
An Evaluation of the Resilience of Static Java
Bytecode Watermarks Against Distortive Attacks

James Hamilton and Sebastian Danicic ∗

Abstract—Software watermarking is a software pro-
tection technique based on the insertion of copyright
notices or unique identifiers into a program to prove
ownership. Software watermarks can be broadly di-
vided into two categories: static and dynamic. The
former embeds the watermark in the data and/or
code of the program, while the latter embeds the wa-
termark in a data structure built at runtime. We
describe and evaluate the existing Java static wa-
termarking systems and algorithms by using them
to watermark bytecode files and then applying dis-
tortive attacks to each watermarked program by ob-
fuscating and optimising. Our study revealed that a
high proportion of watermarks were removed as a re-
sult of these transformations both in the commercial
and academic watermarking systems that we tested.
These findings confirm the results of previous studies
and this is further evidence that static watermarking
techniques on their own do not give sufficient protec-
tion against software piracy.

Keywords: java, bytecode, watermarking, obfuscation,

program transformation

1 Introduction

The global revenue loss due to software piracy – the act of
copying a legitimate application and illegally distributing
that software, either free or for profit – was estimated to
be more than $50 billion in 2008 [8].

Technical measures have been introduced to protect dig-
ital media and software due to the ease of copying com-
puter files. Some software protection techniques, of vary-
ing degrees of success, can be used to protect intellectual
property contained within Java class-files. These tech-
niques include: using native code, encryption, obfusca-
tion, watermarking and fingerprinting. Encryption and
obfuscation aim to either decrease program understand
or prevent decompilation, while watermarking and fin-
gerprinting uniquely identify applications to prove own-
ership in a court of law.

Software watermarking involves embedding a unique
identifier within a piece of software, to discourage soft-

∗Department of Computing, Goldsmiths, University
of London, United Kingdom, james.hamilton@gold.ac.uk,
s.danicic@gold.ac.uk. This is an extended version of a previ-
ously published paper [30].

ware thieves by providing a means of identifying the
owner of a piece of software and/or the origin of the stolen
software [41]. The hidden watermark can be extracted, at
a later date, by the use of a extractor or recognised by the
use of a recogniser. It is possible to embed a unique cus-
tomer identifier in each copy of the software distributed
which allows the software company to identify the indi-
vidual that pirated the software. It is necessary that the
watermark is hidden so that it cannot be detected and
removed and that the watermark is robust - that is, re-
silient to semantics preserving transformations (such as
optimisations or obfuscations).

The Java virtual machine is a popular platform for exe-
cutable programs from languages including, but not lim-
ited to, Java. The Java virtual machine provides a plat-
form for which programs can be written once and run
on any physical machine for which there is a Java virtual
machine. Java bytecode is higher level than machine code
and is relatively easy to decompile with only a few prob-
lems to overcome [29].

In this paper, present an evaluation of existing Java byte-
code watermarking software and evaluate their effective-
ness.

2 Background

Watermarking techniques are used extensively in the en-
tertainment industry to identify multimedia files such as
audio and video files, and the concept has extended into
the software industry. Software watermarking is harder
because media, such as video or audio, can tolerate cer-
tain distortions whereas software must remain semanti-
cally correct after watermarking. Watermarking does not
aim to make a program hard to steal or indecipherable
like obfuscation but it discourages theft as thieves know
that they could be identified [63].

Most literature discusses techniques and problems of au-
tomatically watermarking software and there is only a
small amount of literature which compares automatic wa-
termarking with manual watermarking [45]. A manual
watermark is inserted by the programmer of the applica-
tion, rather than a using a third-party automatic tool.
Some semi-automatic watermarking systems also exist
(e.g. The Collberg-Thomborson algorithm implemented

IAENG International Journal of Computer Science, 38:1, IJCS_38_1_01

(Advance online publication: 10 February 2011)

__

in Sandmark [13]) - where a programmer inserts mark-
ers into a program during development and the finished
software is then augmented by a software watermarking
tool. We are interested in automatic watermarking sys-
tems which enable a user to simply watermark a piece of
software with little effort.

Watermarks can be classified as either visible, where
the recogniser is public knowledge or invisible where the
recogniser, or some component (such as an encryption
key), is not public knowledge. Visible watermarks can
act as a deterrent but also show an adversary the loca-
tion of a watermark making the task of removing the
watermark easier.

2.1 Difficulties of Software Watermarking

Software watermarks present several implementation
problems and many of the current watermarking algo-
rithms are vulnerable to attack. Watermarked software
must meet the following conditions:

1. program size must not be increased significantly.

2. program efficiency must not be decreased signifi-
cantly.

3. robust watermarks must be resilient to semantics
preserving transformations (fragile watermarks, by
definition, should not be).

4. watermarks must be sufficiently well hidden, to avoid
removal.

5. watermarks must be easy for the software owner to
extract.

Perhaps the most difficult problem to solve is keeping
the watermark hidden from attackers while, at the same
time, allowing the software owner to efficiently extract
the watermark when needed. If the watermark is too easy
to extract then an attacker would be able to extract the
watermark too. If a watermark is too well hidden then the
software owner may not be able to find the watermark,
in order to extract it. Some watermark tools (such as
Sandmark [13]) use markers to designate the position of
the stored watermark - this is problematic as it poses a
risk of exposing the watermark to an adversary.

Watermarks should be resilient to semantics preserving
transformations and ideally it should be possible to recog-
nise a watermark from a partial program. Semantics
preserving transformations, by definition, result in pro-
grams which are syntactically different from the original,
but whose behaviour is the same. The attacker can at-
tempt, by performing such transformations, to produce
a semantically equivalent program with the watermark
removed. Redundancy and recognition with a probabil-
ity threshold may help with these problems [36]. Ideally,

software watermarks should be resilient to decompilation-
recompilation attacks, as decompilation of Java is possi-
ble (though not perfect [29]).

The watermark code must be locally indistinguishable
from the rest of the program so that it is hidden from ad-
versaries [56]. For example, imagine a watermark which
consists of a dummy method with 100 variables - this kind
of method will probably stand out in a simple analysis of
the software (such as using software metrics techniques
[28]). It could be difficult to programatically generate
code which is indecipherable from the human-generated
program code but statistical analysis of the original pro-
gram could help in generating suitable watermark code
[36].

Software watermarks must be efficient in several ways:
cost of embedding, cost of runtime and cost of recognition
time.

The cost of embedding a software watermark can be di-
vided into two areas: developer time and embedding cost.
The former simply quantifies the time that a developer
spends embedding a watermark, while the latter quanti-
fies the execution time of a software watermarking tool.
Embedding costs are not a significant problem except in
certain cases such as live multimedia streaming.

Developer time is important in use of software water-
marks as the developer should not have to spend a large
amount of time preparing a software watermark. The
complexity of a software watermark is proportional to the
resilience of the watermark - that is, the greater amount
of time a developer spends embedding a watermark the
harder it may be for an adversary to crack. For exam-
ple, a developer could spend days introducing a subtle
semantic property into the program which is unique to
the software and very hard to discover.

In the middle of the scale is a semi-automatic watermark
which involves a developer preparing a program before a
watermarking tool embeds the watermark. The prepara-
tions could include inserting markers where watermark
code should be inserted, or creating dummy methods
which watermarks could use. Monden et al. [40] describe
a watermarking algorithm which requires the production
of a dummy method in a program for the watermark to be
stored. A programmer must create this dummy method
manually and then execute watermarking software to em-
bed the watermark.

