go to a cycle with 
limited length not greater than 2N. Generally, each digital 
chaotic orbit includes two connected parts: 
x1, x2,…xl, and xl, xl+1,…xl+n, which are respectively called 
“transient branch” and “cycle”. Accordingly, l and n+1 are 
respectively called “transient length” and “cycle period”, and 
l+n is called “orbit length”.  
To improve the dynamical degradation, a perturbation based 
algorithm is used [18]. The cycle length is expanded and so 
good statistical properties are reached.  
Here, for computing precision N, each x can be described as: 
 

       1 2( ) 0. ( ) ( )... ( )... ( ) ( ) 0,1
1, 2,...,

i N ix n x n x n x n x n x n
i N

 


  (3) 

 
A suitable candidate for the perturbing signal generator is 

the maximal length LFSR because its generated sequences 
have the following advantages: 1) definite cycle length (2k-1) 
(k is the degree); 2) uniform distribution; 3) delta like 
autocorrelation function; 4) easy implementation; 5) 
controllable maximum signal magnitude given by 2-N(2k-1) 
when used in N-precision system. 
The perturbing bit sequence can be generated every n clock 
as follows: 
 

  1 0 0 1 1 1 1( ) ( ) ( ) ( ) ... ( )
0,1,2,...

k k k kQ n Q n g Q n g Q n g Q n
with n


      


(4) 

 
  represents ‘exclusive or’, ]...[ 110  kgggg is the tap 
sequence of the primitive polynomial generator, and 

110 ,...,, kQQQ are the initial register values of which at least 
one is non zero. 
The perturbation begins at n= 0, and the next ones occur 
periodically every   iterations (   is a positive integer), 
with n= l  , l=1,2,…, The perturbed sequence is given by 
the equation (5):   
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Where [ ( )]iF x n  represents the ith bit of [ ( )]F x n .  
The perturbation is applied on the last k bits of [ ( )]F x n .  
When n l  , no perturbation occurs, so ( ) [ ( 1)]x n F x n  . 
The system cycle length is given by the following relation  
 
                                     2 1kT     ,                                 (6) 

 
where  is a positive integer. The lower bound of the system 
cycle length is 

                                    min 2 1kT    .                            (7) 
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      [ b4, b6, b7, b1, b3, b8, b2, b5] 

                [ b1, b2, b3, b4, b5, b6, b7, b8] 

III. CHAOTIC PERMUTATION TECHNIQUES 
In this section, we present the studied permutation 

methods: Grp, Cross and Socek. This paper compares these 
methods when they are controlled by four chaotic maps. The 
chaotic value x(i) is in the interval [0, 1[. Then, a 
discretization method is applied to transform it to unsigned 
integer on 32 bits using the following formulas:  

                        )2).(()( 32ixroundiy  ,                         (8) 

where x(i) is a chaotic real value and y(i) is the discretized 
one. round function (instead of floor and ceil) insures the 
minimal degradation of the chaotic map. The advantage of 
this function is discussed in [19].  

The proposed perturbation technique is then applied on the 
digital chaotic value y(i) that is subsequently used to control 
the following three permutation methods. 

 

A. Grp permutation 
The Grp permutation method [12-14] is defined as follows: 
  

R3=Grp( R1, R2) 
  

R1  is  the  source  array or the original block, R2 is the 
configuration array and R3 is  the  destination  array  for  the 
permuted bits. 

As we said, we propose to control this method by chaotic 
values. Then, in each iteration, the control array R2 is filled 
by a chaotic binary suite (8 bits). But, the digital chaotic value 
y(i) is on 32 bits.  Consequently, we need to generate the 
chaotic value once every four iterations. Then, the 32 chaotic 
bits are divided into four parts. Thus, each chaotic byte can be 
used to control the permutation of a byte from the image (bits 
of R1). 

The basic idea of the Grp instruction is to divide the bits in 
the source R1 into two groups according to the bits in R2.  For 
each bit in R1, we check the corresponding bit in R2.  If the 
bit in R2 is 0, we move this bit from R1 into the first group.  
Otherwise, we put this bit into the second group (see Fig.1). 