The cost of runtime depends on the effect that the trans-
formations applied by the watermark have had on the
size and execution time. For example, Hattanda et al.
[31] found that the size of a program, watermarked with
Davidson/Myhrvold [25] algorithm, increased by up to
24% and the performance decreased by up to 14%.

IAENG International Journal of Computer Science, 38:1, IJCS_38_1_01

(Advance online publication: 10 February 2011)

__

Dummy methods, which are not executed, will have min-
imal effect on runtime cost but dynamic watermarks may
have a high runtime cost as the watermark is built during
program execution. The fidelity of watermark, ‘the ex-
tent to which embedding the watermark deteriorates the
original content’ [45], should also be taken into account
for the effects caused by watermarking, for example em-
bedding a watermark may introduce unintentional errors.

The ideal recognition time of a watermark will most likely
be quick but in some cases it may be important to artifi-
cially slow watermark recognition time to prevent oracle
attacks [45]. Such attacks rely on the repetitive execu-
tion of a recogniser thus fast recognition time helps an
adversary.

2.2 Types of Watermark

Software watermarks can be broadly divided into two cat-
egories: static and dynamic [16]. The former embeds the
watermark in the data and/or code of the program, while
the latter embeds the watermark in a data structure built
at runtime. Figure 1 shows a conceptual diagram of a
simple static watermarking system.

Additionally, Nagra et al. define four categories of wa-
termark [45]:

Authorship Mark identifying a software author,
or authors. These watermarks are generally visible
and robust.

Fingerprinting Mark identifying the channel of
distribution, i.e. the person who leaked the software.
The watermarks are generally invisible, robust and
consist of a unique identifier such as a customer ref-
erence number.

Validation Mark to verify that software is genuine
and unchanged, for example like digitally signed Java
Applets. These watermarks must be visible to the
end-user to allow validation and fragile to ensure the
software is not tampered with.

Licensing Mark used to authenticate software
against a license key. The key should become ineffec-
tive if the watermark is damaged therefore licensing
marks should be fragile.

In this paper, we evaluate static watermarking systems
which enable software authors to prove ownership of their
software and/or identify the customer responsible for the
copyright infringement. We are therefore interested in
only the first two kinds of watermarks: authorship marks
and fingerprint marks.

2.3 Program Transformation Attacks

Program transformation attacks on watermarked soft-
ware can be divided into three categories:

2.3.1 Additive

An additive attack involves inserting another water-
mark into an already watermarked application, thus over-
writing the original watermark. This attack will usually
work if a watermark of the same type is embedded but
not necessarily if a different type of watermark is embed-
ded [43]. However, even if the original watermark is not
over-written by the new watermark the attacker could
claim ownership of the software if both watermarks are
recognisable. It will be difficult to prove which party in-
serted their watermark first and thus result in a dispute
over ownership.

2.3.2 Subtractive

A subtractive attack involves removing the section, or
sections, of code where the watermark is stored while
leaving behind a working program. This could be
achieved by dead code elimination, statistical analysis or
program slicing.

2.3.3 Distortive

Distortive attacks involve applying semantics preserving
transformations to a program, such as obfuscations or
optimisations thus removing any watermarks which rely
on program syntax. For example, renaming variables,
loop transformations, function inlining, etc.

Both static and dynamic watermarks can be sus-
ceptible to program transformation attacks. Myles et
al. [43] conducted an evaluation of dynamic and static
versions of the Arboit algorithm by watermarking and
obfuscating test files. They found the dynamic version to
be only minimally stronger than the static version, and
both versions could be defeated by distortive attacks.

In this paper, we attack watermarked programs with dis-
tortive attacks.

3 Empirical Evaluation

We evaluate the existing static watermarking software by
watermarking 60 jar files with all available watermark al-
gorithms and then apply a distortive attack to each wa-
termarked program, by obfuscating and optimising. Af-
ter all the programs have been transformed we attempt
to extract the watermarks from the programs. We expect
that many watermarks will be lost during the transfor-
mations and attempt to find which transformations most
affect the watermarks.

IAENG International Journal of Computer Science, 38:1, IJCS_38_1_01

(Advance online publication: 10 February 2011)

__

Figure 1: A simple static watermarking system

3.1 The Watermarkers

We are testing 14 different static watermarking algo-
rithms from 3 different watermarking systems: Sand-
mark, Allatori and DashO. The latter two are commer-
cial systems, while the former is an academic open-source
framework. These are the available systems that we could
obtain for watermarking Java programs.

name type version year
Sandmark open-source 3.4.0 2004

Allatori commercial 2.8 2009
DashO commercial 6.3.3 2010

Table 1: The Watermarking Systems

Some of the algorithms have been evaluated before (for
example Collberg et al. have compared the David-
son/Myhrvold and Monden algorithms [44]) and we re-
evaluate them with our set of test programs. To the best
of our knowledge, the commercial watermarking systems,
Allatori and DashO, have not been evaluated before.
Both commercial systems use proprietary algorithms, and
are therefore undocumented - we include a short descrip-
tion of their algorithms as far as we understand.

3.1.1 Sandmark

SandMark [13] is a tool developed by Christian Collberg
et al. at the University of Arizona for research into soft-
ware watermarking, tamper-proofing, and code obfusca-
tion of Java bytecode. The project is open-source and
both binaries and source-code can be download from the
SandMark homepage [13]. We used version 3.4.0 released
in 2004.

3.1.2 Allatori

Allatori [52] is a commercial Java obfuscator complete
with a watermarking system created by Smardec [51].
The company claim that ‘if it is necessary for you to
protect your software, if you want to reduce its size and
to speed up its work, Allatori obfuscator is your choice’
[52]. We used version 2.8 released in 2009.

3.1.3 DashO

DashO [1] is a commerical Java security solution, includ-
ing obfuscator, watermarking and encrypter - similar to
Allatori. DashO is made by PreEmptive Solutions [2]
who claim that ‘DashO provides advanced Java obfus-
cation and optimization for your application’. We used
version 6.3.3 released in 2010.

3.2 The Watermark Algorithms

We evaluate 14 static watermarking algorithms available
to us from the 3 watermarking systems. Sandmark con-
tains 12 static Java bytecode watermarking algorithms
[18]; both Allatori and DashO have 1 watermarking al-
gorithm. Of the 12 algorithms, in Sandmark, some are
fairly trivial while others have been studied extensively
in software watermark literature.

3.2.1 String Constant

The String Constant algorithm is a simple watermarking
algorithm which simply embeds the watermark string in
an unused constant in the constant pool of a class-file.

IAENG International Journal of Computer Science, 38:1, IJCS_38_1_01

(Advance online publication: 10 February 2011)

__

3.2.2 Add Expression

The Add Expression [10] algorithm simply adds a bogus
addition expression to a class-file, containing 2 integers
which add up to the watermark number. For example,
int wm = 451 + 123. This is added to the constant pool
of a classfile which is used to form an expression during
recognition.

3.2.3 Add Initialization

The Add Initialisation [18] watermarking algorithm in-
serts several bogus integer assignments in randomly cho-
sen class files. The variables store 2 digits of a watermark
which are concatenated together during recognition. The
variable names include numbers to ensure the watermark
is reconstructed in the correct order. The length of the
watermark is also stored in a bogus variable. Variable
names are prefixed with sm$.

3.2.4 Add Method and Field

The Add Method and Field [18] algorithm splits a water-
mark in two: one half is stored in the name of a bogus
field, the other half store in the name of a bogus method.
The new method accesses the field, while a randomly cho-
sen method calls the new method to make it seem like
they are part of the program.

3.2.5 Add Switch

The Add Switch [18] algorithm embeds the watermark
in the case values of a switch statement, inserted at the
beginning of a randomly chosen method.

3.2.6 Register Types (HatTrick)

Register Types [18] embeds a watermark by introduc-
ing local variables of certain Java standard library types,
based on the encoding in table 2, into the first non-
abstract method of the first class of a Jar file. The vari-
ables are prefixed with a secret name to enable recogni-
tion.

3.2.7 Davidson/Myhrvold

Davidson and Myhrvold [25] proposed one of the first
software watermarking algorithms which encodes the wa-
termark by basic block re-ordering. The embedding algo-
rithm was described in a patent issued to Microsoft but
the extraction algorithm was not discussed. Collberg et

Table 2: Register Types Encoding

Number Type
0 java.util.GregorianCalendar

1 java.lang.Thread

2 java.util.Vector

3 java.util.Stack

4 java.util.Date

5 java.io.InputStream

6 java.io.ObjectStream

7 java.lang.Math

8 java.io.OutputStream

9 java.lang.String

al. [44] proposed a method of watermark extraction and
implemented the DM algorithm in Sandmark [13].

Collberg et al.’s extraction algorithm is an informed ex-
traction algorithm; that is, it requires the original P and
the watermarked program Pw to extract the watermark
w. The embedding algorithm re-orders only unique basic
blocks in all methods as there is no way of knowing which
method(s) the watermark is stored in. This would result
in the extraction of many watermarks; Collberg et al.
overcome this in their implementation by prefixing and
suffixing magic numbers to the watermark to guarantee
recognition. Non-unique basic blocks can be made unique
by inserting bogus code (such as no op instructions) until
all the basic blocks are unique [14].

The basic idea is to convert the watermark into a number
w; then the wth permutation of a set of basic blocks B
is generated. The permutated basic blocks B′ are re-
linked to retain the original program semantics and B is
replaced by B′ to produce the watermarked program P ′.
To extract a watermark, the ordering of the original basic
blocks is compared against the new ordering, to obtain
the permutation number; this number is then converted
back into the watermark number.

A program method containing n unique basic blocks can
embed [log2n!] watermark bits. The method should not
contain exception handling code as this can impose an
ordering of basic blocks which is difficult or impossible to
alter [44].

Hattanda and Ichikawa [31] evaluated the DM water-
marking algorithm by watermarking several C programs
and analysing metrics such as program size and program
performance. In their implementation they found that
the size increase of a watermarked program was between
9% and 24% while the performance was 86% to 102%
of the original program. [5] implemented and evaluated
a version of the DM watermarking algorithm for ma-
chine code where groups of chains of basic blocks are
re-ordered. They concluded that their watermarking al-
gorithm is stealthier as it has a minimal affect on code

IAENG International Journal of Computer Science, 38:1, IJCS_38_1_01

(Advance online publication: 10 February 2011)

__

locality.

Hattanda et al. reported a data-rate of approximately
0.2% of program size (in bytes) based on their imple-
mentation that used a partial permutation scheme, which
only used 6 basic blocks. Collberg et al.’s implementa-
tion was not constrained in this way and the data rate
is dependent on the number of basic blocks in program
methods.

The DM algorithm is highly unstealthy due to the fact
that a normal compiler would not linearise the control
flow graph as in DM watermarked programs [14]. A sim-
ple way to discover a DM watermark is to examine the ra-
tio of goto statements to the total number of instructions
in a method - methods with the DM watermark show a
high ratio compared to an unwatermarked method [44].

3.2.8 Graph Theoretic Watermark

Collberg et al. [19] describe several techniques for en-
coding watermark integers in graph structures. Graph
watermarking algorithms rely on the fact that graph-
generating code is difficult to analyse due to aliasing ef-
fects [26] which, in general, is known to be un-decidable
[49].

An ideal class of watermarking graph should have the
following properties [22]:

• ability to efficiently encode a watermark integer; and
be efficiently decodable to a watermark integer

• a root node from which all other nodes are reachable

• a high data-rate

• a low outdegree to resemble common data structures
such as lists and trees

• error correcting properties to allow detection after
transformation attacks

• tamper-proofing abilities

• have some computationally feasible algorithms for
graph isomorphism, for use during recognition

Venkatesan et al. [56] proposed the first static graph
watermarking scheme, Graph Theoretic Watermarking
(GTW), which encodes a value in the topology of a
program’s control-flow graph [3]. The idea was later
patented by Venkatesan and Vazirani [55] for Microsoft.
The basic concept is to encode a watermark value in a re-
ducible permutation graph and convert it into a control
flow graph; it is then merged with the program control
flow graph by adding control flow edges between the two
(see figure 2).

B0

B1

B3B2

B5B4

(a) P

W3W2

W1

W0

(b) W

B1

B0

B3B2

W3W2

W1

W0

B5B4

(c) PW

Figure 2: Graph theoretic watermarking

In a permutation graph encoding scheme encoding
scheme a permutation P = {p1, p2, . . . , pn} is derived
from the watermark integer n; the permutation is then
encoded in the graph by adding edges between vertices i
and pi.

Reducible permutation graphs (RPG) [55, 56] are very
similar to permutation graphs but they closely resemble
control-flow graphs as they are reducible-flow graphs [32].
They resemble control-flow graphs constructed from pro-
gramming constructs such as if, while etc. [14]. This
family of graphs is resistant to edge-flip attacks, where
an attacker inverts the condition of conditional jumps in
a program.

RPGs, like CFGs, contain a unique entry node and a
unique exit node, a preamble which contains zero or more
nodes from which all other nodes can be reached and a
body which encodes a watermarking using a self-inverting
permutation [11].

The algorithm adds bogus control flow edges between ran-
dom pairs of vertices in the program CFG and watermark
CFG in order to protect against static analysis attacks
looking for sparse-cuts [7] in the control-flow graph. A
sparse-cut would indicate a possible joining point of the
original program CFG and the watermark CFG where
the attacker could split the program with as few edges
broken as possible.

Collberg et al. [12] implemented a version GTWSM of
GTW in Sandmark [13]. They measured the size and
time overhead of watermarking and evaluated the algo-
rithm against a variety of attacks. They also introduce
two methods (Partial Sum splitting and Generalised Chi-
nese Remainder Theorem splitting) for splitting a water-
mark integer into redundant pieces so that a large integer
can be stored in several smaller CFGs. They found that
stealth is a big problem; for example, the basic blocks of
the generated watermark method consisted of 20% arith-
metic instructions compared to just 1% for standard Java

IAENG International Journal of Computer Science, 38:1, IJCS_38_1_01

(Advance online publication: 10 February 2011)

__

methods [20]. Watermarks of up to 150 bits increased
program size by between 40% and 75%, while perfor-
mance decreased by between 0% and 36% [12].

3.2.9 Monden

Some of the first patented software watermarking algo-
rithms [33, 50] were based around the idea of code re-
placement; that is, they replaced a pre-determined por-
tion of code and/or data in a program with the watermark
value.

Monden et al. [38, 39, 40] describe a code replacement
technique, MON , for watermarking Java programs by
swapping bytecode instructions within dummy methods
(implemented as jmark [37]). The dummy methods used
by MON are created either manually or automatically,
and method calls are protected by opaque predicates [17]
to ensure they are not executed.

The basic idea is to assign bit values to certain Java byte-
code instructions and replace the existing instructions
with the encoding bits which correspond to the water-
mark value. As the dummy method is not executed there
are no semantic restrictions on the replacements but the
watermarked method must be semantically correct, in or-
der to pass the Java bytecode verifier [57].