 

 
Fig. 1. The Grp permutation method performed on 8 bits  

 

B. Cross permutation 
The  Cross  method  is  based  on  the  Benes  network,  

which  is  formed  by  connecting  two  butterfly networks  of  
the  same  size  back-to-back [13]. Cross instruction is 
defined as follows:  

 
R3=Cross( m1, m2, R1, R2)  

R1  is  the  source  array which  contains  the  bits  to  be  
permuted, R2 is the configuration array and R3 is  the  
destination  array  for  the permuted bits. Cross instruction 
performs two basic operations on the source according to the 
contents of the configuration array R2 and the values of m1 
and m2. Fig. 2 shows an example of Cross instruction 
working on 8-bit systems. Similarly to Grp technique 
explained above, we propose to fill the control array R2 by 
chaotic bits to enhance the security of the permuted images.  
 

 
Fig. 2. The Cross permutation method performed on 8-bit  

 

C. Socek permutation 
The permutation method proposed by Socek [8] is a 

computational approach of degree 8. It permutes the indices 
of bits of each pixel using the chaotic value. These indices are 
placed in an array p= [1, 2, 3, 4, 5, 6, 7, 8] and we have then 
to permute the elements of this array using the chaotic value. 
Then, the bits are rearranged according to the permuted 
indices of the new array q. Fig. 3 presents an example of 
Socek method applied on 8 bits. In this case, the obtained 
new array of indices is q=[4, 6, 7, 1, 3, 8, 2, 5].  

 
 
 
 
 

 

 
Fig.  3.  Socek method applied on 8 bits 

 
In this method, a transformation to binary format is not 

needed. We just use the perturbed digital chaotic value 
limited by 8! (permutation of 8 bits) to perform the 
permutation of each original block (byte). In the original 
method, Socek used PWLCM as control map instead of 
logistic map. In this paper, we compare the performance of 
his proposition and the permutation method controlled by the 
perturbed Logistic and PWLCM maps. 
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IV. SIMULATION RESULTS  
Experimental results are given in this section to 

demonstrate the efficiency of the proposed chaotic 
permutation methods. They extend a previous investigation 
[11] performed on Mandrill image (Fig. 4(a)) by using three 
permutation methods: Grp, Cross and Socek. In this study, 
the same permutation methods are controlled by four chaotic 
maps: the Logistic map, the perturbed logistic map, the 
PWLCM map and the perturbed PWLCM map. Barbara (Fig. 
4(b)) color image of size 512*512*3 is used as the plain 
image. Grp, Cross and Socek permutation methods, Logistic 
and PWLCM maps and their perturbed versions, are 
implemented in Matlab. 

 The standard chaotic maps, Logistic and PWLCM, are 
first used to determine the best permutation method. The 
selected method is then controlled by the perturbed maps and 
the performances are, in both cases, compared through 
several indicators.  

 

         

                     
                     (a)                                             (b) 
 

Fig. 4. (a) Mandrill image, (b) Barbara image 

A. Comparison between the permutation methods 
In this section, the Grp, Cross and Socek methods are 

controlled by the PWLCM and Logistic maps. Their 
efficiency is compared using the number of Pixels Change 
Rate (NPCR), the Unified Average Changing Intensity 
(UACI), the correlation coefficients, the distribution of two 
adjacent pixels and the entropy analysis. 

Difference between the original and the permuted images 
Common measures like NPCR (Number of Pixels Change 

Rate) and UACI (Unified Average Changing Intensity) are 
used to test the difference between the original image P1 and 
the permuted one C1. 

NPCR stands for the number of pixel change rate.  Then, if 
D is a matrix with the same size as images P1 and C1, D (i,j) 
is determined as follows: 
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D i j
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 NPCR is defined by the following formula: 
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where M and N are the width and height of P1 and C1.  

The UACI measures the normalized mean difference rate 
between the plain image and the permuted one. 

UACI is defined by the following formula: 
 

                
1 1

1 1

0 0

( , ) ( , )1 100
255

M N

i j

P i j C i j
UACI x

MxN

 
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
   .         (11) 

 
Table I and II summarize the mean values of NPCR and 

UACI obtained between the original image Barbara and the 
permuted one using the PWLCM and the Logistic maps 
respectively. The three color components are considered.  
 