Myles et al. [44] implemented a version, MONSM ,
in Sandmark [13] and compared it to the David-
son/Myhrvold watermarking scheme [25]. MONSM dif-
fers from the jmark implementation as it automatically
generates a dummy method, so is completely automatic.
However, it is difficult to generate code which is similar
to the original program and it may be discoverable by a
statistical analysis of the bytecode. In this evaluation we
use the MONSM version.

3.2.10 Qu/Potkonjak (Register Allocation)

The QP algorithm [46] is a constraint-based watermark-
ing (and fingerprinting [48]) algorithm based on the con-
cept of graph colouring. In the QP algorithm edges are
added to a graph based on the value of the watermark.
The graph used for watermarking programs is the inter-
ference graph [9], which is used to model the relationship
between the variables in a program method. Each vertex
in the graph represents a variable and an edge between
two variables indicates that their live ranges overlap. We
colour the graph in order to minimise the number of reg-
isters required and ensure that two live variables do not
share a register. Zhu and Thomborson [61] described a
clarified version of the originally published algorithm.

A major flaw in the QP algorithm is that it is not ex-
tractable as it is possible to insert two different messages

into an interference graph and obtain the same water-
mark graph [60–62]. It has also been shown that the QP
graph solution can be modified in such a way that any
message could be extracted [35]. Qu and Potkonjak dis-
miss this problem, claiming that it will be hard to build a
meaningful message particularily if the original message
is encrypted by a one-way function [47].

Myles and Collberg [42] implemented a new algorithm,
QPS, in Sandmark [13]. In the QPS algorithm triples of
vertices are selected such that they are isolated units that
will not effect other vertices in the graph. Experimental
results [42] showed that the QPS algorithm has a very
low data-rate and is susceptible to a variety of simple at-
tacks, such as obfuscations. However, the QPS algorithm
was found to be quite stealthy and is extremely credible.
In other words, the watermarks are hard to detect by
an attacker whilst readily detectable by the watermark
author.

In this paper, we use the QPS version of the algorithm,
which is implemented in Sandmark.

3.2.11 Static Arboit

An opaque predicate is a predicate whose outcome is
known a priori. It is difficult for automated software
analysis to find the value of the predicate; therefore it is
not known whether the enclosed code (which may or may
not be a watermark) could be removed [17].

Arboit [6] proposed a watermarking method where pieces
of a watermark are encoded as constants within opaque
predicates. The watermark is extracted by searching a
program for opaque predicates and decoding them back
into the watermark value.

Myles and Collberg [43] implemented the algorithm in
Sandmark [13] and found that the algorithm could, fairly
easily, be defeated by semantics-preserving transforma-
tion attacks.

3.2.12 Stern (Robust Object Watermarking)

Stern et al. [54] introduce robust object watermarking
ROW , based on a spread-spectrum technique previously
used for multimedia watermarking [23]. This technique
differs from many other techniques because it views the
code as a whole statistical object, rather than a sequence
of instructions. The technique is more resilient against
collusion attacks because the watermark is spread out
over the program, rather than being in one location.

The approach modifies the frequencies of groups of in-
structions in order to watermark the code (though other
statistical properties of the program could be used).

IAENG International Journal of Computer Science, 38:1, IJCS_38_1_01

(Advance online publication: 10 February 2011)

__

Stern et al. [54] implemented their technique for x86 as-
sembly language and later Hachez [27], and separately
Collberg and Sahoo [15], implemented the technique for
Java bytecode. Curran et al. [24] describe a spread-
spectrum technique using a vector derived from the call
graph depth of a program; Ai et al. [4] attempt to improve
on the original algorithm by introducing a collusion-
attack resistant variation.

Finding the perfect transformation is difficult ; a previous
study found that the watermark can survive many high-
level obfuscations that effect classes, fields, and method
signatures [15] but some transformations are easily un-
doable by trivial obfuscations [14]. In this paper, we use
the Sandmark implementation.

3.2.13 Allatori

Allatori embeds watermarks in a sequence of push and
pop operations inserted into multiple methods. The se-
quences consists of 4 instructions pushing integers, fol-
lowed by 4 pop instructions, repeated many times in a
method. We have not determined the encoding used but
the watermark is unstealthy as code like this is unusual.
It is also not resilient to attack - we believe the optimiser
will be effective at removing this watermark because a
dead-code optimisation will remove the watermark code.

3.2.14 Dash-O Pro

Dash-O Pro embeds a watermark by obfuscating and in-
serting extra code - each of the class files are renamed
and some code is added to each class file. The extra code
is added to the class initialisation method and is there-
fore invoked implicitly by the Java Virtual Machine. The
extra code includes the ability to ‘expire’ the software if
this option is activated in the Dash-O Pro configuration.

3.3 The Transformation Attacks

Sandmark contains a variety of semantics preserving ob-
fuscations which we will use to evaluate the watermarking
systems. We also use Proguard [34] to optimise the test
programs, as another form of obfuscation. In total, there
are 37 different transformations to be applied.

3.4 The Jar files

All the jar files that we use in the tests are plugins for
the open-source text editor jEdit [59]. These files are
fairly small (average 30KB) but represent a collection of
real-world Java software1. The range of plugins repre-
sent a variety of code, and were all written by different

1we found that larger files cause problems with Sandmark’s ob-
fuscator resulting in crashes and/or extremely long embed times

Table 3: Test file statistics.

Filename S
iz
e
(K

B
)

C
la
ss
e
s

M
e
th

o
d
s

F
ie
ld
s

L
o
c
a
ls

Accents 18.4 6 33 16 96
Activator 21.1 17 86 47 212
Ancestor 4.9 5 16 9 48

AxisHelper 12.9 7 39 33 90
Background 11.0 6 35 26 100
BufferLocal 13.1 5 31 20 105

BufferSelector 15.2 9 44 29 110
CheckStylePlugin 4.7 3 19 9 47

CodeLint 12.4 3 19 11 82
CommentFolder 3.3 2 4 3 15

CommonControls 271.6 62 436 218 1189
ConfigurableFoldHandler 24.0 15 83 53 223

ContextHelp 16.7 2 21 48 87
ContextMenu 20.3 11 64 32 136
DBTerminal 23.6 22 101 56 203

Dict 10.9 6 40 31 89
GroovyScriptEnginePlugin 3.6 1 5 1 5

HelperLauncher 7.3 4 23 10 63
HexEdit 22.7 27 137 35 321

Hyperlinks 17.0 18 74 34 194
IncludesParser 22.3 15 51 43 123
InformSideKick 24.2 10 78 82 252
JFuguePlugin 24.7 12 51 12 84

JNAPlugin 1.9 1 3 0 3
JVMStats 4.8 4 11 16 35

JalopyPlugin 22.2 22 70 13 117
JavaFold 5.2 3 10 9 50

JavaInsight 26.6 10 52 20 237
JavaScriptShell 27.6 6 38 7 103

JavascriptScriptEnginePlugin 3.6 1 5 1 5
JcrontabPlugin 19.1 11 52 35 133

JinniConsole 7.9 5 37 13 86
LineGuides 15.3 8 57 24 156
LispPaste 8.4 7 25 20 68
MacOSX 8.9 4 29 8 94

MetalColor 9.0 4 36 40 68
MibSideKick 8.5 6 23 9 60
MouseSnap 4.6 1 8 3 19

MyDoggyPlugin 24.1 17 94 46 237
Nested 15.9 12 47 23 132

NetComponents 17.8 21 137 49 336
Optional 15.4 11 68 29 226
Outline 4.6 4 13 7 33

PerlSideKick 7.2 2 4 10 15
ProjectViewer 712.1 169 1103 523 3004
PrologConsole 17.6 3 22 7 60

RETest 16.9 6 54 31 121
RecentBufferSwitcher 10.6 6 31 9 87

RecursiveOpen 8.3 4 17 9 48
Rename 5.0 6 18 14 49

SaxonAdapter 7.6 3 20 13 67
SaxonPlugin 26.3 1 1 0 1

ScriptEnginePlugin 21.2 7 54 21 166
SendBuffer 5.5 2 7 11 34

ShortcutDisplay 10.9 9 39 18 85
Sudoku 16.8 17 62 50 221

SuperScript 27.6 14 70 39 201
SwitchBuffer 22.3 17 66 43 171

TableLayout-20050920 10.1 5 70 47 296
TomcatSwitch 17.9 7 60 45 159

Average 30.0 11 66 35 180

IAENG International Journal of Computer Science, 38:1, IJCS_38_1_01

(Advance online publication: 10 February 2011)

__

programmers but as they are plugins they share some
characteristics. For example, some classes may subclass
jEdit’s abstract plugin classes to use jEdit’s plugin API.
All the test files were obtained by installing jEdit and
then using the built-in plugin manager to download the
plugin jar files. The average number of classes per jar is
11, while the average number of methods per jar is 66.
The average number of fields 35 and the average number
of local variables is 180.

The biggest program jar was 712.1KB while the small-
est was 1.9KB. The largest program jar had 169 classes
and the smallest had only 1. Two programs had no fields
while the largest program contained 523. The largest pro-
gram contained 3004 locals variables. Further program
statistics can be found in table 3.

4 Results

4.1 Watermarking

After embedding watermarks we obtained 671 out of an
expected 840 watermarked jars. Some watermark al-
gorithms failed to embed the specified watermark, due
to error or incompatible program jar. For example,
Qu/Potkonjak could only embed watermarks in 1 of the
programs because the class files were too small for the
watermark. Allatori, String Constant and Add Expres-
sion managed to correctly embed watermarks in all 60
test programs - they were embedded and recognised cor-
rectly. Only 79.9% of the expected watermarked jar files
were actually produced (see figure 3).

Out of the 671 watermarked jar files only 588 contained
watermarks which were successfully recognised before the
transformation attacks were applied. This means only
87.6% of the watermarks in the watermarked jar files pro-
duced were actually recognised (see figure 3).

4.2 Obfuscation

We obfuscated the 671 jar files with 36 obfuscations, 1 op-
timisation and 2 obfuscation combinations which should
have resulted in 26,169 attacked watermarked jars. Some
algorithms failed to output some jars so we actually ob-
tained 23,626 attacked watermarked jars using 39 seman-
tics preserving transformations. We believe this is due to
bugs in the implementation rather than a fundamental
problem with the algorithms. This means only 90.3% of
the expected attacked watermarked jar files were actually
produced (see figure 3).

4.3 Recognition

The result of recognising the watermarks in the obfus-
cated jar files are shown in table 5. The number of suc-
cessful recognitions before transformations is shown in
the first column, while the remaining columns show the

(a) Watermarks Embeds

(b) Watermarks Recognitions

(c) Obfuscations

Figure 3: Watermark and Obfuscation success. Out of
the 840 expected watermarked jars, only 671 were pro-
duced by the watermarkers (a), while only 588 of these
were correctly recognised (b). Out of the 26,169 expected
attacked watermarked jars only 23,626 were produced (c).

number of successful recognitions after transformations.

A number of zeros can be seen throughout the table indi-
cating that no watermarks was recognised with that com-
bination of the watermark and transformation. These are
the combinations of watermark and transformation that
we are interested.

4.4 Analysis

By examining the table we can see that Proguard Opti-
mizer produces the best results overall - with a low num-
ber of recognitions for all watermarkers, except String
Constant.

IAENG International Journal of Computer Science, 38:1, IJCS_38_1_01

(Advance online publication: 10 February 2011)

__

Some obfuscation algorithms remove certain watermarks
better than others, for example ‘Rename Registers’ re-
moves all of the ‘Add Expression’ watermarks – this is
because this attack renames the variables and the wa-
termarking system can no longer identify which are the
bogus variables. Other obfuscations which affect variable
names also remove these watermarks.

The ‘Add Initialization’ watermark was easily defeated by
the ‘Merge Local Integers’ because this watermarking al-
gorithm stores parts in a bogus addition expressions. The
‘Irreducibility’ obfuscation inserts jumps into a method,
protected by opaque predicates, which makes the control
flow graph irreducible – this greatly effects the ’Graph
Theorectic Watermark’ which stores a watermark in a re-
ducible control-flow graph in the program. The ‘Moden’
watermarking algorithm is effected by any transforma-
tion to the watermarked method – this is because the
watermark is encoded in the syntactic properties of that
method.

Allatori, one of the commercial systems performed well
under most obfuscations but was easily defeated by the
optimiser due to it’s use of ‘dead-code’ to embed the wa-
termark. The watermarking algorithm ‘Static Arboit’
uses opaque predicates to encode the watermark which
are not resilient to obfuscations which introduce other
opaque predicates.

We can also see that some of the transformations re-
move some of watermarks completely. We therefore used
a combination of well performing watermarks to remove
more watermarks overall (see table 4).

The results of running this combination of transforma-
tions are shown at the end of table 5, in the ‘Combo 1’ col-
umn. This removes many of the watermarks, leaving just
71 remaining and some watermark algorithms with no re-
maining watermarks. We then generated ‘Combo 2’ by
selecting transformations which contained files in ‘Combo
1’ but which had the watermark removed.‘Combo 2’ re-
moved some more of the remaining watermarks result-
ing in just 53 files containing watermarks and the Add
Switch, Davidson/Myhrvold, Monden and Allatori wa-
termark algorithms completely defeated, compared to
‘Combo 1’.

There are still 52 watermarks recognisable after Combo
2 using the ‘String Constant’ watermark algorithm but
these can easily be removed. The ‘String Constant’ algo-
rithm creates a new, unused entry in a class-file’s constant
pool containing the watermark value. The constant is not
used within the code of classfile therefore we can easily
remove it with a simple static analysis and therefore re-
move the 52 ‘String Constant’ watermarks.

Table 4: The combinations of transformations used for
Combo 1 and Combo 2.

Transformation C
o
m
b
o
1

C
o
m
b
o
2

Array Folder
Array Splitter
Block Marker

Constant Pool Reorderer �
Dynamic Inliner

FalseRefactor
Integer Array Splitter

Interleave Methods �
Overload Names � �

ParamAlias
Rename Registers � �

Split Classes �
String Encoder �
Class Splitter �

Field Assignment
Method Merger

Objectify
Publicize Fields

Simple Opaque Predicates �
Static Method Bodies
Bludgeon Signatures

Boolean Splitter �
Branch Inverter

Duplicate Registers
Insert Opaque Predicates �

Irreducibility �
Merge Local Integers �

Opaque Branch Insertion �
Promote Primitive Registers � �

Promote Primitive Types
Random Dead Code
Reorder Instructions
Reorder Parameters

Transparent Branch Insertion
Variable Reassigner �

Inliner �
Proguard Optimize � �

IAENG International Journal of Computer Science, 38:1, IJCS_38_1_01

(Advance online publication: 10 February 2011)

__

The last remaining watermarked file contains an ‘Add
Method and Field’ watermark. This jar file caused the
obfuscators to crash and therefore could not be obfus-
cated. We believe that this happened due to bugs in
obfuscation implementations rather than a fundamental
problem with the algorithms. We therefore suggest that
this remaining watermark could be removed if the obfus-
cation implementations were corrected.