Table I. Mean values of NPCR and UACI between the original 
image Barabra and the permuted one, using PWLCM as control 

map. 

 
PWLCM 

Grp Cross Socek 

NPCR 49.2780 87.7043 99.9596 

UACI 13.6973 21.5096 28.8622 

 

Table II. Mean values of NPCR and UACI between the original 
image Barbara and the permuted one, using Logistic as control map. 

 
Logistic 

Grp Cross Socek 

NPCR 70.9935 86.4111 96.7238 

UACI 18.1053 18.2042 24.0471 

 

First, the comparison of NPCR mean values shows that 
Socek method is better than Cross and Grp methods whatever 
the used chaotic map. The comparison of UACI mean values 
leads to the same conclusion. Similar results are obtained for 
Mandrill image. 

Correlation coefficients of intra and inter - color - 
components  

To quantify the dependence between two images, 
Pearson’s correlation coefficient is commonly used. Given 
by eq. 15, this coefficient is obtained by dividing the 
covariance between the two images (eq. 14) by the product of 
their standard deviations (eq. 13 and eq. 12). E in eq.12 is the 
expected value operator. P1(i,j) and C1(i,j)  are respectively 
the pixels gray values of the first and the second images. 
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Tables III, IV, V and VI give the correlation coefficients of 
intra and inter–color-components of original image Barbara 
and permuted images using respectively the PWLCM and the 
Logistic as control map. 

 
 Table III. Mean values of the correlation coefficients of 

intra-component of the original Barbara and the permuted images, 
using PWLCM as control map.   

Correlation  Barbara 
image 

Permuted image using PWLCM to 
control 

Grp Cross Socek 

Red (R) 
component  
Correlation  

0.1502 0.0276 0.0194 0.0121 

Green (G) 
component 
Correlation  

0.0954 0.0154 0.0129 0.0087 

Blue (B) 
component 
Correlation  

0.0753 0.0156 0.0126 0.0071 

Mean value 0.1070 0.0195 0.0150 0.0093 

 
Table IV. Mean values of the correlation coefficients of 

intra-component of the original Barbara and the permuted images, 
using Logistic as control map.   

Correlation  
Permuted image using Logistic to control 

Grp Cross Socek 

Red (R) 
component  
Correlation  

0.0762 0.0223 0.0171 

Green (G) 
component 
Correlation  

0.0235 0.0137 0.0086 

Blue (B) 
component 
Correlation  

0.0316 0.0127 0.0095 

Mean value 0.0437 0.0162 0.0117 

 

From Tables III and IV, it can be seen that both maps 
reduce significantly the intra-component correlation 
coefficients. The reduction is higher for PWLCM map and 
Socek method remains better than Grp and Cross methods in 
all cases. 

 

Table V. Inter-components correlation coefficients of the original 
image Barbara and the permuted images, using PWLCM as control 

map.   

Correlation  Barbara 
image 

 
Permuted image using PWLCM to 

control 

Grp Cross Socek 

Correlation 
between 
 R and G 

0.8368 0.1481 0.1093 0.0511 

Correlation 
between 
 G and B 

0.9379 0.1775 0.1417 0.0676 

Correlation 
between 
 B and R 

0.7290 0.1373 0.1086 0.0505 

 

Table VI. Inter-components correlation coefficients of the original 
image Barbara and the permuted images, using Logistic as control 

map.   

Correlation  

 
Permuted image using Logistic to control 

Grp Cross Socek 

Correlation 
between 
 R and G 

0.3678 0.2141 0.0958 

Correlation 
between 
 G and B 

0.6042 0.3196 0.2341 

Correlation 
between 
 B and R 

0.3080 0.2001 0.0482 

 
The analysis of results given in Tables V and VI shows a 

similar behavior for the inter-components correlation 
coefficients. The best results are reached when PWLCM map 
is used to control Socek permutation method. The mean 
reduction of correlation coefficient in this case is about 14.9 
(9.3 for Logistic map and Socek method). 
 

Distribution of two adjacent pixels 
Statistical analysis on large amounts of images shows that 

on average, 8 to 16 adjacent pixels are correlated.  
In this section, some simulations are carried out to test the 
correlation distribution between two horizontally, vertically 
and diagonally adjacent pixels, in the original and permuted 
images. Fig. 5 shows the correlation distribution of two 
vertically adjacent pixels in the first component of the 
original image and the permuted images when Grp, Cross and 
Socek methods are controlled by the PWLCM map. Similar 
results are obtained when the permutation methods are 
controlled by the logistic map. 

Firstly, 250000 pairs of two adjacent pixels from the image 
are randomly selected. Then, we plot the pixel value on 
location (x, y+1) over the pixel value on location (x, y). 
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                        (c)                                             (d) 

 
Fig. 5. Distribution of two vertically adjacent pixels in (a) the original image 

Barbara and in the permuted images: using (b) Grp method , (c) Cross 
method and (d) Socek permutation method.  

 
The strong correlation between the adjacent pixels in the 

original image Barbara (Fig. 5(a)) is reduced in the permuted 
images. One can see that the best distribution is obtained 
using the Socek permutation technique Fig. 5(d). Similar 
behavior is observed when the permutation methods are 
controlled by Logistic map. 

 

Histogram analysis 
An image-histogram illustrates how pixels in an image are 

distributed by graphing the number of pixels at each color 
intensity level. We have calculated and analyzed the 
histograms of the permuted images as well as the original 
color image. Fig. 6 shows the histogram of the Red 
component of the original image Barbara and the permuted 
images by Grp, Cross and Socek methods using PWLCM 
map.  
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                       (c)                                        (d) 
 

Fig. 6. Histogram of the first component of (a) Barbara image and the 
permuted images: using (b) Grp method, (c) Cross method and (d) Socek 

method. 
 

As we can see, the histograms of the permuted images are 
significantly different from that of the original image. Better 
results are obtained with Socek method as the different gray 
levels of the image are almost equally distributed over pixels.  

Similar results are obtained when Logistic map is used to 
control the same permutation methods. 
 

Information entropy analysis 
Entropy is a statistical measure of randomness that can be 

used to characterize the texture of an image. It is well known 
that the entropy H(m) of a message source m can be 
calculated as : 

 

     
2 1

2
0

1log
N

i
ii

H m p m
p m





                     (15) 

 
Where p(mi) represents the probability of message mi.  

 
When an image is encrypted, its entropy should ideally be 

8. If it is less than this value, there exists a certain degree of 
predictability which threatens its security. 
Tables VII and VIII list the mean entropy values obtained for 
the original image and the permuted ones when the three 
color components of Barbara image are considered.  

The obtained results are very close to the theoretical value. 
This means that information leakage in the permutation 
process is negligible.  
 
Table VII.  Entropy value for the original image Barbara and the 

permuted ones using PWLCM as a control map. 

 Original 
Image 

PWLCM  

Grp Cross Socek 

Entropy 7.6517 7.8118 7.8845 7.9515 
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Table VIII.  Entropy value for the permuted images of Barbara 
using Logistic as a control map. 

 
Logistic 

Grp Cross Socek 

Entropy 7.7723 7.8333 7.8472 

 

B. Comparison between the chaotic maps and the perturbed 
versions 

This section presents an experimental comparison between 
the original chaotic maps (PWLCM and Logistic map) and 
their perturbed versions. Both perturbed chaotic maps are 
used to control the Socek bit-permutation method. Then, we 
use the same indicators used above to prove the efficiency of 
the perturbation technique and to compare the four chaotic 
maps. To do this test, we used the original colored images of 
Mandrill Fig. 4(a) and Barbara Fig. 4(b). 
 

Difference between the original and the permuted images 
 
Table IX gives NPCR and UACI between the original 

image Barbara and the permuted images when Socek method 
is controlled by the perturbed PWLCM and the perturbed 
Logistic map.  

 
Table IX. Mean values of NPCR and UACI between the origin al 

image Barbara and the permuted images, using the perturbed 
PWLCM and the perturbed Logistic map. 