A watermarking system can fail in two ways: it fails to
embed the watermark, or the watermark is easy to re-
move. A good watermarking system is one where em-
bedding succeeds often and the watermark is not often
removed. Our results show that the static watermarking
systems performed badly at embedding and watermarks
were easily removed.

5 Conclusion

We confirmed that none of the 14 static watermark algo-
rithms are resilient to semantics preserving transforma-
tions. Our results compare similarly with previous eval-
uations of some of the static watermarking algorithms.
A combination of transformations removed all but 52
‘String Constant’ watermarks and 1 ‘Add Method and
Field’ watermark from the test files. 52 of the remaining
watermarks can be destroyed by removing (or overwrit-
ing) unused constants in a class-file’s constant pool. The
last watermarked file was rejected by some of the obfus-
cations and we assume that the watermark in this file
would be removed if the bugs in the obfuscations were
fixed.

Software watermarking must be supplemented with other
forms of protection [53], such as obfuscations or tamper-
proofing techniques [21], in order to better protect a pro-
gram from copyright infringement and decompilation.

Though we have not evaluated all aspects of the water-
marking algorithms, we have shown that static water-
marks are insufficient to prove ownership of software due
to their lack of resilience to semantics preserving trans-
formations.

5.1 Future Work

Further work will involve extending the evaluation to dy-
namic watermarks which, in theory, should be resilient
to semantics preserving transformations. However, it has
been shown that at least one dynamic algorithm is only
minimally stronger than the static version [43]. We in-
tend to investigate this claim and extend the investigation
to evaluate other dynamic watermarking algorithms and
their advantages over static algorithms. Furthermore, we
plan to evaluate more factors such as runtime and em-
bedding costs, and stealthiness. Additionally, we intend
to look at the use of program slicing techniques [58] in
order to perform subtractive watermark attacks.

T
ab

le
5:

E
va
lu
a
ti
o
n
re
su
lt
s
-
a
lo
n
g
th
e
to
p
is

th
e
n
a
m
e
o
f
th
e
tr
a
n
sf
o
rm

a
ti
o
n
p
er
fo
rm

ed
a
n
d
al
o
n
g
th
e
le
ft

is
th
e
n
a
m
e
o
f
th
e
w
a
te
rm

a
rk

sy
st
em

.

Original

ArrayFolder

ArraySplitter

BlockMarker

ConstantPoolReorderer

DynamicInliner

FalseRefactor

IntegerArraySplitter

InterleaveMethods

OverloadNames

ParamAlias

RenameRegisters

SplitClasses

StringEncoder

ClassSplitter

FieldAssignment

MethodMerger

Objectify

PublicizeFields

SimpleOpaquePredicates

StaticMethodBodies

BludgeonSignatures

BooleanSplitter

BranchInverter

DuplicateRegisters

InsertOpaquePredicates

Irreducibility

MergeLocalIntegers

OpaqueBranchInsertion

PromotePrimitiveRegisters

PromotePrimitiveTypes

RandomDeadCode

ReorderInstructions

ReorderParameters

TransparentBranchInsertion

VariableReassigner

Inliner

ProguardOptimize

Combo1

Combo2

A
d
d

E
x
p
re

ss
io
n

60
60

60
60

57
60

60
60

57
60

60
0

28
60

60
60

60
60

60
60

24
60

60
60

6
0

6
0

5
9

5
6

6
0

0
7

4
7

6
0

6
0

5
9

1
1
0

2
0

0
A
d
d

In
it
ia
li
z
a
ti
o
n

56
56

56
56

54
56

56
56

55
56

56
56

56
56

44
56

56
56

56
55

55
56

55
56

5
5
6

5
6

0
0

0
7

5
6

1
0

5
1

4
8

5
6

5
6

1
0

0
A
d
d

M
e
th

o
d

a
n
d

F
ie
ld

35
35

35
35

33
30

35
35

7
6

34
35

29
35

23
32

35
35

35
35

35
35

35
35

3
5

3
5

3
5

3
5

3
5

3
5

3
5

3
5

3
5

3
5

3
5

3
5

2
7

3
5

6
1

A
d
d

S
w
it
ch

59
59

59
59

55
59

59
59

59
59

59
59

59
59

58
59

59
59

59
59

59
59

59
59

5
9

5
9

5
9

5
9

5
9

5
9

5
9

5
9

5
9

5
9

5
9

5
9

5
9

1
1

0
D
a
v
id
so

n
/
M

y
h
rv

o
ld

15
15

12
14

13
15

15
15

12
15

12
15

7
8

15
15

15
13

15
15

15
11

12
13

8
7

1
5

1
1

6
4

4
1
4

1
3

1
3

9
2

1
3

8
3

0
G
ra

p
h

T
h
e
o
re

ti
c
W

a
te
rm

a
rk

47
47

47
47

45
45

47
47

29
47

47
47

46
47

47
47

47
47

47
1

47
47

47
47

4
7

3
3

0
4
7

1
0

5
4
7

4
7

4
7

2
4
7

4
5

0
0

0
M

o
n
d
e
n

58
56

58
56

55
58

58
58

28
58

58
58

58
58

58
58

57
58

58
7

58
58

48
55

5
6

3
1

4
4

2
5

3
2

4
4

4
6

5
6

5
8

5
8

5
8

5
8

5
6

7
5

0
Q
u
/
P
o
tk

o
n
ja
k

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

R
e
g
is
te
r
T
y
p
e
s

51
51

51
51

49
49

51
51

50
9

51
0

15
51

32
51

51
6

51
51

5
51

51
51

5
1

5
1

5
1

5
1

5
1

5
1

5
1

5
1

5
1

5
1

5
1

1
8

1
0

0
S
ta

ti
c
A
rb

o
it

19
19

19
19

18
12

19
19

3
19

19
19

19
19

19
19

1
19

19
0

19
19

19
19

1
9

3
1
9

1
9

0
0

2
1
9

1
9

1
9

1
0

1
9

2
2

0
0

S
te
rn

46
43

46
45

44
44

45
46

39
45

46
45

45
46

45
45

45
45

45
1

45
45

46
45

4
5

1
0

2
6

1
6

4
2

0
5

2
2

4
6

4
5

4
5

4
5

4
2

2
0

0
S
tr
in
g
C
o
n
st
a
n
t

60
60

60
60

57
60

60
60

60
60

60
60

60
60

60
60

60
60

60
60

60
60

60
60

6
0

6
0

6
0

6
0

6
0

6
0

6
0

6
0

6
0

6
0

6
0

6
0

6
0

6
0

5
5

5
2

D
a
sh

-O
P
ro

22
4

11
0

8
8

0
2

6
4

0
0

4
11

6
0

0
2

0
1

0
2

9
0

0
1
0

9
0

0
0

2
0

9
2

0
1

7
2
2

0
0

A
ll
a
to

ri
60

60
60

60
57

54
60

60
59

60
60

59
60

60
60

60
60

60
60

60
60

59
60

60
6
0

6
0

6
0

6
0

5
6

6
0

6
0

6
0

6
0

5
9

5
9

6
0

5
8

1
1

0

IAENG International Journal of Computer Science, 38:1, IJCS_38_1_01

(Advance online publication: 10 February 2011)

__

Figure 4: The number of files in which watermarks were correctly recognised.