 
Socek method controlled by  

Perturbed PWLCM Perturbed Logistic  

NPCR 98.7439 97.1354 

UACI 27.1276 24.8613 

 
The comparison between NPCR and UACI in tables I, II, and 
IX shows that the chaotic maps performance remains similar 
even if an error rate slightly higher is observed with the 
original PWLCM. 
Same results are obtained for Mandrill image (see table X). 
 
Table X. Mean values of NPCR and UACI between the Mandrill 

image and the permuted one, using Logistic map, PWLCM map and 
their perturbed versions. 

 
Socek method controlled by  

PWLCM Perturbed 
PWLCM Logistic Perturbed 

Logistic  

NPCR 99.569 98.520 96.6427 97.1082 

UACI 29.106 27.139 23.9389 24.7024 

Correlation coefficients of intra and inter - color - 
components  

Tables XI and XII present intra and inter components 
correlation coefficients for the permuted images of Barbara 
when Socek permutation is controlled respectively by the 
perturbed PWLCM and the perturbed Logistic map.  

One can easily notice that the intra-component correlation 
coefficients of perturbed PWLCM map are lower than those 
of perturbed Logistic map. The comparison with results of 
Tables III and IV shows that the chaotic maps further reduce 
the correlation coefficients.  

Same conclusion can be formulated for the 
inter-components correlation coefficients where the mean 
reduction of correlation coefficients is about 20 (against 14.9 
for non perturbed PWLCM). 

Same behavior is observed with Mandrill image (see table 
XIII and XIV). 

 
Table XI. Mean values of the correlation coefficients of 

intra-component of original and permuted images of Barbara, using 
the perturbed Logistic map and the perturbed PWLCM map. 

Correlation  

Permuted image using Socek method 
controlled by 

Perturbed PWLCM Perturbed Logistic  

Red (R) component  
Correlation  0.0111 0.0137 

Green (G) component 
Correlation  0.0080 0.0081 

Blue (B) component 
Correlation  0.0062 0.0076 

Mean value 0.0084 0.0098 

 
Table XII. Inter-components correlation coefficients of original and 
permuted images of Barbara, using the perturbed Logistic map and 

the perturbed PWLCM map. 

Correlation  

 
Permuted image using Socek method 

controlled by 

Perturbed PWLCM Perturbed Logistic  

Correlation between 
 R and G 0.0382 0.0669 

Correlation between 
 G and B 0.0648 0.1557 

Correlation between 
 B and R 0.0406 0.0469 
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Table XIII. Mean values of the correlation coefficients of 
intra-component of original and permuted images of Mandrill, using 

Logistic map, PWLCM map and their perturbed versions. 

Correlation Mandrill 
image 

Permuted image using Socek method 
controlled by 

PWLCM Perturbed 
PWLCM Logistic Perturbed 

Logistic  
Red (R) 

component  
Correlation  

0.1911 0.0171 0.0155 0.0178 0.0162 

Green (G) 
component 
Correlation 

0.0883 0.0066 0.0055 0.0066 0.0058 

Blue (B) 
component 
Correlation 

0.0948 0.0152 0.0138 0.0159 0.0141 

Mean value 0,1247 0.0130 0.0116 0.0134 0.0120 

 
Table XIV. Inter-components correlation coefficients of original 
and permuted images of Mandrill, using Logistic map, PWLCM 

map and their perturbed versions. 

Correlation  Mandrill 
image 

 
Permuted image using Socek method 

controlled by 

PWLCM Perturbed 
PWLCM Logistic Perturbed 

Logistic  
Correlation 

between 
 R and G 

0.3565 0.1280 0.0703 0.1410 0.0722 

Correlation 
between 
 G and B 

0.8074 0.0684 0.0591 0.0750 0.0621 

Correlation 
between 
 B and R 

0.1237 0.0161 0.0088 -0.0175 -0.0093 

 

Distribution of two adjacent pixels 
Fig. 7 shows the correlation distribution of two vertically 

adjacent pixels in the first component of the permuted images 
by Socek permutation method controlled by the perturbed 
PWLCM map and the perturbed Logistic map. Similar results 
are obtained when the permutation methods are applied on 
the Mandrill image. 