IAENG International Journal of Computer Science, 38:1, IJCS_38_1_01

(Advance online publication: 10 February 2011)

__

References

[1] DashO, 2010. URL http://www.preemptive.com/

products/dasho/overview. Accessed: 2 April,
2010.

[2] Preemptive solutions, 2010. URL http://www.

preemptive.com/. Accessed: 26 April, 2010.

[3] Alfred V Aho, Monica S Lam, Ravi Sethi, and Jef-
frey D Ullman. Compilers: Principles, Techniques,
and Tools. Addison Wesley, 2nd edition, August
2006. ISBN 0321486811.

[4] Jieqing Ai, Xingming Sun, Yunhao Liu, Ingemar J.
Cox, Guang Sun, and Yi Luo. A stern-based
Collusion-Secure software watermarking algorithm
and its implementation. In Proceedings of the 2007
International Conference on Multimedia and Ubiq-
uitous Engineering, pages 813–818. IEEE Computer
Society, 2007. ISBN 0-7695-2777-9.

[5] Bertrand Anckaert, Bjorn De Sutter, and Koen De
Bosschere. Covert communication through executa-
bles. In Program Acceleration through Applica-
tion and Architecture Driven Code Transformations:
Symposium Proceedings, pages 83–85, 2004.

[6] Genevieve Arboit. A method for watermarking java
programs via opaque predicates. In The Fifth In-
ternational Conference on Electronic Commerce Re-
search (ICECR-5), 2002.

[7] Sanjeev Arora, Satish Rao, and Umesh Vazirani. Ex-
pander flows, geometric embeddings and graph par-
titioning. In Proceedings of the thirty-sixth annual
ACM symposium on Theory of computing, pages
222–231, Chicago, IL, USA, 2004. ACM. ISBN 1-
58113-852-0.

[8] Business Software Alliance. Sixth annual BSA and
IDC global software piracy study. Technical Re-
port 6, Business Software Alliance, 2008.

[9] Gregory J. Chaitin, Marc A. Auslander, Ashok K.
Chandra, John Cocke, Martin E. Hopkins, and Pe-
ter W. Markstein. Register allocation via coloring.
Computer Languages, 6(1):47 – 57, 1981. ISSN 0096-
0551. doi: DOI:10.1016/0096-0551(81)90048-5.

[10] Balamurgan Chirtsabesan and Tapas Ranjan Sa-
hoo. BogusExpression static watermarking algo-
rithm. Sandmark documentation, 2004.

[11] Maria Chroni and Stavros D. Nikolopoulos. En-
coding watermark integers as self-inverting permu-
tations. In Proceedings of the 11th International
Conference on Computer Systems and Technologies
and Workshop for PhD Students in Computing on
International Conference on Computer Systems and

Technologies, pages 125–130, Sofia, Bulgaria, 2010.
ACM. ISBN 978-1-4503-0243-2.

[12] C. Collberg, A. Huntwork, E. Carter, and
G. Townsend. Graph theoretic software watermarks:
Implementation, analysis, and attacks. In Workshop
on Information Hiding, 2004.

[13] Christian Collberg. Sandmark, August 2004. URL
http://www.cs.arizona.edu/sandmark/. Ac-
cessed: 2 April, 2010.

[14] Christian Collberg and Jasvir Nagra. Surrepti-
tious Software: Obfuscation, Watermarking, and
Tamperproofing for Software Protection. Addison-
Wesley Professional, 2009. ISBN 0321549252,
9780321549259.

[15] Christian Collberg and Tapas Ranjan Sahoo. Soft-
ware watermarking in the frequency domain: imple-
mentation, analysis, and attacks. J. Comput. Secur.,
13(5):721–755, 2005.

[16] Christian Collberg and Clark Thomborson. Soft-
ware watermarking: Models and dynamic embed-
dings. In Principles of Programming Languages
1999, POPL’99, January 1999.

[17] Christian Collberg, Clark Thomborson, and Douglas
Low. Manufacturing cheap, resilient, and stealthy
opaque constructs. In Principles of Programming
Languages 1998, POPL’98, January 1998.

[18] Christian Collberg, MiriamMiklofsky, Ginger Myles,
Ashok Purushotham, RathnaPrabhu Rajendran,
Andrew Huntwork, Xiangyu Zhang, Danny Mandel,
Anna Segurson, Martin Stepp, Kelly Heffner, J Na-
gra, G Townsend, Balamurugan Chirtsabesan, and
Tapas Ranjan Sahoo. Sandmark algorithms. Sand-
mark documentation, University of Arizona, July
2002.

[19] Christian Collberg, Stephen Kobourov, Edward
Carter, and Clark Thomborson. Error-Correcting
graphs for software watermarking. In Proceedings of
the 29th Workshop on Graph Theoretic Concepts in
Computer Science, pages 156–167, 2003.

[20] Christian Collberg, Andrew Huntwork, Edward
Carter, Gregg Townsend, and Michael Stepp. More
on graph theoretic software watermarks: Implemen-
tation, analysis, and attacks. Inf. Softw. Technol.,
51(1):56–67, 2009.

[21] Christian S. Collberg and Clark Thomborson. Wa-
termarking, Tamper-Proofing, and obfuscation -
tools for software protection. In IEEE Transactions
on Software Engineering, volume 28, page 735746,
August 2002.

IAENG International Journal of Computer Science, 38:1, IJCS_38_1_01

(Advance online publication: 10 February 2011)

__

[22] Christian S. Collberg, Clark Thomborson, and
Gregg M. Townsend. Dynamic graph-based software
fingerprinting. ACM Trans. Program. Lang. Syst., 29
(6):35, 2007.

[23] Ingemar J. Cox, Joe Kilian, Frank Thomson
Leighton, and Talal Shamoon. A secure, robust
watermark for multimedia. In Proceedings of the
First International Workshop on Information Hid-
ing, pages 185–206. Springer-Verlag, 1996. ISBN 3-
540-61996-8.

[24] D. Curran, N.J. Hurley, and M. O. Cinneide. Se-
curing java through software watermarking. In Pro-
ceedings of the 2nd international conference on Prin-
ciples and practice of programming in Java, page
311324, 2003.

[25] Robert Davidson and Nathan Myhrvold. Method
and system for generating and auditing a signature
for a computer program, June 1996. Microsoft Cor-
poration, US Patent 5559884.

[26] Rakesh Ghiya and Laurie J. Hendren. Is it a tree,
a DAG, or a cyclic graph? a shape analysis for
heap-directed pointers in c. In Proceedings of the
23rd ACM SIGPLAN-SIGACT symposium on Prin-
ciples of programming languages, pages 1–15, St. Pe-
tersburg Beach, Florida, United States, 1996. ACM.
ISBN 0-89791-769-3.

[27] Gael Hachez. A Comparative Study of Software
Protection Tools Suited for E-Commerce with Con-
tributions to Software Watermarking and Smart
Cards. PhD thesis, Universite Catholique de Lou-
vain, March 2003.

[28] Maurice H Halstead. Elements of software science
(Operating and programming systems series). Else-
vier, 1977. ISBN 0444002057. Published: Hardcover.

[29] James Hamilton and Sebastian Danicic. An evalua-
tion of current java bytecode decompilers. In Ninth
IEEE International Workshop on Source Code Anal-
ysis and Manipulation, volume 0, pages 129–136,
Edmonton, Alberta, Canada, 2009. IEEE Computer
Society.