 

0 50 100 150 200 250 300
0

50

100

150

200

250

300

0 50 100 150 200 250 300
0

50

100

150

200

250

300

 
(a)                                             (b) 

 
Fig. 7. Distribution of two vertically adjacent pixels in the permuted images 
of Barbara: using Socek permutation method controlled by (a) the perturbed 

PWLCM map and (b) the perturbed Logistic map.  

 
It is clear from Fig. 7 that there is a negligible correlation 

between the two adjacent pixels in the images permuted with 
Socek method controlled by the perturbed maps. 

 

Histogram analysis 
Fig. 8 shows the histogram of the Red component of the 

permuted images of Barbara using Socek method controlled 
by the perturbed PWLCM map and the perturbed Logistic 
map.  

Compared to histograms of Fig. 6(a) and 6(d), one can 
observe that gray levels of Fig. 8 are better distributed over 
pixels. The second point to outline is that a better uniformity 
is observed in the histogram of the perturbed PWLCM map.  
Similar results are obtained for the Mandrill image. 
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Fig. 8. Histogram of the first component of the permuted images of Barbara: 
using Socek permutation method controlled by (a) the perturbed PWLCM 

map and (b) the perturbed Logistic map.  
 

Information entropy analysis 
Table XV shows the entropy value of the permuted images 

of Barbara using Socek permutation method associated with 
the perturbed PWLCM map and the perturbed Logistic map. 
The obtained values also prove the efficiency of the proposed 
perturbation technique. The same test is done using the 
Mandrill image (see Table XVI) and the same conclusions 
can be drawn. 

 
Table XV.  Entropy value of the permuted images of Barbara, using 
Socek permutation method controlled by the perturbed Logistic map 

and the perturbed PWLCM map. 

 

Permuted image using Socek method 
controlled by 

Perturbed PWLCM Perturbed Logistic 

Entropy 7.9526 7.9275  
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Table XVI.  Entropy value of the original and the permuted images 
of Mandrill, using Socek permutation method controlled by Logistic 

map, PWLCM map and their perturbed versions. 

 Original 
Image 

Permuted image using PWLCM to control 

PWLCM Perturbed 
PWLCM Logistic Perturbed 

Logistic 

Entropy 7.762 7.888 7.950     7.8666 7.9376 

 

V. CONCLUSION 
Novel chaotic permutation techniques are presented in this 

paper. They use previous chaotic maps (PWLCM and 
Logistic) and are designed to reach a higher security level. To 
test their efficiency, the performances of three well known 
bit-permutation methods controlled by previous chaotic maps 
are compared with their performances when the new chaotic 
maps are used. In terms of NPCR and UACI, similar behavior 
is observed between the previous and the proposed chaotic 
maps even if an error rate slightly higher is observed with the 
original PWLCM. When correlation coefficients are 
considered, the proposed chaotic maps present higher 
performance with lower intra and inter-components 
correlation coefficients. However, with an entropy value 
which is also improved, the proposed permutation techniques 
are more secure and suitable for chaotic image encryption 
schemes. Finally, this study allows choosing an efficient 
permutation method to construct a chaotic cryptosystem with 
good cryptographic properties. 

 

REFERENCES 
 

[1] G. Millérioux, J. M. Amigo, J. Daafouz, “A connection between 
chaotic and conventional cryptography,” IEEE Trans. Circuits and 
Systems, vol. 55, no. 6, pp. 1695-1703, Jul. 2008. 

[2] G. Alvarez, S. Li, “Some Basic Cryptographic Requirements for Chaos 
Based Cryptosystems,” International Journal of Bifurcation and Chaos, 
vol. 16, no. 8, pp. 2129-2151, 2006. 

[3] S. E. Borujeni, M. Eshghi1, “Chaotic Image Encryption Design Using 
Tompkins-Paige Algorithm,” Hindawi Publishing Corporation, 
Mathematical Problems in Engineering, Article ID 762652, 22 pages, 
2009. 