[30] James Hamilton and Sebastian Danicic. An evalua-
tion of static java bytecode watermarking. In Lecture
Notes in Engineering and Computer Science: Pro-
ceedings of The World Congress on Engineering and
Computer Science 2010, volume 1, pages 1 – 8, San
Francisco, USA, October 2010. ISBN 978-988-17012-
0-6. Winner of the Best Student Paper Award.

[31] Kazuhiro Hattanda and Shuichi Ichikawa. The eval-
uation of davidsons digital signature scheme. IEICE
Trans. Fundamentals, E87A(1), January 2004.

[32] Matthew S. Hecht and Jeffrey D. Ullman. Flow
graph reducibility. In Proceedings of the fourth

annual ACM symposium on Theory of computing,
pages 238–250, Denver, Colorado, United States,
1972. ACM.

[33] Keith Holmes. Computer software protection,
February 1994. International Business Machines
Corporation, US Patent: 5287407.

[34] Eric Lafortune et al. ProGuard, July 2009. URL
http://proguard.sourceforge.net/. Accessed:
10 April, 2010.

[35] Tri Van Le and Yvo Desmedt. Cryptanalysis of
UCLA watermarking schemes for intellectual prop-
erty protection. In Revised Papers from the 5th In-
ternational Workshop on Information Hiding, pages
213–225. Springer-Verlag, 2003. ISBN 3-540-00421-
1.

[36] Anshuman Mishra, Rajeev Kumar, and P. P.
Chakrabarti. A method-based Whole-Program wa-
termarking scheme for java class files. 2008.

[37] Akito Monden. jmark, 2003. URL http://se.

aist-nara.ac.jp/jmark/. Accessed: 14 July, 2010.

[38] Akito Monden, Hajimu Iida, et al. A watermarking
method for computer programs. In Proceedings of
the 1998 Symposium on Cryptography and Informa-
tion Security, SCIS’98. Institute of Electronics, In-
formation and Communication Engineers, January
1998. in Japanese.

[39] Akito Monden, Hajimu Iida, Ken ichi Matsumoto,
Katsuro Inoue, and Koiji Torii. Watermarking java
programs. In International Symposium on Future
Software Technology ’99, pages 119–124, October
1999.

[40] Akito Monden, Hajimu Iida, Ken ichi Matsumoto,
Koji Torii, and Katsuro Inoue. A practical method
for watermarking java programs. In COMPSAC ’00:
24th International Computer Software and Applica-
tions Conference, pages 191–197, Washington, DC,
USA, 2000. IEEE Computer Society. ISBN 0-7695-
0792-1.

[41] Ginger Myles. Using software watermarking to
discourage piracy. Crossroads - The ACM Stu-
dent Magazine, 2004. URL http://www.acm.org/

crossroads/xrds10-3/watermarking.html. Ac-
cessed: 21 March, 2009.

[42] Ginger Myles and Christian Collberg. Software wa-
termarking through register allocation: Implementa-
tion, analysis, and attacks. In International Confer-
ence on Information Security and Cryptology, vol-
ume 2971/2004 of Lecture Notes in Computer Sci-
ence. Springer Berlin / Heidelberg, 2003. ISBN 978-
3-540-21376-5.

IAENG International Journal of Computer Science, 38:1, IJCS_38_1_01

(Advance online publication: 10 February 2011)

__

[43] Ginger Myles and Christian Collberg. Software wa-
termarking via opaque predicates: Implementation,
analysis, and attacks. In ICECR-7, 2004.

[44] Ginger Myles, Christian Collberg, Zachary Heide-
priem, and Armand Navabi. The evaluation of two
software watermarking algorithms. Softw. Pract. Ex-
per., 35(10):923938, 2005. ISSN 0038-0644.

[45] Jasvir Nagra, Clark Thomborson, and Christian
Collberg. A functional taxonomy for software wa-
termarking. In Michael J. Oudshoorn, editor, Aust.
Comput. Sci. Commun., pages 177–186, Melbourne,
Australia, 2002. ACS.

[46] Gang Qu and Miodrag Potkonjak. Analysis of wa-
termarking techniques for graph coloring problem.
In Proceedings of the 1998 IEEE/ACM international
conference on Computer-aided design, pages 190–
193, San Jose, California, United States, 1998. ACM.
ISBN 1-58113-008-2.

[47] Gang Qu and Miodrag Potkonjak. Hiding signatures
in graph coloring solutions. In Information Hiding,
pages 348–367, 1999.

[48] Gang Qu and Miodrag Potkonjak. Fingerprinting in-
tellectual property using constraint-addition. In De-
sign Automation Conference, pages 587–592, 2000.

[49] G. Ramalingam. The undecidability of aliasing.
ACM Trans. Program. Lang. Syst., 16(5):1467–1471,
1994.

[50] Peter R. Samson. Apparatus and method for seri-
alizing and validating copies of computer software,
February 1994.

[51] Smardec. Software development and information
technology offshore outsourcing company, 2008.
URL http://www.smardec.com/.

[52] Smardec. Allatori java obfuscator, September 2009.
URL http://www.allatori.com/. Accessed: 2
April, 2010.

[53] Jose Sogiros. Is protection software needed
watermarking versus software security, March
2010. URL http://bb-articles.com/

watermarking-versus-software-security.
Accessed: 13 April, 2010.

[54] Julien Stern, Gael Hachez, Francois Koeune, and
Jean-Jacques Quisquater. Robust object watermark-
ing: Application to code. In Information Hiding
Workshop ’99, pages 368–378, 1999.

[55] Ramarathnam Venkatesan and Vijay Vazirani. Tech-
nique for producing through watermarking highly
tamper-resistant executable code and resulting wa-
termarked code so formed, May 2006. Microsoft Cor-
poration, US Patent: 7051208.

[56] Ramarathnam Venkatesan, Vijay Vazirani, and
Saurabh Sinha. A graph theoretic approach to soft-
ware watermarking. In Proceedings of the 4th Inter-
national Workshop on Information Hiding, 2001.

[57] Bill Venners. Inside the Java Virtual Machine.
McGraw-Hill, Inc., New York, NY, USA, 1996. ISBN
0079132480.

[58] Mark Weiser. Program slicing. In ICSE ’81:
Proceedings of the 5th international conference on
Software engineering, page 439449, Piscataway, NJ,
USA, 1981. IEEE Press. ISBN 0-89791-146-6.

[59] world-wide developer team. jEdit - programmer’s
text editor, 2010. URL http://www.jedit.org/.
Accessed: 10 April, 2010.

[60] William Zhu and Clark Thomborson. Algorithms
to watermark software through register allocation.
In Digital Rights Management. Technologies, Issues,
Challenges and Systems, volume 3919 of Lecture
notes in computer science, pages 180–191, Berlin,
Allemange, 2006. Springer. ISBN 978-3-540-35998-
2.

[61] William Zhu and Clark Thomborson. Extrac-
tion in software watermarking. In Sviatoslav
Voloshynovskiy, Jana Dittmann, and Jessica J.
Fridrich, editors, MM&Sec, pages 175–181. ACM,
2006. ISBN 1-59593-493-6.

[62] William Zhu and Clark Thomborson. Recognition
in software watermarking. In Proceedings of the 4th
ACM international workshop on Contents protection
and security, pages 29–36, Santa Barbara, Califor-
nia, USA, 2006. ACM. ISBN 1-59593-499-5.

[63] William Feng Zhu. Concepts and Techniques in Soft-
ware Watermarking and Obfuscation. PhD thesis,
The University of Auckland, 2007.

IAENG International Journal of Computer Science, 38:1, IJCS_38_1_01

(Advance online publication: 10 February 2011)

__