[4] S. El Assad, C.Vladeanu, “Digital chaotic codec for DS-CDMA 
Communication Systems,” Lebanese Science Journal, vol. 7, No. 2, 
2006. 

[5] L. Kocarev, J. Szczepanski, J. M. Amigo, I. Tomovski, “Discrete 
Chaos —I: Theory,” IEEE Trans. Circuits and Systems Magazine, vol. 
53, no. 6, pp. 1300-1309, June 2006. 

[6] S. Behnia, A. Akshani, S. Ahadpour, H. Mahmodi, A. Akhavan, “A 
fast chaotic encryption scheme based on piecewise nonlinear chaotic 
maps,” Physics Letters A, pp. 391-396, 2007. 

[7] C. Li, S. Li, G. Alvarez, G. Chen and K. T. Lo. “Cryptanalysis of two 
chaotic encryption schemes based on circular bit shift and XOR 
operations”. Physics Letters A, 2007. 

[8] D. Socek, S. Li, S. S. Magliveras, B. Furht, “Enhanced 1-D Chaotic 
Key Based Algorithm for Image Encryption,” IEEE, Security and 
Privacy for Emerging Areas in Communications Networks, 2005.  

[9] A. Awad, S. E. Assad, Q. Wang, C. Vlădeanu, B. Bakhache, 
“Comparative Study of 1-D Chaotic Generators for Digital Data 
Encryption,” IAENG International Journal of Computer Science, vol. 
35, no. 4, pp. 483-488, 2008. 

[10] A.  Awad, S. E. Assad, D. Carragata, “A Robust Cryptosystem Based 
Chaos for Secure Data,” IEEE, Image/Video Communications over 
fixed and mobile networks, Bilbao Spain, 2008. 

[11] A. Awad, A. Saadane, “Efficient Chaotic Permutations for Image 
Encryption Algorithms,” Lecture Notes in Engineering and Computer 
Science: Proceedings of The World Congress on Engineering 2010, 
WCE 2010, 30 June - 2 July, 2010, London, U.K., pp 748-753.  

[12]  Z. Shi, R. Lee, "Bit Permutation Instructions for Accelerating 
Software Cryptography," IEEE, Application-specific Systems, 
Architectures and Processors, pp. 138-148, 2000. 

[13] R. B. Lee, Z. Shi, X. Yang, “Efficient Permutation Instructions for Fast 
Software Cryptography,” IEEE Micro, vol. 21, no. 6, pp. 56-69, 2001. 

[14] Y. Hilewitz, Z. J. Shi, R. B. Lee, “Comparing Fast Implementations of 
Bit Permutation Instruction,” IEEE,   Signals Systems and Computers, 
vol.2, 1856 – 1863, 2004.  

[15] V. Patidar, K.K. Sud, “A Pseudo Random Bit Generator Based on 
Chaotic Logistic Map and its Statistical Testing,”informatica, vol. 33, 
pp. 441-452, 2009. 

[16] T. Xiang, X.F. Liao, K.W. Wong, “An Improved Particle Swarm 
Optimization Algorithm Combined with Piecewise Linear Chaotic 
Map,” Applied Mathematics and Computation, vol. 190, no. 2, pp. 
1637-1645, 2007. 

[17] H. Zhou, “A Design Methodology of Chaotic Stream Ciphers and the 
Realization Problems in Finite Precision,” phd thesis, department of 
electrical Engineering, Fudan university, Shanghai China, 1996. 

[18] T. Yang, C. W. Wu, L. O. Chua, “Cryptography Based on Chaotic 
Systems,” IEEE Trans. Circuits and Systems, vol. 44, no. 5, pp. 
469–472, 1997.  

[19] G. Chen, X. Mou, S. Li, "On the Dynamical Degradation of Digital 
Piecewise Linear Choatic Maps," International Journal of Bifurcation 
and Chaos, vol. 15, no 10, pp. 3119-3151, 2005. 

IAENG International Journal of Computer Science, 37:4, IJCS_37_4_10

(Advance online publication: 23 November 2010)

 
______________________________________________________________________________________ 




